
Context-based Coding

National Chiao Tung University

Chun-Jen Tsai

10/23/2014

2/30

Rationale

� We get more compression when the message has a

more skewed set of probabilities

� Certain symbols occur with higher probability than others

� We can look for ways to represent the message that would
result in greater skew

� One effective way is to look at the probability of

occurrence of a letter in the context in which it occurs

� Examine the history of the sequence before determining the
likely probabilities of different values the symbol can take

� For example, the Markov models

3/30

Shannon’s Experiments

� For English text, Shannon showed the role of context

in two letter-guessing experiments

� Experiment 1: Each letter is guessed once, the correct
answer will be given upon a wrong guess

The dashes represent the letters that were correctly guessed

� Experiment 2: Keep guessing until you get the answer, the
number of guesses for each letter represents the message:

11117521111113221911111811112195111183111

Actual Text THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG

Subject Performance ----ROO------NOT-V-----I------SM----OBL---

4/30

Remarks on the Experiments

� For the first experiment, “–” has highest probability;

for the second experiment, “1” is most probable

� Key question: can you reliably decode the encoded

message?

� Shannon used these experiments to estimate the
entropy of the English alphabet†. If N–1 preceding

letters are known, the entropy FN of the next letter is

estimated to be:

0.6 ≤ F100 ≤ 1.3

† C. E. Shannon, “Prediction and entropy of printed English,” The Bell System Technical Journal, 30:50–64, January 1951.

5/30

Difficulties in Practice

� Human subjects are much better at predicting the

next letter in a sequence

� Hard to formulate the behavior mathematically

� Grammar is hypothesized to be innate to humans

� Development of a predictor as efficient as a human for
language is hard

� However, the key idea is:

Given the context, some symbols will occur more often than others.

If the context is known to both encoder and decoder, we can use this

skewed distribution to increase compression ratio.

6/30

Examples of Context

� For the word “probability”,

� “b” is the first-order context for “a”

� “ob” is the second-order context for “a”

� For an grayscale image, we can use a neighborhood

structure to define context

� To put condition on the square pixel, we can use the circular
pixels as the context:

� Higher order (or larger) context usually produces

higher degree of skewed distribution

causal context

(scanline-order)
Non-causal context

7/30

Predictive Coding vs. Context Coding

� For predictive coding, we use a deterministic model

to de-correlate the data

� The final data that enters the entropy coder are treated as
IID data

� For context-based coding, we use a conditional

probability model to skew the distribution of the data

� The entropy use the skewed distribution to encode the
original (unprocessed) data

8/30

Context-based Coding

� Use conditional probability to skew distribution

� Unconditional probability: P(‘h’) = 0.05, P(‘u’) = 0.02.

� Conditional probability: P(‘h’ | ‘t’) = 0.3, P(‘u’ | ‘q’) = 0.99.

� Practical issues:

� Should dynamic or static statistics be used?

� Using high-order context requires a (extremely) large
probability table

� Solutions:

� Adaptive scheme

� Using contexts of variable sizes

9/30

Prediction with Partial Match

� Prediction with Partial Match (PPM) was proposed by

Cleary and Witten in 1984

� Key idea: instead of estimating these probabilities

ahead of time, we estimate the probabilities as the

coding proceeds

� Only need to store those contexts that have occurred in the
sequence being encoded

� Need to code letters that have not occurred previously in this
context → using escape symbol

10/30

A Simple Example

� Input sequence: probability

� Current symbol: a

� Check if P(a | prob) availble → fourth-order context

� If yes, encode a, update P(a | prob)

� If not, send escape code,
then check P(a | rob) → third-order context

� . . . continue checking low-order contexts . . .

� If P(a | b) is not available, check P(a) → zero-order context

� If ‘a’ has never happened before, use P(a) = 1/M,

where M is the alphabet size, to encode a

� The equi-probable model is called ‘–1’ order context

11/30

The PPM Algorithm

� The maximal context order, N, must be selected in advance

� For K = N .. 1

� Read K symbols before current symbol s

� If the K-th order context is not available, decrement K and continue

� Otherwise, if the K-th order context does not contain s

� Encode an escape symbol

� Decrement K and continue

� Otherwise, encode s using the K-th order context and break loop

� If s is not encoded, use –1 order statistics

� All symbols have equal probabilities

� After encoding, update context statistics (not for escape code)

12/30

Remarks on the PPM Algorithm

� Each time a symbol is encountered, the count

corresponding to that symbol is updated

� The number of counts to be assigned to the escape

symbol is not obvious

� Cleary and Witten gave the escape symbol a count of one,
thus inflating the total count by one

� For coding of a symbol, arithmetic code is often used

� AC adapts to conditional probabilities easily

13/30

Example: English Text, N = 2 (1/8)

� Input sequence: this∆is∆the∆tithe

� Encoded symbols: this∆is

� Word length for AC is 6: l = 000000 and u = 111111.

