Huffman Coding

National Chiao Tung University
Chun-den Tsai
10/2/2014




Huffman Codes

a Optimum prefix code developed by D. Huffman in a
class assignment

d Construction of Huffman codes is based on two ideas:

m In an optimum code, symbols with higher probability should
have shorter codewords

m |n an optimum prefix code, the two symbols that occur least
frequently will have the same length (otherwise, the
truncation of the longer codeword to the same length still
produce a decodable code)

2/31




Principle of Huffman Codes

Q Starting with two least probable symbols yand ¢ of an
alphabet A, if the codeword for yis [m]0, the
codeword for o would be [m]1, where [m] is a string of
I's and 0’s.

a Now, the two symbols can be combined into a group,
which represents a new symbol ¥ in the alphabet set.
The symbol y has the probability P(p + P(9).

a Recursively determine the bit pattern [m] using the
new alphabet set.

3/31




Example: Huffman Code

Q Let 4= {a,, ..., a5}, P(a)=1{0.2,0.4,0.2,0.1,0.1}.
Symbol Step 1 Step 2 Step 3 Step 4 Codeword
a, 04 —+ » 04 — 04 _,06 0 1
a 02 —f— 0.2 —» 04 79 |04 1 01
a 02— 027 o[ ™02 J1 000
a, 0.170 |[— 02 J 1 0010
as 0.1J 1 0011

s

Combine last two symbols with lowest probabilities, and
use one bit (last bit in codeword) to differentiate between them!

4/31




Efficiency of Huffman Codes

0 Redundancy — the difference between the entropy
and the average length of a code

Letter

Probability

Codeword

an
aj
as
ay
as

0.4
0.2
0.2
0.1
0.1

1

01
000
0010
0011

The average codeword length for this code is

[=04%x14+02%x2+0.2%x3+0.1x4+0.1x4=2.2bits/symbol.

The entropy is around 2.13. Thus, the redundancy is around 0.07 bits/symbol.

a For Huffman code, the redundancy is zero when the
probabilities are negative powers of two.

5/31




Minimum Variance Huffman Codes

O When more than two “symbols” in a Huffman tree
have the same probability, different merge orders
produce different Huffman codes.

Symbol Step 1 Step 2 Step 3 Step 4 Codeword
a, 04 —1— 04 —> 04 ~_ > 060 00 The average codeword
a, 02 ~_[—> 02 04 10> 041 10 length is still
a; 02 027 0] > 0271 T 2.2 bits/symbol.
T30 But variances are different!
a, 017 o 021 010
as 0.17 1 011

d Two code trees with same symbol probabilities:

We prefer a code with
smaller length-variance,
Why?

6/31




Canonical Huffman Codes

a Transmitting the code table to the receiver of the
messages may be expansive.

a If a canonical Huffman tree is used, we can just send
the code lengths of the symbols to the receiver.

ad Example:
If the code length of
{a;, a,, a5, a4, as } are
{2,1,3,4,4}, what is
the code table?




Length-Limited Huffman Codes

a Optimal code design only concerns about minimizing
the average codeword length.

a Length-limited code design tries to minimize the
maximal codeword length [ _as well. If m is the size

of the alphabet, clearly we have [ > [log, m].

d The package-merge algorithm by Larmore and
Hirchberg (1990) can be used to design length-
limited Huffman codes.

8/31




Example: Package-Merge Algorithm

Letter Probability Codeword
Lo = [a1(0.05), a2(0.1), a3(0.15), a4(0.2), as(0.2), ag(0.3)]
ai 0.05 0100
a 0.1 0101
a3 0.15 011 Length limit = 3
ag 0.2 10
as 0.2 11 ) o
ag 0.3 00 Package; : [@12(.15), a34(.35), ase(.5)]

Average codeword length = 2.45 v/

Merge;: [a1(0.05), a2(0.1), a3(0.15), ai2(0.15), az(0.2), as(0.2), ag(0.3), a34(0.35), ass(0.5)]

——————-
N\

Ay
Odd number of items, discard the
highest probability item!

