Arithmetic Coding

National Chiao Tung University Chun-Jen Tsai 10/09/2014

About Large Block Coding

- Huffman coding is inefficient if the probability model is biased (e.g. $P_{\max } \gg 0.5$). Although extended Huffman coding fixes this issue, it is expensive:
- The codebook size increases exponentially w.r.t. alphabet set size
- Key idea:

Can we assign codewords to a long sequences of symbols without generating codes for all possible sequences of the same length?

Solution: Arithmetic Coding

Arithmetic Coding Background

- History
- Shannon started using cumulative density function for codeword design
- Original idea by Elias (Huffman's classmate) in early 1960s
- First practical approach published in 1976, by Rissanen (IBM)
- Made well-known by a paper in Communication of the ACM, by Witten et al. in 1987 ${ }^{\dagger}$
- Arithmetic coding addresses two issues in Huffman coding:
- Integer codeword length problem
- Adaptive probability model problem

Two-Steps of Coding Messages

\square To encode a long message into a single codeword without using a large codebook, we must

- Step I: use a (hash) function to compute an ID (or tag) for the message. The function should be invertible
- Step II: Given an ID (tag), assign a codeword for it using simple rules (e.g. maybe something similar to Golomb codes?), hence, there is no need to build a large codebook
\square Arithmetic coding is an example of how these two steps can be achieved by using cumulative density function (CDF) as the hash function

CDF for Tag Generation

Given a source alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$, a random variable $X\left(a_{i}\right)=i$, and a probability model P. $P(X=i)=P\left(a_{i}\right)$. The CDF is defined as:

$$
F_{X}(i)=\sum_{k=1}^{i} P(X=k) .
$$

\square CDF divides $[0,1)$ into disjoint subintervals:
tag for a_{i} can be any value that belongs to [$\left.F_{X}(i-1), F_{X}(i)\right)$

Example of Tag Generation

\square In arithmetic coding, each symbol is mapped to an interval

Symbol	Probability	Interval
a	.2	$[0,0.2)$
e	.3	$[0.2,0.5)$
i	.1	$[0.5,0.6)$
o	.2	$[0.6,0.8)$
u	.1	$[0.8,0.9)$
$!$.1	$[0.9,1.0)$

message: "eaii!"

Tag Selection for a Message (1/2)

- Since the intervals of messages are disjoint, we can pick any values from the interval as the tag
- A popular choice is the lower limit of the interval
\square Single symbol example: if the mid-point of the interval [$\left.F_{X}\left(a_{i-1}\right), F_{X}\left(a_{i}\right)\right)$ is used as the tag $T_{X}\left(a_{i}\right)$ of symbol a_{i}, then

$$
\begin{aligned}
T_{X}\left(a_{i}\right) & =\sum_{k=1}^{i-1} P(X=k)+\frac{1}{2} P(X=i) \\
& =F_{X}(i-1)+\frac{1}{2} P(X=i)
\end{aligned}
$$

Note that: the function $T_{X}\left(a_{i}\right)$ is invertible.

Tag Selection for a Message (2/2)

- To generate a unique tag for a long message, we need an ordering on all message sequences
- A logical choice of such ordering rule is the lexicographic ordering of the message
With lexicographical ordering, for all messages of length m, we have

$$
T_{X}^{(n)}\left(\mathbf{x}_{i}\right)=\sum_{y \times x_{i}} P(\mathbf{y})+\frac{1}{2} P\left(\mathbf{x}_{i}\right),
$$

where $\mathbf{y}<\mathbf{x}_{i}$ means \mathbf{y} precedes \mathbf{x}_{i} in the ordering of all messages.
\square Bad news: need $P(\mathbf{y})$ for all $\mathbf{y}<\mathbf{x}_{i}$ to compute $T_{X}\left(\mathbf{x}_{i}\right)$!

Recursive Computation of Tags (1/3)

I Assume that we want to code the outcome of rolling a fair die for three times. Let's compute the upper and lower limits of the message "3-2-2."