Letter Count Cum_Count

t 1 1

h 1 2

i 1 3

s 1 4

e 1 5

∆ 1 6

Total Count 6

–1 order context:

Letter Count Cum_Count

t 1 1

h 1 2

i 2 4

s 2 6

∆ 1 7

<ESC> 1 8

Total Count 8

Zero-order context

14/30

Example: English Text, N = 2 (2/8)

� The first-order contexts after coding this∆is are:

Context Letter Count Cum_Count

t h 1 1

<ESC> 1 2

Total Count 2

s ∆ 1 1

<ESC> 1 2

Total Count 2

h i 1 1

<ESC> 1 2

Total Count 2

i s 2 2

<ESC> 1 3

Total Count 3

∆ i 1 1

<ESC> 1 2

Total Count 2

15/30

Example: English Text, N = 2 (3/8)

� The next symbol is “∆”, and the 2nd-order contexts
of “∆” is “is”:

Context Letter Count Cum_Count

th i 1 1

<ESC> 1 2

Total Count 2

∆i s 1 1

<ESC> 1 2

Total Count 2

hi s 1 1

<ESC> 1 2

Total Count 2

is ∆ 1 1

<ESC> 1 2

Total Count 2

s∆ i 1 1

<ESC> 1 2

Total Count 2

16/30

Example: English Text, N = 2 (4/8)

� To encode “∆”, the update equations for the lower

and upper limits of AC are

� As l and u are both less than 0.5 (= 100000), we

perform an E1 scaling:

Transmitted sequence: 0

l = 000000

u = 111111

011111311
2

1
)1063(0

0000000
2

0
)1063(0

==−

×+−+=

==

×+−+=

u

l

Context Letter Count Cum_Count

is ∆ 2 2

<ESC> 1 3

Total Count 3

17/30

Example: English Text, N = 2 (5/8)

� Next symbol is “t” and its 2nd-order context is s∆.

→ first appearance; encode an escape symbol!
→ the l and u of AC are updated as

� As l and u are both larger than 0.5 (= 100000), we

perform an E2 scaling:

Transmitted sequence: 01

l = 000000

u = 111111

111111631
2

2
)1063(0

10000032
2

1
)1063(0

==−

×+−+=

==

×+−+=

u

l

Context Letter Count Cum_Count

s∆ i 1 1

t 1 2

<ESC> 1 3

Total Count 3

s∆ i 1 1

<ESC> 1 2

Total Count 2

18/30

Example: English Text, N = 2 (6/8)

� Check the first-order context of t, which is ∆

→ t has not previously occurred in this context

→ encode another escape:

� As l and u are both larger than 0.5 (= 100000), we

perform an E2 scaling:

Transmitted sequence: 011

l = 000000

u = 111111

111111631
2

2
)1063(0

10000032
2

1
)1063(0

==−

×+−+=

==

×+−+=

u

l

Context Letter Count Cum_Count

∆ i 1 1

t 1 2

<ESC> 1 3

Total Count 3

∆ i 1 1

<ESC> 1 2

Total Count 2

19/30

Example: English Text, N = 2 (7/8)

� Now, check the updated zero-order contexts to see if
t has occurred before:

� Encode t using zero-order contexts:

Letter Count Cum_Count

t 1 1

h 1 2

i 2 4

s 2 6

∆ 2 8

<ESC> 1 9

Total Count 9

00011061
9

1
)1063(0

0000000
9

0
)1063(0

==−

×+−+=

==

×+−+=

u

l

20/30

Example: English Text, N = 2 (8/8)

� The three most significant bits of both l and u are the

same, so we shift them out and update l and u:

Transmitted sequence: 011000

l = 000000

u = 110111

� The next symbol is h. There is no 2nd-order context of

∆t. Create the context ‘∆t’ with the initial occurrence
of h and <ESC> in the context, and go directly to the

1st-order context of t:

011011271
2

1
)1055(0

0000000
2

0
)1055(0

==−

×+−+=

==

×+−+=

u

l

→ Transmitted sequence: 0110000

21/30

Escape Symbol Design

� There are several ways to set escape symbol count

� Method A – the count is one for the escape symbol (ppma)

� Method B & C – the count equals the number of symbols in
the context (more symbols, higher probability to escape)

