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About Large Block Coding

� Huffman coding is inefficient if the probability model 
is biased (e.g. Pmax >> 0.5). Although extended 

Huffman coding fixes this issue, it is expensive:

� The codebook size increases exponentially w.r.t. alphabet 
set size

� Key idea:

Can we assign codewords to a long sequences of 

symbols without generating codes for all possible 

sequences of the same length?

Solution: Arithmetic Coding
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Arithmetic Coding Background

� History

� Shannon started using cumulative density function for 
codeword design

� Original idea by Elias (Huffman’s classmate) in early 1960s

� First practical approach published in 1976, by Rissanen (IBM)

� Made well-known by a paper in Communication of the ACM, 
by Witten et al. in 1987†

� Arithmetic coding addresses two issues in Huffman coding:

� Integer codeword length problem

� Adaptive probability model problem

† I.H. Witten, R.M. Neal, and J.G. Cleary, “Arithmetic coding for data compression,” Communication of the ACM, 

30, 6(June), 1987, pp. 520-540 3/31



Two-Steps of Coding Messages

� To encode a long message into a single codeword 

without using a large codebook, we must

� Step I: use a (hash) function to compute an ID (or tag) for the 
message. The function should be invertible

� Step II: Given an ID (tag), assign a codeword for it using 
simple rules (e.g. maybe something similar to Golomb 
codes?), hence, there is no need to build a large codebook

� Arithmetic coding is an example of how these two 

steps can be achieved by using cumulative density 

function (CDF) as the hash function
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CDF for Tag Generation

� Given a source alphabet A = {a1, a2, …, am}, a random 

variable X(ai) = i, and a probability model
P: P(X = i) = P(ai). The CDF is defined as:

� CDF divides [0, 1) into disjoint subintervals:
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Example of Tag Generation

� In arithmetic coding,
each symbol is mapped

to an interval

Symbol Probability Interval

a .2 [0,     0.2)

e .3 [0.2,  0.5)

i .1 [0.5,  0.6)

o .2 [0.6,  0.8)

u .1 [0.8,  0.9)

! .1 [0.9,  1.0)

message: “eaii!”
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Tag Selection for a Message  (1/2)

� Since the intervals of messages are disjoint, we can 
pick any values from the interval as the tag
� A popular choice is the lower limit of the interval

� Single symbol example: if the mid-point of the interval 
[FX(ai–1), FX(ai)) is used as the tag TX(ai) of symbol ai, 
then

Note that: the function TX(ai) is invertible.
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Tag Selection for a Message  (2/2)

� To generate a unique tag for a long message, we 

need an ordering on all message sequences

� A logical choice of such ordering rule is the lexicographic 
ordering of the message

� With lexicographical ordering, for all messages of 
length m, we have

where y < xi means y precedes xi in the ordering of all 

messages.

� Bad news: need P(y) for all y < xi to compute TX(xi)!
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Recursive Computation of Tags (1/3)

� Assume that we want to code the outcome of rolling a 

fair die for three times. Let’s compute the upper and 

lower limits of the message “3-2-2.”

� For the first outcome “3,” we have

l(1) = FX(2),   u(1) = FX(3).

� For the second outcome “2,” we have upper limit

FX
(2)(32) = [P(x1 = 1) + P(x1 = 2)] + P(x = 31) + P(x = 32)

= FX(2) + P(x1 = 3)P(x2 = 1) + P(x1 = 3)P(x2 = 2)

= FX(2) + P(x1 = 3)FX(2) = FX(2) + [FX(3) – FX(2)]FX(2).

Thus,      u(2) = l(1) + (u(1) – l(1))FX(2).
Similarly, the lower limit FX

(2)(31) is l(2) = l(1) + (u(1) – l(1))FX(1).
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Recursive Computation of Tags (2/3)

� For the third outcome “2,” we have

l(3) = FX
(3)(321),   u(3) = FX

(3)(322).

Using the same approach above, we have

FX
(3)(321) = FX

(2)(31) + [FX
(2)(32) – FX

(2)(31)]FX(1).
FX

(3)(322) = FX
(2)(31) + [FX

(2)(32) – FX
(2)(31)]FX(2).

Therefore,
l(3) = l(2) + (u(2) – l(2))FX(1), and
u(3) = l(2) + (u(2) – l(2))FX(2).
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Recursive Computation of Tags (3/3)

� In general, we can show that for any sequence
x = (x1x2…xn),

l(n) = l(n–1) + (u(n–1) – l(n–1))FX(xn–1)

u(n) = l(n–1) + (u(n–1) – l(n–1))FX(xn).

