
Huffman Coding

National Chiao Tung University

Chun-Jen Tsai

10/2/2014

Huffman Codes

� Optimum prefix code developed by D. Huffman in a

class assignment

� Construction of Huffman codes is based on two ideas:

� In an optimum code, symbols with higher probability should
have shorter codewords

� In an optimum prefix code, the two symbols that occur least
frequently will have the same length (otherwise, the
truncation of the longer codeword to the same length still
produce a decodable code)

2/31

Principle of Huffman Codes

� Starting with two least probable symbols γ and δ of an
alphabet A, if the codeword for γ is [m]0, the

codeword for δ would be [m]1, where [m] is a string of
1’s and 0’s.

� Now, the two symbols can be combined into a group,

which represents a new symbol ψ in the alphabet set.
The symbol ψ has the probability P(γ) + P(δ).

� Recursively determine the bit pattern [m] using the

new alphabet set.

3/31

Example: Huffman Code

Symbol Step 1 Step 2 Step 3 Step 4 Codeword

a2 0.4 0.4 0.4 0.6 1

a1 0.2 0.2 0.4 0.4 01

a3 0.2 0.2 0.2 000

a4 0.1 0.2 0010

a5 0.1 0011

0

1

� Let A = {a1, …, a5}, P(ai) = {0.2, 0.4, 0.2, 0.1, 0.1}.

0

10

1

Combine last two symbols with lowest probabilities, and
use one bit (last bit in codeword) to differentiate between them!

0

1

4/31

Efficiency of Huffman Codes

� Redundancy – the difference between the entropy

and the average length of a code

� For Huffman code, the redundancy is zero when the

probabilities are negative powers of two.

The average codeword length for this code is

l = 0.4 × 1 + 0.2 × 2 + 0.2 × 3 + 0.1 × 4 + 0.1 × 4 = 2.2 bits/symbol.

The entropy is around 2.13. Thus, the redundancy is around 0.07 bits/symbol.

5/31

Minimum Variance Huffman Codes

� When more than two “symbols” in a Huffman tree

have the same probability, different merge orders

produce different Huffman codes.

� Two code trees with same symbol probabilities:

Symbol Step 1 Step 2 Step 3 Step 4 Codeword

a2 0.4 0.4 0.4 0.6 00

a1 0.2 0.2 0.4 0.4 10

a3 0.2 0.2 0.2 11

a4 0.1 0.2 010

a5 0.1 011

0

10

1
0

1

0

1

We prefer a code with
smaller length-variance,
Why?

The average codeword

length is still

2.2 bits/symbol.

But variances are different!

6/31

Canonical Huffman Codes

� Transmitting the code table to the receiver of the

messages may be expansive.

� If a canonical Huffman tree is used, we can just send

the code lengths of the symbols to the receiver.

� Example:

If the code length of
{ a1, a2, a3, a4, a5 } are

{2, 1, 3, 4, 4}, what is

the code table?

a2

a1

a3

a4 a5
7/31

Length-Limited Huffman Codes

� Optimal code design only concerns about minimizing

the average codeword length.

� Length-limited code design tries to minimize the
maximal codeword length lmax as well. If m is the size

of the alphabet, clearly we have lmax ≥ ⌈log2 m⌉.

� The package-merge algorithm by Larmore and

Hirchberg (1990) can be used to design length-

limited Huffman codes.

8/31

Example: Package-Merge Algorithm

Length limit = 3

Average codeword length = 2.45

Average codeword length = 2.5

Count the number of occurrences of each
symbol, the codeword lengths are: { 3, 3, 3, 3, 2, 2 }

Odd number of items, discard the
highest probability item!

9/31

Conditions for Optimal VLC Codes

� Given any two letters, aj and ak, if P[aj] ≥ P[ak], then
lj ≤ lk, where lj is the number of bits in the codeword for aj.

� The two least probable letters have codewords with the same
maximum length lm.

� In the tree corresponding to the optimum code, there must be
two branches stemming from each intermediate node.

