

Rationale

- We get more compression when the message has a more skewed set of probabilities
 - Certain symbols occur with higher probability than others
 - We can look for ways to represent the message that would result in greater skew
- One effective way is to look at the probability of occurrence of a letter in the context in which it occurs
 - Examine the history of the sequence before determining the likely probabilities of different values the symbol can take
 - For example, the Markov models

† C. E. Shannon, "Prediction and entropy of printed English," *The Bell System Technical Journal*, 30:50–64, January 1951.

4/30

Context-based Coding

Use conditional probability to skew distribution

- Unconditional probability: P(h') = 0.05, P(u') = 0.02.
- Conditional probability: $P(h' \mid t') = 0.3$, $P(u' \mid q') = 0.99$.

□ Practical issues:

- Should dynamic or static statistics be used?
- Using high-order context requires a (extremely) large probability table

□ Solutions:

- Adaptive scheme
- Using contexts of variable sizes

The PPM Algorithm

 \Box The maximal context order, N, must be selected in advance

For K = N ... 1

- Read K symbols before current symbol s
- If the *K*-th order context is not available, decrement K and continue
- Otherwise, if the *K*-th order context does not contain s
 - Encode an escape symbol
 - Decrement K and continue
- Otherwise, encode s using the K-th order context and break loop
- \Box If *s* is not encoded, use -1 order statistics
 - All symbols have equal probabilities
- □ After encoding, update context statistics (not for escape code)

-1 order context:

Zero-order context

Letter	Count	Cum_Count
t	1	1
h	1	2
i	1	3
S	1	4
e	1	5
Δ	1	6
Total	Count	6

Letter	Count	Cum_Count
t	1	1
h	1	2
i	2	4
S	2	6
Δ	1	7
<i><esc></esc></i>	1	8
Total (Count	8

Example: English Text, N = 2 (2/8)

□ The first-order contexts after coding *this is* are:

Context	Letter	Count	Cum_Count
t	h	1	1
	< <i>ESC</i> >	1	2
To	otal Count		2
h	i	1	1
	< <i>ESC</i> >	1	2
To	otal Count		2
i	S	2	2
	< <i>ESC</i> >	1	3
Ta	otal Count		3
Δ	i	1	1
	< <i>ESC</i> >	1	2
To	otal Count		2
S	Δ	1	1
	< <i>ESC</i> >	1	2
To	otal Count		2

14/30

Now, check the updated zero-order contexts to see if t has occurred before:

Letter	Count	Cum_Count
t	1	1
h	1	2
i	2	4
S	2	6
Δ	2	8
< <i>ESC</i> >	1	9
Total (Count	9

□ Encode *t* using zero-order contexts:

$$l = 0 + \left\lfloor (63 - 0 + 1) \times \frac{0}{9} \right\rfloor = 0 = 000000$$
$$u = 0 + \left\lfloor (63 - 0 + 1) \times \frac{1}{9} \right\rfloor - 1 = 6 = 000110$$

19/30

	ut sequence: <i>this_is_t</i>	he					
	ward transform.						
Step I:		Step II:					
-	0 this_is_the	-	0	_ <i>i s</i> _ <i>t h e t h i s</i>			
	1 his_is_thet		1	_ t h e t h i s _ i s			
	2 is_is_theth		2	ethis_is_th			
	3 s_is_thethi		3	hethis_is_t			
	4 _ is_ the this		4	his_is_thet			
	5 is_thethis_		5	is_is_theth			
	6 s_thethis_i		6	is_thethis_			
	/ _ thethis_is		/	s_is_thethi			
	8 thethis_is_		8	s_thethis_i			
	9 hethis_is_t		9	thethis_is_			

Step III: transmit the index 10 and the sequence *L*: *sshtth_ii_e* to the decoder