Package, : [a12(0.15), a312(0.3), a45(0.4), as34(0.63) ]

/

Merge, : [a1(0.05), a2(0.1), a3(0.15), a12(0.15), as(0.2), as(0.2),

as(0.3), a312(0.3), as5(0.4), ag34(0.65)] Average codeword length = 2.5
Letter Probability Codeword
ai 0.05 100
0.1 101
Count the number of occurrences of each ﬁ 0.15 110
symbol, the codeword lengths are: { 3, 3, 3, 3, 2, 2 } az 0.2 111
as 0.2 00

It 0.3 01 9/31




Conditions for Optimal VLC Codes

a

Given any two letters, a, and q,, if Pla;] 2 P[a], then
I, <1, where [ is the number of bits in the codeword for a..

The two least probable letters have codewords with the same
maximum length [ .

In the tree corresponding to the optimum code, there must be
two branches stemming from each intermediate node.

Suppose we change an intermediate node into a leaf node by
combining all of the leaves descending from it into a composite
word of a reduced alphabet. Then, if the original tree was
optimal for the original alphabet, the reduced tree would be
optimal for the reduced alphabet.

10/31




Length of Huffman Codes (1/2)

Q Given a sequence of positive integers {/,, ,, ..., [}

satisfies )

PIVEESH

i=1
there exists a uniquely decodable code whose
codeword lengths are given by {/,, [,, ..., [, }.

d The optimal code for a source §has an average code
length /,,, with the following bounds:

H(®S<1,, <H(S+I,
where H(S) is the entropy of the source.

11/31




Length of Huffman Codes (2/2)

d The lower-bound can be obtained by showing that:

H(S)-1,, ==Y P(a)log, P(a,)— ) P(a)l,

= Zk:P(ai)logzLD2 )} < log{zk: 211} <0.

Jensen’s inequality

-1

1

a;

d For the upper-bound, notice that given an alphabet
{a,, a5, ..., a,}, and a set of codeword lengths

I.=[1og,(1/P(a)) | < log,(1/P(a;)) + 1,

the code satisfies the Kraft-McMillan inequality and
has [,,, <H(S) + 1.

12/31




Extended Huffman Code (1/2)

Q If a symbol a has probability 0.9, ideally, it's codeword
length should be 0.152 bits — not possible with
Huffman code (since minimal codeword length is 1)!

Qa To fix this problem, we can group several symbols
together to form longer code blocks. Let A = {a,, a,, ...,
a,} be the alphabet of an i.i.d. source §, thus

H(S)= —i P(a;)log, P(a,)

We know that we can generate a Huffman code for
this source with rate R (bits per symbol) such that

H(S)<R<H(S + 1.

13/31




Extended Huffman Code (2/2)

Q If we group n symbols into a new “extended” symbol,
the extended alphabet becomes:

n times

n) —
AW = laa, _a,aa,  a,, .

* m m. a }
There are m"” symbols in A®™. For such source S™W,
the rate R™ satisfies:

H(S™) < R™ < H(S™) + 1.
Note that R = R™ / n and H(S™W) = nH(S).

Therefore, by grouping symbols, we can achieve

H(S)<R<H(S)+.
n




Example: Extended Huffman Code

Q Consider an i.i.d. source with alphabet A = {a,, a,, a;}
and model P(a,) = 0.8, P(a,) =0.02, and P(a;) = 0.18.
The entropy for this source is 0.816 bits/symbol.