� Suppose we change an intermediate node into a leaf node by
combining all of the leaves descending from it into a composite
word of a reduced alphabet. Then, if the original tree was
optimal for the original alphabet, the reduced tree would be
optimal for the reduced alphabet.

10/31

Length of Huffman Codes (1/2)

� Given a sequence of positive integers {l1, l2, …, lk}

satisfies

there exists a uniquely decodable code whose
codeword lengths are given by {l1, l2, …, lk}.

� The optimal code for a source SSSS has an average code

length lavg with the following bounds:

where H(SSSS) is the entropy of the source.

,1)()(+<≤ SS HlH avg

,12
1

≤∑
=

−
k

i

li

11/31

Length of Huffman Codes (2/2)

� The lower-bound can be obtained by showing that:

� For the upper-bound, notice that given an alphabet
{a1, a2, …, ak}, and a set of codeword lengths

li = log2(1/P(ai)) < log2(1/P(ai)) + 1,

the code satisfies the Kraft-McMillan inequality and
has lavg < H(SSSS) + 1.

.02log
)(

2
log)(

)()(log)()(

1

2

1

2

11

2

≤







≤








=

−−=−

∑∑

∑∑

=

−

=

−

==

k

i

l
k

i i

l

i

k

i

ii

k

i

iiavg

i

i

aP
aP

laPaPaPlH SSSS

Jensen’s inequality

12/31

Extended Huffman Code (1/2)

� If a symbol a has probability 0.9, ideally, it’s codeword

length should be 0.152 bits → not possible with
Huffman code (since minimal codeword length is 1)!

� To fix this problem, we can group several symbols
together to form longer code blocks. Let A = {a1, a2, …,
am} be the alphabet of an i.i.d. source SSSS, thus

We know that we can generate a Huffman code for
this source with rate R (bits per symbol) such that

H(SSSS) ≤ R < H(SSSS) + 1.

∑
=

−=
m

i

ii aPaPH
1

2)(log)()(SSSS

13/31

Extended Huffman Code (2/2)

� If we group n symbols into a new “extended” symbol,

the extended alphabet becomes:

A(n) = {a1a1 … a1, a1a1 … a2, …, amam … am}.

There are mn symbols in A(n). For such source S(n),

the rate R(n) satisfies:

H(S(n)) ≤ R(n) < H(S(n)) + 1.

Note that R = R(n) / n and H(S(n)) = nH(S).

Therefore, by grouping symbols, we can achieve

n times

14/31

.
1

)()(
n

HRH +<≤ SS

Example: Extended Huffman Code

� Consider an i.i.d. source with alphabet A = {a1, a2, a3}

and model P(a1) = 0.8, P(a2) = 0.02, and P(a3) = 0.18.

The entropy for this source is 0.816 bits/symbol.

Huffman code Extended Huffman code

Average code length = 0.8614 bits/symbol

Average code length = 1.2 bits/symbol

15/31

Huffman Code Decoding

� Decoding of Huffman code can be expensive:

� If a large sparse code table is used, memory is wasted

� If a code tree is used, too many if-then-else’s are required

� In practice, we employ a code tree where small

tables are used to represents sub-trees

16/31

Non-binary Huffman Codes

� Huffman codes can be applied to n-ary code space.
For example, codewords composed of {0, 1, 2}, we

have ternary Huffman code

� Let A = {a1, …, a5}, P(ai) = {0.25, 0.25, 0.2, 0.15, 0.15}.

Symbol Step 1 Step 2 Codeword

a1 0.25 0.5 1

a2 0.25 0.25 2

a3 0.20 0.25 00

a4 0.15 01

a5 0.15 02

0

1

2

0

1

2

17/31

Adaptive Huffman Coding

� Huffman codes require exact probability model of the

source to compute optimal codewords. For messages

with unknown duration, this is not possible.

� One can try to re-compute the probability model for

every received symbol, and re-generate a new set of

codewords based on the new model for the next

symbol from scratch → too expensive!

