

Arithmetic Coding Background

□ History

- Shannon started using cumulative density function for codeword design
- Original idea by Elias (Huffman's classmate) in early 1960s
- First practical approach published in 1976, by Rissanen (IBM)
- Made well-known by a paper in Communication of the ACM, by Witten et al. in 1987[†]
- Arithmetic coding addresses two issues in Huffman coding:
 - Integer codeword length problem
 - Adaptive probability model problem

† I.H. Witten, R.M. Neal, and J.G. Cleary, "Arithmetic coding for data compression," Communication of the ACM, 30, 6(June), 1987, pp. 520-540

5/31

Recursive Computation of Tags (2/3)

For the third outcome "2," we have

$$l^{(3)} = F_X^{(3)}(321), \quad u^{(3)} = F_X^{(3)}(322).$$

Using the same approach above, we have

$$F_X^{(3)}(321) = F_X^{(2)}(31) + [F_X^{(2)}(32) - F_X^{(2)}(31)]F_X(1).$$

$$F_X^{(3)}(322) = F_X^{(2)}(31) + [F_X^{(2)}(32) - F_X^{(2)}(31)]F_X(2).$$

Therefore,

$$l^{(3)} = l^{(2)} + (u^{(2)} - l^{(2)})F_X(1)$$
, and
 $u^{(3)} = l^{(2)} + (u^{(2)} - l^{(2)})F_X(2)$.

Recursive Computation of Tags (3/3)

□ In general, we can show that for any sequence $\mathbf{x} = (x_1 x_2 ... x_n)$,

$$l^{(n)} = l^{(n-1)} + (u^{(n-1)} - l^{(n-1)})F_X(x_n - 1)$$

$$u^{(n)} = l^{(n-1)} + (u^{(n-1)} - l^{(n-1)})F_X(x_n).$$

If the mid-point is used as the tag, then

$$T_X(\mathbf{x}) = \frac{u^{(n)} + l^{(n)}}{2}.$$

Note that we only need the CDF of the source alphabet to compute the tag of any long messages!

Binary Code for the Tag

□ If the **mid-point** of an interval is used as the tag $T_X(x)$, a binary code for $T_X(x)$ is the binary representation of the number truncated to $l(x) = \lceil \log(1/P(x)) \rceil + 1$ bits.

□ For example, $\mathcal{A} = \{ a_1, a_2, a_3, a_4 \}$ with probabilities { 0.5, 0.25, 0.125, 0.125 }, a binary code for each symbol is as follows:

Symbol	F_X	\overline{T}_X	In Binary	$\lceil \log \frac{1}{P(x)} \rceil + 1$	Code
1	.500	.2500	.0100	2	01
2	.750	.6250	.1010	3	101
3	.875	.8125	.1101	4	1101
4	1.000	.9375	.1111	4	1111

□ The binary code for a message is defined recursively!

- □ Note that the tag $T_X(\mathbf{x})$ uniquely specifies the interval $[F_X(\mathbf{x}-1), F_X(\mathbf{x})]$, if $[T_X(\mathbf{x})]_{l(\mathbf{x})}$ is still in the interval, it is unique. Since $[T_X(\mathbf{x})]_{l(\mathbf{x})} > F_X(\mathbf{x}-1)$ because $1/2^{l(x)} < P(x)/2 = T_X(\mathbf{x}) F_X(\mathbf{x}-1)$, we know $[T_X(\mathbf{x})]_{l(\mathbf{x})}$ is still in the interval.
- □ To show that the code is uniquely decodable, we can show that the code is a prefix code. This is true because $[L_{T_X}(\mathbf{x})]_{l(\mathbf{x})}, L_{T_X}(\mathbf{x})]_{l(\mathbf{x})} + (1/2^{l(\mathbf{x})})] \subset [F_X(\mathbf{x}-1), F_X(\mathbf{x})]$. Therefore, any other code outside the interval $[F_X(\mathbf{x}-1), F_X(\mathbf{x})]$ will have a different $l(\mathbf{x})$ -bit prefix.