If the mid-point is used as the tag, then

� Note that we only need the CDF of the source 

alphabet to compute the tag of any long messages!
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Deciphering The Tag

� The algorithm to deciphering the tag is quite 

straightforward:

1. Initialize l(0) = 0, u(0) = 1.

2. For each k, k ≥ 1, find t* = (TX(x) – l(k–1))/(u(k–1) – l(k–1)).

3. Find the value of xk for which FX(xk – 1) ≤ t* ≤ FX(xk).

4. Update u(k) and l(k).

5. If there are more symbols, go to step 2.

� In practice, a special “end-of-sequence” symbol is 

used to signal the end of a sequence.
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Example of Decoding Tag

� Given A = {1, 2, 3}, FX(1) = 0.8, FX(2) = 0.82, FX(3) = 1,

l(0) = 0, u(0) = 1. If the tag is TX(x) = 0.772352, what is x?

Note:

l(n) = l(n–1) + (u(n–1) – l(n–1))FX(xn–1)

u(n) = l(n–1) + (u(n–1) – l(n–1))FX(xn)

t* = (0.772352 – 0)/(1 – 0) = 0.772352

FX(0) = 0 ≤ t* ≤ 0.8 = FX(1)

l(1) =0, u(1) = 0.8.
1

t* = (0.772352 – 0)/(0.8 – 0) = 0.96544

FX(2) = 0.82 ≤ t* ≤ 1 = FX(3)

l(2) =0.656, u(2) = 0.8.

13

t* = (0.772352 – 0.656)/(0.8 – 0.656) = 0.808

FX(1) = 0.8 ≤ t* ≤ 0.82 = FX(2)

l(3) =0.7712, u(3) = 0.77408.

132

t* = (0.772352 – 0.7712)/(0.77408 – 0.7712) = 0.4

FX(1) = 0 ≤ t* ≤ 0.8 = FX(1)
1321
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Binary Code for the Tag

� If the mid-point of an interval is used as the tag TX(x), 

a binary code for TX(x) is the binary representation of 

the number truncated to l(x) = log(1/P(x)) + 1 bits.

� For example, A = { a1, a2, a3, a4 } with probabilities 

{ 0.5, 0.25, 0.125, 0.125 }, a binary code for each 

symbol is as follows:

� The binary code for a message is defined recursively!
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Unique Decodability of the Code

� Note that the tag TX(x) uniquely specifies the interval 

[FX(x–1), FX(x)), if TX(x)l(x) is still in the interval, it is 

unique. Since TX(x)l(x) > FX(x–1) because 1/2l(x) < 

P(x)/2 = TX(x) – FX(x–1), we know TX(x)l(x) is still in 

the interval.

� To show that the code is uniquely decodable, we can 

show that the code is a prefix code. This is true 
because [TX(x)l(x), TX(x)l(x)+ (1/2l(x)) ) ⊂ [FX(x–1), 

FX(x)). Therefore, any other code outside the interval 

[FX(x–1), FX(x)) will have a different l(x)-bit prefix.
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Efficiency of Arithmetic Codes

� The average code length of a source A(m) is:

Recall that for i.i.d. sources, H(X(m)) = mH(X).

Thus,
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Arithmetic Coding Implementation

� Previous formulation for coding works, but we need 

real numbers with undetermined precision to work

� Eventually l(n) and u(n) will be close enough to identify the 

message, but could take long iterations

� To avoid recording long real numbers, we can sequentially 
outputs known digits, and rescale the interval as follows:

E1: [0, 0.5) → [0, 1);    E1(x) = 2x

E2: [0.5, 1) → [0, 1);    E2(x) = 2(x – 0.5).

� As interval narrows, we have one of three cases
1. [l(n), u(n)] ⊂ [0, 0.5) → output 0, then perform E1 rescale
2. [l(n), u(n)] ⊂ [0.5, 1) → output 1, then perform E2 rescale
3. l(n) ∈[0, 0.5), u(n) ∈[0.5, 1) → output undetermined
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Implementation Key Points

� Principle

� Scale and shift simultaneously x, upper bound, and lower 

bound will gives us the same relative location of the tag.

� Encoder

� Once we reach case 1 or 2, we can ignore the other half of 
[0,1) by sending all the prefix bits so far to the decoder

� Rescale tag interval to [0, 1) by using E1(x) or E2(x).

� Decoder

� Scale the tag interval in sync with the encoder
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Tag Generation with Scaling (1/3)

� Consider X(ai) = i, encode 1 3 2 1, given the model:
Given A = {1, 2, 3}, FX(1) = 0.8, FX(2) = 0.82, FX(3) = 1, 

l(0) = 0, u(0) = 1.

