
Dictionary-based Coding

Techniques

National Chiao Tung University

Chun-Jen Tsai

10/16/2014

Rationale

� In previous two chapters, we looked at coding

techniques that assume a source that generates a

sequence of independent symbols.

� Most data sources are correlated, thus, the coding step is
generally preceded by a de-correlation step (i.e. model
prediction).

� Alternatively, we can build a list of commonly

occurring patterns and encode these patterns by

transmitting their index in the list

→ dictionary techniques

2/31

Static vs. Adaptive Dictionary

� The dictionary holds a list of strings of symbols and it

may be static or dynamic (adaptive)

� Static dictionary – permanent, sometimes allowing

the addition of strings but no deletions

� Dynamic dictionary – holding strings previously found

in the input stream, allowing for additions and

deletions of strings as new input symbols are being

read

3/31

Basic Idea of Dictionary Coding

� Given an input source, we want to

� Identify frequent symbol patterns

� Encode those more efficiently

� Use a default (less efficient) encoding for the rest

� Hopefully, the average bits per symbol gets smaller

� In general, dictionary-based techniques works well

for highly correlated data (e.g. text), but less efficient

for data with low correlation (e.g. i.i.d. sources)

4/31

Motivating Example

� Consider an ‘English’ source with 26 letters & six

punctuation marks

� Single-symbol FLC, fixed-length encoding: 5 bps

� Four-symbol FLC, fixed-length encoding: 20 bps (324)

� If we assume uneven distribution of the symbols

� Pick a dictionary witch contains the 256 most-frequent
patterns (probability p) and encode them with 8 bits

� Encode the rest with 20 bits

� Use 1-bit prefix to distinguish the two cases

then, the average rate is 9p + 21(1 – p) = 21 – 12p.

If p > 0.084, 21 – 12p < 20.

5/31

Static Dictionary

� Using a static dictionary is less complex, but the
probability p of a hit highly depends on the

applications

� For student records in a university is probably ok.

� The key for success is that the most common

patterns are a small subset of all possible messages

� Out of over 100,000 English words, only less than 2,000
words are used in most writings

6/31

Digram Coding

� The dictionary is composed of
� All letters from the alphabet

� As many digrams (pairs of letters) as possible

� For example, if we want to encode pure ASCII text
documents, we can design a dictionary of size 256
entries, and
� Source alphabet: 95 printable ASCII symbols

� Digrams: 161 most common pairs

7/31

Simple Digram Coding Example

� The source alphabet A = {a, b, c, d, r}

� Dictionary:

� Try to code the sequence abracadabra, the output is

101100110111101100000.

8/31

Problem: Which Digrams to Use?

� Source 1: LaTex documents � Source 2: C programs

9/31

Adaptive Dictionary Technique

� Original ideas published by Jacob Ziv and Abraham

Lempel in 1977 (LZ77/LZ1) and 1978 (LZ78/LZ2)

� The most well-known dictionary-based technique,

LZW, is a modification to LZ algorithms published by

Terry Welch in 1984

10/31

LZ77 (1/2)

� General approach

� Dictionary is a portion of the previously encoded sequence

� Use a sliding window for compression

� Mechanism

� Find the maximum length match for the string pointed to by
the search pointer in the search buffer, and encode it

� Rationale

� If patterns tend to repeat locally, we should be able to get
more efficient representation

11/31

LZ77 (2/2)

� Sliding window is composed of a search buffer and a look-
ahead buffer (note: window size W = S + LA)

� Offset = search pointer – match pointer (o = 7)

� Length of match = number of consecutive letters matched (l = 4)

� Codeword (c = C(r)), where C(x) is the codeword for x

� Encoding triple: <o, l, c> = <7, 4, C(r)>

� If FLC is used and alphabet size is |A|, <o, l, c> can be
encoded with log2S + log2W + log2|A| bits.

12/31

_ a b r a _ a d a b r a r r a

Match pointer Search pointer

Search buffer
(size S = 8)

Look-ahead buffer
(size LA = 7)

r r a _a _

Possible Cases for Triples

� There could be three different possibilities that may

be encountered during the coding process:

� No match for the next character to be encoded in the window

� There is a match

� The matched string extends inside the look-ahead buffer

� For each of these cases, we have a triple to signal

the case to the decoder

13/31

LZ77 Encoding Example

� Sequence

� cabracadabrarrarrad

� W = 13, S = 7

� |cabraca|dabrar|rarrad

� no match for d

� send <0, 0, C(d)>

� |abracad|abrarr|arrad

|abracad|abrarr|arrad

|abracad|abrarr|arrad

|abracad|abrarr|arrad

� send <7, 4, C(r)>

� |cadabrar|rarrad|

|cadabrar|rarrad|

|cadabrar|rarrad|

� send <3, 3, C(r)>

� Could we do better?

� send <3, 5, C(d)> instead

14/31

LZ77 Decoding Example

� Current input: <0, 0, C(d)> <7, 4, C(r)> <3, 5, C(d)>

� Current output: cabraca

� Decode: <0, 0, C(d)>

� Decode C(d): c|abracad|

� Decode: <7, 4, C(r)>

� Start with the first ‘a’, copy four letters: cabra|cadabra|

� Decode C(r): cabrac|adabrar|

� Decode: <3, 5, C(d)>

� Start with the first ‘r’, copy three letters: cabracada|brarrar|

� Copy two more letters: cabracadabr|arrarar|

� Decode C(d): cabracadabrarrarard

15/31

LZ77 Variants

� For LZ77, we have

� Adaptive scheme, no prior knowledge

� Asymptotically approaches the source statistics

� Assumes that recurring patterns close to each others

� Possible improvements

� Variable-bit encoding: PKZip, zip, gzip, …, etc., uses a
variable-length coder to encode <o, l, c>.