- For the first outcome " 3 ," we have

$$
l^{(1)}=F_{X}(2), \quad u^{(1)}=F_{X}(3) .
$$

- For the second outcome " 2 ," we have upper limit

$$
\begin{aligned}
F_{X}^{(2)}(32) & =\left[P\left(x_{1}=1\right)+P\left(x_{1}=2\right)\right]+P(\mathbf{x}=31)+P(\mathbf{x}=32) \\
& =F_{X}(2)+P\left(x_{1}=3\right) P\left(x_{2}=1\right)+P\left(x_{1}=3\right) P\left(x_{2}=2\right) \\
& =F_{X}(2)+P\left(x_{1}=3\right) F_{X}(2)=F_{X}(2)+\left[F_{X}(3)-F_{X}(2)\right] F_{X}(2) .
\end{aligned}
$$

Thus, $\quad u^{(2)}=l^{(1)}+\left(u^{(1)}-l^{(1)}\right) F_{X}(2)$.
Similarly, the lower limit $F_{X}^{(2)}(31)$ is $l^{(2)}=l^{(1)}+\left(u^{(1)}-l^{(1)}\right) F_{X}(1)$.

Recursive Computation of Tags (2/3)

- For the third outcome " 2 ," we have

$$
l^{(3)}=F_{X}^{(3)}(321), \quad u^{(3)}=F_{X}^{(3)}(322) .
$$

Using the same approach above, we have

$$
\begin{aligned}
F_{X}^{(3)}(321) & =F_{X}^{(2)}(31)+\left[F_{X}^{(2)}(32)-F_{X}^{(2)}(31)\right] F_{X}(1) . \\
F_{X}^{(3)}(322) & =F_{X}^{(2)}(31)+\left[F_{X}^{(2)}(32)-F_{X}^{(2)}(31)\right] F_{X}(2) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& l^{(3)}=l^{(2)}+\left(u^{(2)}-l^{(2)}\right) F_{X}(1), \text { and } \\
& u^{(3)}=l^{(2)}+\left(u^{(2)}-l^{(2)}\right) F_{X}(2) .
\end{aligned}
$$

Recursive Computation of Tags (3/3)

- In general, we can show that for any sequence

$$
\mathbf{x}=\left(x_{1} x_{2} \ldots x_{n}\right),
$$

$$
\begin{aligned}
& l^{(n)}=l^{(n-1)}+\left(u^{(n-1)}-l^{(n-1)}\right) F_{X}\left(x_{n}-1\right) \\
& u^{(n)}=l^{(n-1)}+\left(u^{(n-1)}-l^{(n-1)}\right) F_{X}\left(x_{n}\right)
\end{aligned}
$$

If the mid-point is used as the tag, then

$$
T_{X}(\mathbf{x})=\frac{u^{(n)}+l^{(n)}}{2}
$$

- Note that we only need the CDF of the source alphabet to compute the tag of any long messages!

Deciphering The Tag

- The algorithm to deciphering the tag is quite straightforward:

1. Initialize $l^{(0)}=0, u^{(0)}=1$.
2. For each $k, k \geq 1$, find $t^{*}=\left(T_{X}(\mathbf{x})-l^{(k-1)}\right) /\left(u^{(k-1)}-l^{(k-1)}\right)$.
3. Find the value of x_{k} for which $F_{X}\left(x_{k}-1\right) \leq t^{*} \leq F_{X}\left(x_{k}\right)$.
4. Update $u^{(k)}$ and $l^{(k)}$.
5. If there are more symbols, go to step 2.

- In practice, a special "end-of-sequence" symbol is used to signal the end of a sequence.