Huffman code Extended Huffman code
Letter Codeword Letter Probability Code
aj 0 aja 0.64 0
ar 11 ajan 0.016 10101
as 10 apas 0.144 11
arda 0.016 101000
Average code length = 1.2 bits/symbol aza; 0.0004 10100101
aras 0.0036 1010011
azaj 0.1440 100
asan 0.0036 10100100
azas 0.0324 1011

Average code length = 0.8614 bits/symbol

15/31




Huffman Code Decoding

d Decoding of Huffman code can be expensive:
m [f a large sparse code table is used, memory is wasted
m [f a code tree is used, too many if-then-else’s are required

a In practice, we employ a code tree where small
tables are used to represents sub-trees

Letter Code
A 0
B 10101
C 11
D 101000
E 10100101
F 1010011
G 100
H 10100100
1 1011

—

Letter Code
0000 Al
0001 Al
0010 Al
0011 Al
0100 Al
0101 Al
0110 Al
0111 Al
1000 G, 3
1001 G,3
1010 Table II
1011 1.4
1100 C,2
1101 c,2
1110 C,2
C,2

1111

Letter

00
01
10
11

Table III

B, 1

B, 1 Letter Code
00 H.?2
01 2

Code
D 3

E,
10 F.1
11 F.1

16/31




Non-binary Huffman Codes

d Huffman codes can be applied to n-ary code space.
For example, codewords composed of {0, 1, 2}, we

have ternary Huffman code
QLletA={a,, ..., as}, P(a)=1{0.25,0.25,0.2,0.15, 0.15}.

Symbol Step 1 Step 2 Codeword
a, 0.25 4050 1
a, 025 | /025 1 2
as 020) 0f *025)2 00
a, 0.15 V1 01
s 0.15 | 2 02

17/31




Adaptive Huffman Coding

a Huffman codes require exact probability model of the
source to compute optimal codewords. For messages
with unknown duration, this is not possible.

a One can try to re-compute the probability model for
every received symbol, and re-generate a new set of
codewords based on the new model for the next
symbol from scratch — too expensive!

a Adaptive Huffman coding tries to achieve this goal at
lower cost.

18/31




Adaptive Huffman Coding Tree

a Adaptive Huffman coding maintains a dynamic code
tree. The tree will be updated synchronously on both
transmitter-side and receiver-side. If the alphabet
size is m, the total number of nodes <2m — 1.

d vy

Weight of a node: /

number of occurrences of
the symbol, or all the
symbols in the subtree

All symbols Not Yet .~
Transmitted (NYT)

NYT

51 =2m -1, m = alphabet size

Node number: unique ID of each node.
Parent ID > Right child ID > Left child ID.

19/31




Initial Codewords

0 Before transmission of any symbols, all symbols in
the source alphabet {a,, a,, ..., a,} belongs to the
NYT list.

m Each symbol in the alphabet has an initial codeword using
either [ log,m ] or | log,m l+1 bits fixed-length binary code.

ad When a symbol g, is transmitted for the first time, the
code for NYT is transmitted, followed by the fixed
code for a,. A new node is created for a; and qg; is
taken out of the NYT list.

a From this point on, we follow the update procedure to
maintain the Huffman code tree.

20/31




Update Procedure

NYT gives birth
to new NYT and
external node

Y

Increment weight
of external node
and old NYT node

appearance
for symbol?

Y

Go to symbol
external node

Go to old
NYT node

START

Node
number max
in block?

Switch node with

highest numbered

node in‘block )
-3

Increment
node weight

g

Is this
the root
node?

The set of nodes
with the same weight

No

Go to

parent node

(aardv)




Encoding Procedure

START

Read in symbol ==

l

Is this
the first
appearance
of the
symbol?

Yes

/

Y

Send code for NYT Code is the path from
node followed by = the root node to the
index in the NYT list * corresponding node

Call update
procedure

Is this the No

last symbol?

Yes

STOP

22/31




Decoding Procedure

Is the node
the NYT
node?

Yes

Go to root
of the tree
Decode element
r“" corresponding
to node

Is the
node an external
node?

Read bit and go to
corresponding node

J

Call update
procedure

'

No Is this Yes

W

Read e bits

e-bit number p
less than r?

Read one more bit

Add rtop

Decode the (p + 1)
element in NYT list

STOP

23/31




Unary Code

0 Golomb-Rice codes are a family of codes that
designed to encode integers where the larger the
number, the smaller the probability

a Unary code:
The codeword of nis n 1's followed by a 0.
For example:

4 - 11110,7—= 11111110, etc.