� Adaptive Huffman coding tries to achieve this goal at

lower cost.

18/31

� Adaptive Huffman coding maintains a dynamic code

tree. The tree will be updated synchronously on both

transmitter-side and receiver-side. If the alphabet
size is m, the total number of nodes ≤ 2m – 1.

Adaptive Huffman Coding Tree

Weight of a node:

number of occurrences of

the symbol, or all the

symbols in the subtree

Node number: unique ID of each node.

Parent ID > Right child ID > Left child ID.

5049

47
48

4645

4443

51

All symbols Not Yet

Transmitted (NYT)

51 = 2m – 1, m = alphabet size

(aardv)

19/31

Initial Codewords

� Before transmission of any symbols, all symbols in
the source alphabet {a1, a2, …, am} belongs to the

NYT list.

� Each symbol in the alphabet has an initial codeword using
either log2m or log2m+1 bits fixed-length binary code.

� When a symbol ai is transmitted for the first time, the

code for NYT is transmitted, followed by the fixed
code for ai. A new node is created for ai and ai is

taken out of the NYT list.

� From this point on, we follow the update procedure to

maintain the Huffman code tree.

20/31

Update Procedure

The set of nodes
with the same weight

21/31

Encoding Procedure

22/31

Decoding Procedure

23/31

Unary Code

� Golomb-Rice codes are a family of codes that

designed to encode integers where the larger the

number, the smaller the probability

� Unary code:
The codeword of n is n 1’s followed by a 0.

For example:

4 → 11110, 7 → 11111110, etc.

Unary code is optimal when A = {1, 2, 3, …} and

.
2

1
)(

k
kP =

24/31

Golomb Codes

� For Golomb code with parameter m, the codeword of

n is represented by two numbers q and r,

where q is coded by unary code, and r is coded by

fixed-length binary code (takes log2m ~ log2m bits).

� Example, m = 5, r needs 2 ~ 3 bits to encode:

,, qmnr
m

n
q −=





=

q r

a Golomb codeword

25/31

Optimality of Golomb Code

� It can be shown that the Golomb code is optimal for

the probability model

P(n) = pn–1q, q = 1 – p,

when

.
log

1

2









−=

p
m

26/31

Rice Codes

� A pre-processed sequence of non-negative integers
is divided into blocks of J integers.
� The pre-process involves differential coding and remapping

� Each block coded using one of several options, e.g.,
the CCSDS options (with J = 16):
� Fundamental sequence option: use unary code

� Split sample option: an n-bit number is split into least
significant m bits (FLC-coded) and most significant (n – m)
bits (unary-coded).

� Second extension option: encode low entropy block, where
two consecutive values are inputs to a hash function. The
function value is coded using unary code.

� Zero block option: encode the number of consecutive zero
blocks using unary code

27/31

Tunstall Codes

� Tunstall code uses fixed-length codeword to

represent different number of symbols from the

source → errors do not propagates like variable-

length codes (VLC).

� Example: The alphabet is {A, B}, to encode the

sequence AAABAABAABAABAAA:

2-bit Tunstall code, OK Non-Tunstall code, Bad!

28/31

Tunstall Code Algorithm

� Two design goals of Tunstall code

� Can encode/decode any source sequences

� Maximize source symbols per each codeword

� To design an n-bit Tunstall code (2n codewords) for

an i.i.d. source with alphabet size N:

1. Start with N symbols of the source alphabet

2. Remove the most probable symbol, add N new

entries to the codebook by concatenate the rest of

symbols with the most probable one
3. Repeat the process in step 2 for K time, where

N + K(N – 1) ≤ 2n.

29/31

Example: Tunstall Codes

� Design a 3-bit Tunstall code for alphabet {A, B, C}

where P(A) = 0.6, P(B) = 0.3, P(C) = 0.1.

Initial list

First iteration
Second iteration

code

30/31

Applications: Image Compression

� Direct application of Huffman coding on image data

has limited compression ratio

→ no model prediction

→ with model prediction
(x′n = xn–1)

31/31