Example of Decoding Tag

\square Given $\mathcal{A}=\{1,2,3\}, F_{X}(1)=0.8, F_{X}(2)=0.82, F_{X}(3)=1$, $l^{(0)}=0, u^{(0)}=1$. If the tag is $T_{X}(\mathbf{x})=0.772352$, what is \mathbf{x} ?

$$
\begin{aligned}
& t^{*}=(0.772352-0) /(1-0)=0.772352 \\
& F_{X}(0)=0 \leq t^{*} \leq 0.8=F_{X}(1) \\
& l^{(1)}=0 . u^{(1)}=0.8 .
\end{aligned} \quad \rightarrow 1 \quad \begin{aligned}
& \text { Note: } \\
& l^{(n)}=l^{(n-1)}+\left(u^{(n-1)}-l^{(n-1)}\right) F_{X}\left(x_{n}-1\right) \\
& u^{(n)}=l^{(n-1)}+\left(u^{(n-1)}-l^{(n-1)}\right) F_{X}\left(x_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& t^{*}=(0.772352-0) /(0.8-0)=0.96544 \\
& F_{X}(2)=0.82 \leq t^{*} \leq 1=F_{X}(3) \\
& l^{(2)}=0.656, u^{(2)}=0.8 .
\end{aligned} \quad \rightarrow 13
$$

$$
\begin{aligned}
& t^{*}=(0.772352-0.656) /(0.8-0.656)=0.808 \\
& F_{X}(1)=0.8 \leq t^{*} \leq 0.82=F_{X}(2) \\
& l^{(3)}=0.7712, u^{(3)}=0.77408 .
\end{aligned} \rightarrow 132
$$

$$
\begin{aligned}
& t^{*}=(0.772352-0.7712) /(0.77408-0.7712)=0.4 \\
& F_{X}(1)=0 \leq t^{*} \leq 0.8=F_{X}(1)
\end{aligned}
$$

Binary Code for the Tag

- If the mid-point of an interval is used as the tag $T_{X}(x)$, a binary code for $T_{X}(x)$ is the binary representation of the number truncated to $l(x)=\lceil\log (1 / P(x))\rceil+1$ bits.
- For example, $\mathcal{A}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ with probabilities $\{0.5,0.25,0.125,0.125\}$, a binary code for each symbol is as follows:

Symbol	F_{X}	\bar{T}_{X}	In Binary	$\left\lceil\log \frac{1}{P(x)}\right\rceil+1$	Code
1	.500	.2500	.0100	2	01
2	.750	.6250	.1010	3	101
3	.875	.8125	.1101	4	1101
4	1.000	.9375	.1111	4	1111

\square The binary code for a message is defined recursively!

Unique Decodability of the Code

\square Note that the tag $T_{X}(\mathbf{x})$ uniquely specifies the interval [$\left.F_{X}(\mathbf{x}-1), F_{X}(\mathbf{x})\right)$, if $\left\lfloor T_{X}(\mathbf{x})\right\rfloor_{l(\mathbf{x})}$ is still in the interval, it is unique. Since $\left\lfloor T_{X}(\mathbf{x})\right\rfloor_{(\mathbf{x})}>F_{X}(\mathbf{x}-1)$ because $1 / 2^{l(x)}<$ $P(x) / 2=T_{X}(\mathbf{x})-F_{X}(\mathbf{x}-1)$, we know $\left\lfloor T_{X}(\mathbf{x})\right\rfloor_{(\mathbf{x})}$ is still in the interval.

- To show that the code is uniquely decodable, we can show that the code is a prefix code. This is true because $\left.\left[L T_{X}(\mathbf{x})\right\rfloor_{l(\mathbf{x})},\left\lfloor T_{X}(\mathbf{x})\right\rfloor_{l(\mathbf{x})}+\left(1 / 2^{l(\mathbf{x})}\right)\right) \subset\left[F_{X}(\mathbf{x}-1)\right.$, $\left.F_{X}(\mathbf{x})\right)$. Therefore, any other code outside the interval [$\left.F_{X}(\mathbf{x}-1), F_{X}(\mathbf{x})\right)$ will have a different $l(\mathbf{x})$-bit prefix.