Unary code is optimal when A = {1, 2, 3, ...} and

P(k)=—

ok

24/31




Golomb Codes

Q For Golomb code with parameter m, the codeword of
n Is represented by two numbers ¢ and r,

n
q:\‘—J, r=n—qm,
m

where ¢ is coded by unary code, and r is coded by
fixed-length binary code (takes [log,m| ~ [log,m | bits).

O Example, m =5, r needs 2 ~ 3 bits to encode:

n q r Codeword n q r Codeword
0 0 0 000 I8 1 3 10110
L g | r L0 1 o9 14 1o
N 2 0 2 010 10 2 0 11000
e 3 0 3 oo |11 2 1 11001
a Golomb codeword 4 0 4 o111 122 2 11010
5 10 10000 13 2 3 110110
6 1 1 1001 | 142 4 110111
7 1 2 1010 15 3 0 111000

25/31




Optimality of Golomb Code

Q It can be shown that the Golomb code is optimal for
the probability model

P(n)=p"'q, g=1-p,

m=|— .
log, p

when

26/31




Rice Codes

O A pre-processed sequence of non-negative integers
IS divided into blocks of J integers.
m The pre-process involves differential coding and remapping

d Each block coded using one of several options, e.g.,
the CCSDS options (with J = 16):

m fFundamental sequence option: use unary code

m Split sample option: an n-bit number is split into least
significant m bits (FLC-coded) and most significant (n — m)
bits (unary-coded).

m Second extension option: encode low entropy block, where
two consecutive values are inputs to a hash function. The
function value is coded using unary code.

m Zero block option: encode the number of consecutive zero
blocks using unary code

27/31




Tunstall Codes

Q Tunstall code uses fixed-length codeword to
represent different number of symbols from the
source — errors do not propagates like variable-
length codes (VLC).

O Example: The alphabet is {A, B}, to encode the
sequence AAABAABAABAABAAA:

2-bit Tunstall code, OK Non-Tunstall code, Bad!

Sequence Codeword Sequence Codeword

AAA 00 AAA 00
AAB 01 ABA 01
AB 10 AB 10
B 11 B 11

28/31




Tunstall Code Algorithm

d Two design goals of Tunstall code
m Can encode/decode any source sequences
m Maximize source symbols per each codeword

d To design an n-bit Tunstall code (2" codewords) for
an i.i.d. source with alphabet size N:
1. Start with N symbols of the source alphabet
2. Remove the most probable symbol, add N new
entries to the codebook by concatenate the rest of
symbols with the most probable one
3. Repeat the process in step 2 for K time, where

N+KN-1)<2m

29/31




Example: Tunstall Codes

a Design a 3-bit Tunstall code for alphabet {A, B, C}
where P(A) = 0.6, P(B) =0.3, P(C) =0.1.

Initial list
Letter Probability
A 0.60
B 0.30
C 0.10
ﬂ Second iteration
First iteration
Sequence code
Sequence Probability B 000
B 0.30 C 001
C 0.10 AB 010
AA 0.36 |:> AC 011
AB 0.18 AAA 100
AC 0.06 AAB 101
AAC 110

30/31




Applications: Image Compression

Q Direct application of Huffman coding on image data
has limited compression ratio

Image Name Bits/Pixel Total Size (bytes) Compression Ratio

Sena 7.01 57,504 1.14

Sensin 7.49 61,430 1.07 g

Barth 494 40,534 la o model prediction

Omaha 7.12 58,374 1.12

Image Name Bits/Pixel Total Size (bytes) Compression Ratio

Sena 4.02 32,968 1.99

Sensin 4.70 38,541 1.70 - T
' — with model prediction

Earth 4.13 33,880 1.93 (¥ = P )

Omaha 6.42 52,643 1.24 Yn= Yt

31/31