Input: 1321

l(1) = l(0) + (u(0) – l(0))FX(0) = 0

u(1) = l(0) + (u(0) – l(0))FX(1) = 0.8

Output:

[l(1), u(1)) ⊄ [0, 0.5) 

[l(1), u(1)) ⊄ [0.5, 1)

→ get next symbol

Input: *321 

l(2) = 0.656, u(2) = 0.8

[l(2), u(2)) ⊂ [0.5, 1) → Output: 1

E2 rescale:

l(2) = 2×(0.656 – 0.5) = 0.312

u(2) = 2×(0.8 – 0.5) = 0.6

Output: 1
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Tag Generation with Scaling (2/3)

Input: **21

l(3) = l(2) + (u(2) – l(2))FX(1) = 0.5424

u(3) = l(2) + (u(2) – l(2))FX(2) = 0.54816

[l(3), u(3)) ⊂ [0.5, 1) → Output: 11

E2 rescale:

l(3) = 2×(0.5424 – 0.5) = 0.0848

u(3) = 2×(0.54816 – 0.5) = 0.09632

[l(3), u(3)) ⊂ [0, 0.5) → Output: 110

E1 rescale:

l(3) = 2×0.0848 = 0.1696

u(3) = 2×0.09632 = 0.19264

[l(3), u(3)) ⊂ [0, 0.5) → Output: 1100

E1 rescale:

l(3) = 2×0.1696 = 0.3392

u(3) = 2×0.19264 = 0.38528

[l(3), u(3)) ⊂ [0, 0.5) → Output: 11000

E1 rescale:

l(3) = 2×0.3392 = 0.6784

u(3) = 2×0.38528 = 0.77056

[l(3), u(3)) ⊂ [0.5, 1) → Output: 110001

E2 rescale:

l(3) = 2×(0.6784 – 0.5) = 0.3568

u(3) = 2×(0.77056 – 0.5) = 0.54112

Output: 110001
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Tag Generation with Scaling (3/3)

� The final symbol ‘1’ in the input sequence results in:

� End-of-sequence symbol can be a pre-defined value 
in [l(n), u(n)). If we pick 0.510 as EOS†, the final output 

of the sequence is 11000110…0.

� Note that 0.110001 = 2–1 + 2–2 + 2–6

= 0.765625.

Input: ***1

l(4) = l(3) + (u(3) – l(3))FX(0) = 0.3568

u(4) = l(3) + (u(3) – l(3))FX(1) = 0.504256

Output: 110001

† The number of bits for the EOS symbol shall be the same as the decoder word-length. 21/31



Tag Decoding Example (1/2)

� Assume word length is set to 6, the input sequence is 
110001100000.

Input tag: 110001100000

Output: 1

t* = (0.765625 – 0)/(0.8 – 0) = 0.9579

FX(2) = 0.82 ≤ t* ≤ 1 = FX(3)

Output: 13

l(2) = 0 + (0.8 – 0)×FX(2) = 0.656,

u(2) = 0 + (0.8 – 0)×FX(3) = 0.8

E2 rescale:

l(2) = 2×(0.656 – 0.5) = 0.312

u(2) = 2×(0.8 – 0.5) = 0.6

Update tag: *10001100000

Input tag: *10001100000

t* = (0.546875 – 0.312)/(0.6 – 0.312) = 0.8155

FX(1) = 0.8 ≤ t* ≤ 0.82 = FX(2)

Output: 132

l(3) = 0.5424, u(3) = 0.54816

E2 rescale:

l(3) = 2×(0.5424 – 0.5) = 0.0848

u(3) = 2×(0.54816 – 0.5) = 0.09632

Update tag: **0001100000
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Tag Decoding Example (2/2)

E1 rescale:

l(3) = 2×0.0848 = 0.1696

u(3) = 2×0.09632 = 0.19264

Update tag: ***001100000

E1 rescale:

l(3) = 2×0.1696 = 0.3392

u(3) = 2×0.19264 = 0.38528

Update tag: ****01100000

E1 rescale:

l(3) = 2×0.3392 = 0.6784

u(3) = 2×0.38528 = 0.77056

Update tag: *****1100000

E2 rescale:

l(3) = 2×(0.6784 – 0.5) = 0.3568

u(3) = 2×(0.77056 – 0.5) = 0.54112

Update tag: ******100000

Now, since the final pattern 100000 is the

EOS symbol, we do not have anymore input bits.