Efficiency of Arithmetic Codes

The average code length of a source $A^{(m)}$ is:

$$
\begin{aligned}
l_{A^{(m)}}=\sum P(\mathbf{x}) l(\mathbf{x}) & =\sum P(\mathbf{x})\left[\left[\log \frac{1}{P(\mathbf{x})}\right]+1\right] \\
& <\sum P(\mathbf{x})\left[\log \frac{1}{P(\mathbf{x})}+1+1\right]=-\sum P(\mathbf{x}) \log P(\mathbf{x})+2 \sum P(\mathbf{x}) \\
& =H\left(X^{(m)}\right)+2 .
\end{aligned}
$$

Recall that for i.i.d. sources, $H\left(X^{(m)}\right)=m H(X)$.
Thus,

$$
H(X) \leq l_{A} \leq H(X)+\frac{2}{m}
$$

Arithmetic Coding Implementation

- Previous formulation for coding works, but we need real numbers with undetermined precision to work
- Eventually $l^{(n)}$ and $u^{(n)}$ will be close enough to identify the message, but could take long iterations
- To avoid recording long real numbers, we can sequentially outputs known digits, and rescale the interval as follows:

$$
\begin{array}{ll}
E_{1}:[0,0.5) \rightarrow[0,1) ; & E_{1}(x)=2 x \\
E_{2}:[0.5,1) \rightarrow[0,1) ; & E_{2}(x)=2(x-0.5) .
\end{array}
$$

] As interval narrows, we have one of three cases

1. $\left[l^{(n)}, u^{(n)}\right] \subset[0,0.5) \rightarrow$ output 0 , then perform E_{1} rescale
2. $\left[l^{(n)}, u^{(n)}\right] \subset[0.5,1) \rightarrow$ output 1 , then perform E_{2} rescale
3. $l^{(n)} \in[0,0.5), u^{(n)} \in[0.5,1) \rightarrow$ output undetermined

Implementation Key Points

- Principle
- Scale and shift simultaneously x, upper bound, and lower bound will gives us the same relative location of the tag.
- Encoder
- Once we reach case 1 or 2 , we can ignore the other half of $[0,1)$ by sending all the prefix bits so far to the decoder
- Rescale tag interval to $[0,1)$ by using $E_{1}(x)$ or $E_{2}(x)$.
- Decoder
- Scale the tag interval in sync with the encoder

Tag Generation with Scaling (1/3)

\square Consider $X\left(a_{i}\right)=i$, encode 132 1, given the model: Given $\mathcal{A}=\{1,2,3\}, F_{X}(1)=0.8, F_{X}(2)=0.82, F_{X}(3)=1$, $l^{(0)}=0, u^{(0)}=1$.

```
Input: }132
l(1)}=\mp@subsup{l}{}{(\overline{0})}+(\mp@subsup{u}{}{(0)}-\mp@subsup{l}{}{(0)})\mp@subsup{F}{X}{}(0)=
u}\mp@subsup{}{(1)}{= l}\mp@subsup{l}{}{(0)}+(\mp@subsup{u}{}{(0)}-\mp@subsup{l}{}{(0)})\mp@subsup{F}{X}{}(1)=0.
Output:
[l(1)},\mp@subsup{u}{}{(1)})\not\subset[0,0.5
[l(1)},\mp@subsup{u}{}{(1)})\not\subset[0.5,1
get next symbol
```

$$
\begin{aligned}
& \text { Input: } * \underline{3} 21 \\
& l^{(2)}=0.656, u^{(2)}=0.8 \\
& {\left[l^{(2)}, u^{(2)}\right) \subset[0.5,1) \rightarrow \text { Output: } \underline{1}} \\
& \\
& E_{2} \text { rescale: } \\
& l^{(2)}=2 \times(0.656-0.5)=0.312 \\
& u^{(2)}=2 \times(0.8-0.5)=0.6 \\
& \text { Output: } 1
\end{aligned}
$$