Context Symbol Count

prob a 10

l 9

o 3

<ESC> 1

Total Count 23

Context Symbol Count

prob a 9

l 8

o 2

<ESC> 3

Total Count 22

Context Symbol Count

prob a 10

l 9

o 3

<ESC> 3

Total Count 25

Method B Method C

22/30

Context Length Selection

� A long context will result in a high conditional

probability of the following symbol

� Close to deterministic context (i.e., a context that always
followed by the same symbol)

� Wasting bits coding escape symbols

� Cleary and Teahan proposed a context length

selection algorithm called ppm* in 1997:

� For input symbol s, look for the longest deterministic context

� If there is no deterministic context for s, an escape symbol is

encoded and the algorithm default back to the ppm algorithm

� PPM* is roughly 6% more efficient than PPM method C

23/30

The Exclusion Principle

� Arithmetic coding uses subintervals of [0, 1) to

represent symbols

� Smaller subinterval leads to more bit length

� Exclude the unused subintervals in the higher-order context

� Example: encode “proba”

Context Symbol Count

b a 4

r 2

e 2

<ESC> 3

Total Count 11

Context Symbol Count

ob l 10

o 3

<ESC> 2

Total Count 15

b l 5

o 3

a 4

r 2

e 2

<ESC> 5

Total Count 21

Escape from the context of ‘ob’ means
the current symbol is not an ‘l’ or ‘o’, we can
use a smaller probability table to encode ‘a’

24/30

Burrows-Wheeler Transform

� Often, we can apply an invertible “coordinate-

transform” to our data so that the transformed data is

easier to compress than the original data

� Question:

� Can we transform a sequence so that dictionary-based
compression techniques can do a better job?

� The three-step Burrows-Wheeler Transform (BWT)

published in 1994 is one of such transforms

� Step I: cyclic permutations

� Step II: lexicographical sorting

� Step III: removal of redundant information and transmit the
rest to the decoder

25/30

Example of BWT (1/2)

� Input sequence: this_is_the

� Forward transform:

Step I:
0 t h i s _ i s _ t h e

1 h i s _ i s _ t h e t

2 i s _ i s _ t h e t h

3 s _ i s _ t h e t h i

4 _ i s _ t h e t h i s

5 i s _ t h e t h i s _

6 s _ t h e t h i s _ i

7 _ t h e t h i s _ i s

8 t h e t h i s _ i s _

9 h e t h i s _ i s _ t

10 e t h i s _ i s _ t h

Step II:
0 _ i s _ t h e t h i s

1 _ t h e t h i s _ i s

2 e t h i s _ i s _ t h

3 h e t h i s _ i s _ t

4 h i s _ i s _ t h e t

5 i s _ i s _ t h e t h

6 i s _ t h e t h i s _

7 s _ i s _ t h e t h i

8 s _ t h e t h i s _ i

9 t h e t h i s _ i s _

10 t h i s _ i s _ t h e

Step III: transmit the index 10 and the sequence L: sshtth_ii_e to the decoder

26/30

Example of BWT (2/2)

� Backward transform:

� Given the sequence L, we can reconstruct the first column
sequence F in step II by alphabetical sorting

� With L, F, and the index 10
of the original sequence,
we can reconstruct the
original sequence as follows:

begin here

27/30

Move-to-Front Coding (MTF)

� A coding scheme that takes advantage of long runs

of identical symbols

� Start with an indexed listing of the source alphabet with 0 as

the first index

� If a symbol occurs, its index is transmitted, then it is moved
to the top of the list – If we have a run of this symbol, we will
transmit a sequence of 0s

� Example: encode sshtth_ii_e using the initial list:

The encoded sequence is: 4 0 3 5 0 1 3 5 0 1 5.

0 1 2 3 4 5

_ e h i s t

28/30

Associative Coder of Buyanovsky

� Context information can also be used in dictionary-

based technique. One such techniques is the ACB

codec by Buyanovsky in 1994.

� Dictionary: a sorted list of context-content pairs; sorting is
based on context string (from right-to-left)

� Look-ahead buffer: next letters to be coded

� Algorithm:

while (!EOF) do

begin

i = position of the best matching context in dictionary

j = position of the best matching content in dictionary

count = count of matched prefix chars in found content

ch = first mismatching character

output(j-i, count, ch)

update of dictionary

shift look-ahead buffer by count+1 positions to the right

end

29/30

Dynamic Markov Compression

� We have learned data compression with static 1st-

order Markov model

� Static high-order models are expensive to construct

� To adapt to longer context, we can grow the first-

order model by dynamically “cloning” a state:

Original first-order model, state
A context could be “0” or “1” A new state A′ that reflect the context “0 … 01”

30/30

The Cloning Process in DMC

� When two different states can leads into the same

destination state, we can “clone” the destination:

� Only clone a state if rate reduction is expected

� Happens when both source states enter the destination with
high probability