 \Box The average code length of a source $A^{(m)}$ is:

$$l_{A^{(m)}} = \sum P(\mathbf{x})l(\mathbf{x}) = \sum P(\mathbf{x})\left[\left|\log\frac{1}{P(\mathbf{x})}\right| + 1\right]$$
$$< \sum P(\mathbf{x})\left[\log\frac{1}{P(\mathbf{x})} + 1 + 1\right] = -\sum P(\mathbf{x})\log P(\mathbf{x}) + 2\sum P(\mathbf{x})$$
$$= H(X^{(m)}) + 2.$$

Recall that for i.i.d. sources, $H(X^{(m)}) = mH(X)$. Thus,

$$H(X) \le l_A \le H(X) + \frac{2}{m}.$$

16/31

Tag Generation with Scaling (1/3)

□ Consider $X(a_i) = i$, encode 1 3 2 1, given the model: Given $\mathcal{A} = \{1, 2, 3\}, F_X(1) = 0.8, F_X(2) = 0.82, F_X(3) = 1, l^{(0)} = 0, u^{(0)} = 1.$

Input: <u>1</u>321 $l^{(1)} = l^{(0)} + (u^{(0)} - l^{(0)})F_X(0) = 0$ $u^{(1)} = l^{(0)} + (u^{(0)} - l^{(0)})F_X(1) = 0.8$ Output:

 $[l^{(1)}, u^{(1)}) ⊄ [0, 0.5)$ [l^{(1)}, u^{(1)}) ⊄ [0.5, 1) → get next symbol Input: *<u>3</u>21 $l^{(2)} = 0.656, u^{(2)} = 0.8$ $[l^{(2)}, u^{(2)}) \subset [0.5, 1) \rightarrow \text{Output: } \underline{1}$

 E_2 rescale: $l^{(2)} = 2 \times (0.656 - 0.5) = 0.312$ $u^{(2)} = 2 \times (0.8 - 0.5) = 0.6$ Output: 1

19/31

Tag Generation with Scaling (2/3)

Input: **<u>2</u>1 $l^{(3)} = l^{(2)} + (u^{(2)} - l^{(2)})F_X(1) = 0.5424$ $u^{(3)} = l^{(2)} + (u^{(2)} - l^{(2)})F_X(2) = 0.54816$ $[l^{(3)}, u^{(3)}) \subset [0.5, 1) \rightarrow \text{Output: 1}\underline{1}$

 $E_2 \text{ rescale:} \\ l^{(3)} = 2 \times (0.5424 - 0.5) = 0.0848 \\ u^{(3)} = 2 \times (0.54816 - 0.5) = 0.09632 \\ [l^{(3)}, u^{(3)}) \subset [0, 0.5) \rightarrow \text{Output: } 11\underline{0} \\ \end{bmatrix}$

$$\begin{split} &E_1 \text{ rescale:} \\ &l^{(3)} = 2 \times 0.0848 = 0.1696 \\ &u^{(3)} = 2 \times 0.09632 = 0.19264 \\ &[l^{(3)}, u^{(3)}) \subset [0, 0.5) \rightarrow \text{Output: } 110\underline{0} \end{split}$$

*E*₁ rescale: $l^{(3)} = 2 \times 0.1696 = 0.3392$ $u^{(3)} = 2 \times 0.19264 = 0.38528$ $[l^{(3)}, u^{(3)}) \subset [0, 0.5) \rightarrow \text{Output: }11000$

$$\begin{split} E_1 \text{ rescale:} \\ l^{(3)} &= 2 \times 0.3392 = 0.6784 \\ u^{(3)} &= 2 \times 0.38528 = 0.77056 \\ [l^{(3)}, u^{(3)}) &\subset [0.5, 1) \rightarrow \text{Output: } 11000\underline{1} \end{split}$$

 E_2 rescale: $l^{(3)} = 2 \times (0.6784 - 0.5) = 0.3568$ $u^{(3)} = 2 \times (0.77056 - 0.5) = 0.54112$ Output: 110001

□ The final symbol '1' in the input sequence results in:

Input: ***<u>1</u> $l^{(4)} = l^{(3)} + (u^{(3)} - l^{(3)})F_X(0) = 0.3568$ $u^{(4)} = l^{(3)} + (u^{(3)} - l^{(3)})F_X(1) = 0.504256$ Output: 110001

□ End-of-sequence symbol can be a pre-defined value in [l⁽ⁿ⁾, u⁽ⁿ⁾). If we pick 0.5₁₀ as EOS[†], the final output of the sequence is 110001<u>10...0</u>.
 □ Note that 0.110001 = 2⁻¹ + 2⁻² + 2⁻⁶

= 0.765625.