Tag Generation with Scaling (2/3)

```
Input: **21
l(3)=l(2)+(\mp@subsup{u}{}{(2)}-\mp@subsup{l}{}{(2)})\mp@subsup{F}{X}{}(1)=0.5424
u}\mp@subsup{u}{}{(3)}=\mp@subsup{l}{}{(2)}+(\mp@subsup{u}{}{(2)}-\mp@subsup{l}{}{(2)})\mp@subsup{F}{X}{}(2)=0.5481
[l(3),}\mp@subsup{u}{}{(3)})\subset[0.5,1)->\mathrm{ Output: 1-1
E2 rescale:
l(3)}=2\times(0.5424-0.5)=0.084
u}\mp@subsup{}{(3)}{(3)}2\times(0.54816-0.5)=0.0963
[l(3)},\mp@subsup{u}{}{(3)})\subset[0,0.5)->\mathrm{ Output: 11 
E
l(3)}=2\times0.0848=0.169
u}\mp@subsup{}{(3)}{(3)}2\times0.09632=0.1926
[l(3),}\mp@subsup{u}{}{(3)})\subset[0,0.5)->\mathrm{ Output: 110Q
```

E_{1} rescale:
$l^{(3)}=2 \times 0.1696=0.3392$
$u^{(3)}=2 \times 0.19264=0.38528$
$\left[l^{(3)}, u^{(3)}\right) \subset[0,0.5) \rightarrow$ Output: $1100 \underline{0}$

E_{1} rescale:
$l^{(3)}=2 \times 0.3392=0.6784$
$u^{(3)}=2 \times 0.38528=0.77056$
$\left[l^{(3)}, u^{(3)}\right) \subset[0.5,1) \rightarrow$ Output: $11000 \underline{1}$
E_{2} rescale:
$l^{(3)}=2 \times(0.6784-0.5)=0.3568$
$u^{(3)}=2 \times(0.77056-0.5)=0.54112$
Output: 110001

Tag Generation with Scaling (3/3)

- The final symbol ' 1 ' in the input sequence results in:

$$
\begin{aligned}
& \text { Input: }{ }^{* * *} \underline{1} \\
& l^{(4)}=l^{(3)}+\left(u^{(3)}-l^{(3)}\right) F_{X}(0)=0.3568 \\
& u^{(4)}=l^{(3)}+\left(u^{(3)}-l^{(3)}\right) F_{X}(1)=0.504256 \\
& \text { Output: } 110001
\end{aligned}
$$

- End-of-sequence symbol can be a pre-defined value in $\left[l^{(n)}, u^{(n)}\right)$. If we pick 0.5_{10} as EOS ${ }^{\dagger}$, the final output of the sequence is $11000110 \ldots 0$.
\square Note that $0.110001=2^{-1}+2^{-2}+2^{-6}$

$$
=0.765625 \text {. }
$$

Tag Decoding Example (1/2)

Assume word length is set to 6 , the input sequence is 110001100000.

```
Input tag: 110001100000
Output: }\underline{1
t*}=(0.765625-0)/(0.8-0)=0.9579
F
Output: 13
l(2)}=0+(0.8-0)\times\mp@subsup{F}{X}{}(2)=0.656
u}\mp@subsup{}{(2)}{(2)}0+(0.8-0)\times\mp@subsup{F}{X}{}(3)=0.
E rescale:
l(2)}=2\times(0.656-0.5)=0.31
u
Update tag: * 10001100000
```

```
Input tag: * 10001100000
t* = (0.546875-0.312)/(0.6-0.312) = 0.8155
F}\mp@subsup{F}{X}{}(1)=0.8\leq\mp@subsup{t}{}{*}\leq0.82=\mp@subsup{F}{X}{}(2
Output: 132
l(3)}=0.5424,\mp@subsup{u}{}{(3)}=0.5481
E rescale:
l(3)}=2\times(0.5424-0.5)=0.084
u}\mp@subsup{}{(3)}{=2\times(0.54816-0.5)=0.09632
Update tag: **0001100000
```