� Variable buffer size: larger buffer requires faster searches

� Elimination of <0, 0, C(x)>

� LZSS sends a flag bit to signal whether the next “token” is an

<o, l> pair or the codeword of a symbol

16/31

Problems with LZ77

� If the recurring patterns happens with a period larger

than the search window, the performance is bad

� Example:

17/31

LZ78

� LZ78 improvements from LZ77

� No search buffer – explicit dictionary instead

� Encoder/decoder must build dictionary in sync

� Encoding: <i, c>

� i = index in the dictionary, i = 0 for symbols not in the dictionary

� c = code of the following character

� Example: encode the following contents

� wabbabwabbabwabbabwabbabwoobwoobwoo

18/31

LZ78 Example

� Input: wabbabwabbabwabbabwabbabwoobwoobwoo

� Dictionaries:

19/31

initial dictionary (empty)

final dictionary

Index Entry

Encoder Output Index Entry

<0, C(w)> 01 w

<0, C(a)> 02 a

<0, C(b)> 03 b

dictionary after encoding w, a, b

Remarks on LZ78

� Observation

� If we keep on encoding, the dictionary will keep on growing

� Possible solutions

� Stop growing the dictionary

� Effectively switch to a static dictionary

� Prune it

� Based on usage statistics

� Reset it

� Start all over again

� The best solution depends on the knowledge of the

source

20/31

LZ78 Variants: LZW

� Invented by Terry Welch in 1984

� Idea
� Instead of <i, c>, encode i only

� Algorithm
� Initial dictionary contains all alphabet letters, p = null

while (!done)

read next symbol into a

if (p*a) is in the dictionary // Note: ‘*’ stands for concatenation

p = p*a

else

send out index of p

add p*a to the dictionary

p = a

end

21/31

Example: LZW Encoding

� Input: wabbabwabbabwabbabwabbabwoobwoobwoo

� Dictionaries:

� Output: 5 2 3 3 2 1 6 8 10 12 9 11 7 16 5 4 4 11 21 23 4
22/31

initial dictionary (source alphabet) final dictionary

Index Entry

1 b

2 a

3 b

4 o

5 w

Problems with LZW Decoding

� Decoding of LZW is simple, in general

� Output symbols from the dictionary as indexed by the inputs

� Construct the dictionary on-the-fly as the encoder does

� However, if we have a message pattern cScS …,

where c is a character, S is a string, we may run into

a situation that the indexed entry is in partial

construction

� Solution: the current dictionary entry under
construction is in p, we should allow reading partial

data out of p during decoding

23/31

Example: Special Case in Decoding

� Alphabet A = {a, b}, input is abababab, encoder output

is 1235 ….

� Decoding dictionaries:

when we reach decoding of 5, p = ab???, we do not

have the complete output!

24/31

initial dictionary intermediate dictionary

Index Entry

1 a

2 b

Application: Compress

� An early implementation of LZW

� Adaptive dictionary, starts with 29 entries

� User can configure max codeword length bmax = 9~16

� Dictionary grows up to double in size

� When dictionary reaches 2b
max entries, it becomes a static

dictionary encoder

� If compression ratio falls below a threshold, dictionary

is reset

25/31

Application: GIF Images

� LZW scheme, similar to compress:

� Clear code is used to reset the encoder/decoder. For
b bits/pixel images, 2b is used as the clear code

� Dictionary size is initially 2b+1

� Dictionary size can grows up to 4096 entries

� Format:

� Codewords stored in blocks of 8-bit characters

� Each block begins with a header with a size count up to 255,
and ends with a block terminator symbol (8 zero bits)

� The last block has a end-of-information code, 2b +1, before

the block terminator

26/31

GIF Performance

� GIF vs. arithmetic coding

27/31

Application: PNG Images

� Based on LZ77, patent-free alternative to GIF

� Designed specifically for lossless image compression

� Modes: true color, grayscale, 8-bit pallette

� Two autonomous compression components

� Deflate (RFC 1951) — LZ77-style dictionary compression
algorithm plus Huffman coding

� Filtering — lossless transformations of byte-level image data

28/31

PNG – Deflate

� Deflate = LZ77 + Huffman

� Three types of data blocks

� Uncompressed, LZ77 + fixed Huffman, LZ77 + adaptive

Huffman

� Match length is between 3 and 258 bytes

� A sliding window of at least 3-byte long is examined

� If match is not found, encode the first byte and slide window

� At each step, LZ77 either outputs a codeword for a literal or
a paired value of <match_length, offset>

� Match length is encoded by index code (257~285) and a
selector code (0~5 bits)

� Offset (1~32768) is encoded using Huffman code

29/31

PNG – Filtering

� Filters are applied on a scanline-by-scanline basis

� All algorithms applied to bytes (not pixels)

� Filter types:

� None: unmodified value

� Sub: difference from previous byte value (mod 256)

� Up: difference from the byte value above

� Average: subtract average of the left and the above bytes

� Paeth:

� Compute initial estimate by left + above – upper_left

� The value of left, above, or upper_left that is closest to the

initial estimate is used as the estimate

30/31

PNG: Performance

� PNG vs. GIF vs. arithmetic coding

31/31