† The number of bits for the EOS symbol shall be the same as the decoder word-length. 21/31

Tag Decoding Example (1/2)					
Assume word length is set to 6, the input sequence is <u>110001</u> 100000.					
Input tag: 110001100000	Input tag: *10001100000				
Output: 1	$t^* = (0.546875 - 0.312)/(0.6 - 0.312) = 0.8155$				
	$F_X(1) = 0.8 \le t^* \le 0.82 = F_X(2)$				
$t^* = (0.765625 - 0)/(0.8 - 0) = 0.9579$	Output: 13 <u>2</u>				
$F_X(2) = 0.82 \le t^* \le 1 = F_X(3)$	$l^{(3)} = 0.542\overline{4}, u^{(3)} = 0.54816$				
Output: 1 <u>3</u>					
$l^{(2)} = 0 + (0.8 - 0) \times F_X(2) = 0.656,$	E_2 rescale:				
$u^{(2)} = 0 + (0.8 - 0) \times F_X(3) = 0.8$	$l^{(3)} = 2 \times (0.5424 - 0.5) = 0.0848$				
	$u^{(3)} = 2 \times (0.54816 - 0.5) = 0.09632$				
E_2 rescale:	Update tag: ** <u>000110</u> 0000				
$l^{(2)} = 2 \times (0.656 - 0.5) = 0.312$					
$u^{(2)} = 2 \times (0.8 - 0.5) = 0.6$					
Update tag: * <u>100011</u> 00000					
	22/31				

Tag Decoding Example (2/2)

*E*₁ rescale: $l^{(3)} = 2 \times 0.0848 = 0.1696$ $u^{(3)} = 2 \times 0.09632 = 0.19264$ Update tag: ***<u>001100</u>000

 E_1 rescale: $l^{(3)} = 2 \times 0.1696 = 0.3392$ $u^{(3)} = 2 \times 0.19264 = 0.38528$ Update tag: ****<u>011000</u>00

*E*₁ rescale: $l^{(3)} = 2 \times 0.3392 = 0.6784$ $u^{(3)} = 2 \times 0.38528 = 0.77056$ Update tag: ****<u>1100000</u> *E*₂ rescale: $l^{(3)} = 2 \times (0.6784 - 0.5) = 0.3568$ $u^{(3)} = 2 \times (0.77056 - 0.5) = 0.54112$ Update tag: *****<u>100000</u>

Now, since the final pattern 100000 is the EOS symbol, we do not have anymore input bits.

The final digit is 1 because the final interval is in $F_X(0) = 0 \le l^{(3)} \le u^{(3)} \le 0.8 = F_X(1)$ Output: 132<u>1</u>

Encoder (Integer Implementation)

Decoder (Integer Implementation)

Arithmetic vs. Huffman Coding

 \Box Average code length of *m* symbol sequence:

- Arithmetic code: $H(X) \le l_A < H(X) + 2/m$
- Extended Huffman code: $H(X) \le l_H < H(X) + 1/m$

□ Both codes have same asymptotic behavior

Extended Huffman coding requires large codebook for mⁿ extended symbols while AC does not

□ In general,

- Small alphabet sets favor Huffman coding
- Skewed distributions favor arithmetic coding
- □ Arithmetic coding can adapt to input statistics easily

Applications: Image Compression

Compression of pixel values directly

Image Name	Bits/Pixel	Total Size (bytes)	Compression Ratio (arithmetic)	Compression Ratio (Huffman)
Sena	6.52	53,431	1.23	1.16
Sensin	7.12	58,306	1.12	1.27
Earth	4.67	38,248	1.71	1.67
Omaha	6.84	56,061	1.17	1.14

Compression of pixel differences

Image Name	Bits/Pixel	Total Size (bytes)	Compression Ratio (arithmetic)	Compression Ratio (Huffman)
Sena	3.89	31,847	2.06	2.08
Sensin	4.56	37,387	1.75	1.73
Earth	3.92	32,137	2.04	2.04
Omaha	6.27	51,393	1.28	1.26