Tag Decoding Example (2/2)

```
E rescale:
l(3)}=2\times0.0848=0.169
u}\mp@subsup{u}{}{(3)}=2\times0.09632=0.1926
Update tag: ***001100000
E rescale:
l}\mp@subsup{l}{}{(3)}=2\times0.1696=0.339
u}\mp@subsup{}{(3)}{(3)}2\times0.19264=0.3852
Update tag: ****\underline{01100000}
E
l(3)}=2\times0.3392=0.678
u
Update tag: ***** 1100000
```

```
E}2\mathrm{ rescale:
l(3)}=2\times(0.6784-0.5)=0.356
u}\mp@subsup{u}{}{(3)}=2\times(0.77056-0.5)=0.5411
Update tag: ****** 100000
```

Now, since the final pattern 100000 is the EOS symbol, we do not have anymore input bits.

The final digit is 1 because the final interval is in $F_{X}(0)=0 \leq l^{(3)} \leq \mathrm{u}^{(3)} \leq 0.8=F_{X}(1)$ Output: 1321

Rescaling in Case 3

If the limits of the interval contains 0.5 , i.e., $l^{(n)} \in[0.25,0.5), u^{(n)} \in[0.5,0.75)$, we can perform rescaling by $E_{3}:[0.25,0.75) \rightarrow[0,1) ; E_{3}(x)=2(x-0.25)$.

If we decide to perform E_{3} rescaling, what output do we produce for an E_{3} rescale operation?

- Recall that, for $E_{1}, 0$ is sent, and for $E_{2}, 1$ is sent
- For E_{3}, it depends on the non- E_{3} rescale operation after it. That is, we can keep count of consecutive E_{3} rescales and issue the same number of zeros/ones after the first encounter of E_{2} / E_{1} rescale operation.
For example, $E_{3} E_{3} E_{3} E_{2} \rightarrow 1 \underbrace{000}$.

Integer Implementation

\square Assume that the interval limits are represented using integer word length of n, thus

$$
[0.0,1.0) \rightarrow[\overbrace{00 \ldots 0}^{n \text { times }}, n_{11 \ldots 1}^{n \text { times }}) \text { and } 0.5 \rightarrow 1_{10 \ldots 0 .}^{n-1 \text { times }}
$$

\square Furthermore, if symbol j occurs n_{j} times in a total of $n_{\text {total }}$ symbols, then the CDF can be estimated by $F_{X}(k)=C C(k) / n_{\text {total }}$, where $C C(k)$ is the cumulative count defined by

$$
C C(k)=\sum_{i=1}^{k} n_{i} .
$$

Thus, interval limits are:

$$
\begin{aligned}
& l^{(n)}=l^{(n-1)}+\left\lfloor\left(u^{(n-1)}-l^{(n-1)}+1\right) \times C C\left(x_{n}-1\right) / n_{\text {total }}\right\rfloor \\
& u^{(n)}=l^{(n-1)}+\left\lfloor\left(u^{(n-1)}-l^{(n-1)}+1\right) \times C C\left(x_{n}\right) / n_{\text {total }}\right\rfloor-1
\end{aligned}
$$

Encoder (Integer Implementation)

```
Initialize l and u.
Get symbol.
    l\leftarrowl+\lfloor\frac{(u-l+1)\timesCum_Count(x-1)}{\mathrm{ Total_Count }}\rfloor
while (MSB of }u\mathrm{ and l are both equal to b or E}\mp@subsup{E}{3}{}\mathrm{ condition holds)
if (MSB of }u\mathrm{ and }l\mathrm{ are both equal to }b\mathrm{ )
{
    send b
    shift l to the left by }1\mathrm{ bit and shift 0 into LSB
    shift u}\mathrm{ to the left by }1\mathrm{ bit and shift 1 into LSB
    while(Scale3 > 0)
    {
        send complement of b
        decrementScale3
    }
}
if (E3 condition holds)
{
    shift l to the left by 1 bit and shift 0 into LSB
    shift u}\mathrm{ to the left by 1 bit and shift 1 into LSB
    complement (new) MSB of l and }
    increment Scale3
}

\section*{Decoder (Integer Implementation)}
```