The final digit is 1 because the final interval is in 

FX(0) = 0 ≤ l(3) ≤ u(3) ≤ 0.8 = FX(1)

Output: 1321
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Rescaling in Case 3

� If the limits of the interval contains 0.5, i.e.,

l(n) ∈[0.25, 0.5), u(n) ∈[0.5, 0.75), we can perform 

rescaling by E3: [0.25, 0.75) → [0, 1);  E3(x) = 2(x – 0.25).

� If we decide to perform E3 rescaling, what output do 

we produce for an E3 rescale operation?

� Recall that, for E1, 0 is sent, and for E2, 1 is sent

� For E3, it depends on the non-E3 rescale operation after it. 
That is, we can keep count of consecutive E3 rescales and 

issue the same number of zeros/ones after the first 
encounter of E2/E1 rescale operation.

For example, E3E3E3E2 → 1000.

Only used to properly rescale
the intervals at the decoder!
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Integer Implementation

� Assume that the interval limits are represented using 
integer word length of n, thus

[0.0, 1.0) → [00…0, 11…1), and 0.5 → 10…0.

� Furthermore, if symbol j occurs nj times in a total of 

ntotal symbols, then the CDF can be estimated by

FX(k) = CC(k) / ntotal, where CC(k) is the cumulative 

count defined by

Thus, interval limits are:

.)(
1

∑
=

=

k

i

inkCC

 
  .1/)()1(

/)1()1(

)1()1()1()(

)1()1()1()(

−×+−+=

−×+−+=

−−−

−−−

totaln

nnnn

totaln

nnnn

nxCClulu

nxCClull

n times n times n–1 times

25/31



Encoder (Integer Implementation)

Initialize l and u.

Get symbol.

while (MSB of u and l are both equal to b or E3 condition holds)

if (MSB of u and l are both equal to b)

{

send b

shift l to the left by 1 bit and shift 0 into LSB

shift u to the left by 1 bit and shift 1 into LSB

while(Scale3 > 0)

{

send complement of b

decrement Scale3

}

}

if (E3 condition holds)

{

shift l to the left by 1 bit and shift 0 into LSB

shift u to the left by 1 bit and shift 1 into LSB

complement (new) MSB of l and u

increment Scale3

}

number of digits for E3 scaling operations
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Decoder (Integer Implementation)

Initialize l and u.

Read the first m bits of the received bitstream into tag t.

k = 0

while

k ← k + 1

Decode symbol x.

while (MSB of u and l are both equal to b or E3 condition holds)

if (MSB of u and l are both equal to b)

{

shift l to the left by 1 bit and shift 0 into LSB

shift u to the left by 1 bit and shift 1 into LSB

shift t to the left by 1 bit and read next bit from received bitstream into LSB

}

if (E3 condition holds)

{

shift l to the left by 1 bit and shift 0 into LSB

shift u to the left by 1 bit and shift 1 into LSB

shift t to the left by 1 bit and read next bit from received bitstream into LSB

complement (new) MSB of l, u, and t

}
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Binary Arithmetic Coders

� Most arithmetic coders used today are binary coders, 
i.e., the alphabet = {0, 1}

� For non-binary data sources, you must apply a 

“binarization” process to turn the messages into 

binary messages before coding

� Because there are only two letters in the alphabet, 

the probability model consists of a single number.

� Easier to adopt context-sensitive probability models

� Easier to adopt “quantized” probabilities for simplification of 
calculations
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Arithmetic vs. Huffman Coding

� Average code length of m symbol sequence:

� Arithmetic code: H(X) ≤ lA < H(X) + 2/m

� Extended Huffman code: H(X) ≤ lH < H(X) + 1/m

� Both codes have same asymptotic behavior

� Extended Huffman coding requires large codebook 
for mn extended symbols while AC does not

� In general,

� Small alphabet sets favor Huffman coding

� Skewed distributions favor arithmetic coding

� Arithmetic coding can adapt to input statistics easily
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Adaptive Arithmetic Coding

� In arithmetic coding, since coding of each new 

incoming symbol is based on a probability table, we 

can update the table easily as long as the transmitter 

and receiver stays in sync

� Adaptive arithmetic coding:

� Initially, all symbols are assigned a fixed initial probability 
(e.g. occurrence count is set to 1)

� After a symbol is encoded, update symbol probability (i.e. 
occurrence count) in both transmitter and receiver

� Note that the occurrence count may overflow, we have to 
rescale the count before this happens. For example:

 .2/cc =
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Applications: Image Compression

� Compression of pixel values directly

� Compression of pixel differences
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