Initialize l and u
Read the first m}\mathrm{ bits of the received bitstream into tag t.
k=0
while}(\lfloor\frac{(t-l+1)\times\mathrm{ Total_Count - 1 }}{u-l+1}\rfloor\geqslantCum_Count(k)
k\leftarrowk+1
Decode symbol }x\mathrm{ .
l\leftarrowl+\lfloor\frac{(u-l+1)\timesCum_Count(x-1)}{\mathrm{ Total_Count }}\rfloor{
u}\leftarrowl+\lfloor\frac{(u-l+1)\timesCum_COunt(x)}{\mathrm{ Total_Count }}\rfloor-
while (MSB of u and l are both equal to b or E_{3} condition holds) if (MSB of u and l are both equal to b)
{
shift l to the left by 1 bit and shift 0 into LSB
shift u to the left by 1 bit and shift 1 into LSB
shift t to the left by 1 bit and read next bit from received bitstream into LSB
\}
if (E_{3} condition holds)
\{
shift l to the left by 1 bit and shift 0 into LSB
shift u to the left by 1 bit and shift 1 into LSB
shift t to the left by 1 bit and read next bit from received bitstream into LSB
complement (new) MSB of l, u, and t

Binary Arithmetic Coders

\square Most arithmetic coders used today are binary coders, i.e., the alphabet $=\{0,1\}$

- For non-binary data sources, you must apply a "binarization" process to turn the messages into binary messages before coding
\square Because there are only two letters in the alphabet, the probability model consists of a single number.
- Easier to adopt context-sensitive probability models
- Easier to adopt "quantized" probabilities for simplification of calculations

Arithmetic vs. Huffman Coding

- Average code length of m symbol sequence:
- Arithmetic code: $H(X) \leq l_{A}<H(X)+2 / m$
- Extended Huffman code: $H(X) \leq l_{H}<H(X)+1 / m$
- Both codes have same asymptotic behavior
- Extended Huffman coding requires large codebook for m^{n} extended symbols while AC does not
\square In general,
- Small alphabet sets favor Huffman coding
- Skewed distributions favor arithmetic coding
- Arithmetic coding can adapt to input statistics easily

Adaptive Arithmetic Coding

In arithmetic coding, since coding of each new incoming symbol is based on a probability table, we can update the table easily as long as the transmitter and receiver stays in sync

- Adaptive arithmetic coding:
- Initially, all symbols are assigned a fixed initial probability (e.g. occurrence count is set to 1)
- After a symbol is encoded, update symbol probability (i.e. occurrence count) in both transmitter and receiver
- Note that the occurrence count may overflow, we have to rescale the count before this happens. For example:

$$
c=\lceil c / 2\rceil .
$$

Applications: Image Compression

Compression of pixel values directly

Image Name	Bits/Pixel	Total Size (bytes)	Compression Ratio (arithmetic)	Compression Ratio (Huffman)
Sena	6.52	53,431	1.23	1.16
Sensin	7.12	58,306	1.12	1.27
Earth	4.67	38,248	1.71	1.67
Omaha	6.84	56,061	1.17	1.14

- Compression of pixel differences

Image Name	Bits/Pixel	Total Size (bytes)	Compression Ratio (arithmetic)	Compression Ratio (Huffman)
Sena	3.89	31,847	2.06	2.08
Sensin	4.56	37,387	1.75	1.73
Earth	3.92	32,137	2.04	2.04
Omaha	6.27	51,393	1.28	1.26

