

Example: Huffman Code

Let $\mathcal{A} = \{a_1, ..., a_5\}, P(a_i) = \{0.2, 0.4, 0.2, 0.1, 0.1\}.$

Symbol	Step 1	Step 2	Step 3	Step 4	Codeword
<i>a</i> ₂	0.4	→ 0.4 —	→ 0.4	0.6 0	1
a_1	0.2 —	→ 0.2	→ 0.4) 0	• 0.4 1	01
<i>a</i> ₃	0.2 —	→ 0.2 _ 0	0.2 1		000
a_4	0.1 _ 0	$\rightarrow 0.2 \int 1$			0010
<i>a</i> ₅	0.1 1				0011

Combine last two symbols with lowest probabilities, and use one bit (last bit in codeword) to differentiate between them!

Efficiency of Huffman Codes

Redundancy – the difference between the entropy and the average length of a code

Letter	Probability	Codeword
a_2	0.4	1
a_1	0.2	01
a_3	0.2	000
a_4	0.1	0010
<i>a</i> ₅	0.1	0011

The average codeword length for this code is $l = 0.4 \times 1 + 0.2 \times 2 + 0.2 \times 3 + 0.1 \times 4 + 0.1 \times 4 = 2.2$ bits/symbol. The entropy is around 2.13. Thus, the redundancy is around 0.07 bits/symbol.

For Huffman code, the redundancy is zero when the probabilities are negative powers of two.

Example: Package-Merge Algorithm

Conditions for Optimal VLC Codes

- □ Given any two letters, a_j and a_k , if $P[a_j] \ge P[a_k]$, then $l_j \le l_k$, where l_j is the number of bits in the codeword for a_j .
- □ The two least probable letters have codewords with the same maximum length l_m .
- □ In the tree corresponding to the optimum code, there must be two branches stemming from each intermediate node.
- Suppose we change an intermediate node into a leaf node by combining all of the leaves descending from it into a composite word of a reduced alphabet. Then, if the original tree was optimal for the original alphabet, the reduced tree would be optimal for the reduced alphabet.

Length of Huffman Codes (2/2)

□ The lower-bound can be obtained by showing that:

$$H(S) - l_{avg} = -\sum_{i=1}^{k} P(a_i) \log_2 P(a_i) - \sum_{i=1}^{k} P(a_i) l_i$$

= $\sum_{i=1}^{k} P(a_i) \log_2 \left[\frac{2^{-l_i}}{P(a_i)} \right] \le \log_2 \left[\sum_{i=1}^{k} 2^{-l_i} \right] \le 0.$
Jensen's inequality

□ For the upper-bound, notice that given an alphabet $\{a_1, a_2, ..., a_k\}$, and a set of codeword lengths $l_i = \lceil \log_2(1/P(a_i)) \rceil < \log_2(1/P(a_i)) + 1$, the code satisfies the Kraft-McMillan inequality and has $l_{avg} < H(S) + 1$.

13/31

Example: Extended Huffman Code

□ Consider an i.i.d. source with alphabet $A = \{a_1, a_2, a_3\}$ and model $P(a_1) = 0.8$, $P(a_2) = 0.02$, and $P(a_3) = 0.18$. The entropy for this source is 0.816 bits/symbol.

Huffman code

Letter	Codeword
a_1	0
<i>a</i> ₂	11
<i>a</i> ₃	10

Average code length = 1.2 bits/symbol

Extended Huffman code

Letter	Probability	Code
a_1a_1	0.64	0
a_1a_2	0.016	10101
a_1a_3	0.144	11
a_2a_1	0.016	101000
a_2a_2	0.0004	10100101
a_2a_3	0.0036	1010011
a_3a_1	0.1440	100
a_3a_2	0.0036	10100100
<i>a</i> ₃ <i>a</i> ₃	0.0324	1011

Average code length = 0.8614 bits/symbol

Huffman codes can be applied to n-ary code space. For example, codewords composed of {0, 1, 2}, we have ternary Huffman code

 $\Box \text{ Let } A = \{a_1, \dots, a_5\}, P(a_i) = \{0.25, 0.25, 0.2, 0.15, 0.15\}.$

Symbol	Step 1	Step 2	Codeword
<i>a</i> ₁	0.25	0.5 0	1
<i>a</i> ₂	0.25	0.25 1	2
<i>a</i> ₃	0.20 0/	0.25 2	00
a_4	0.15 1		01
<i>a</i> ₅	0.15 2		02

24/31

a

□ For Golomb code with parameter *m*, the codeword of *n* is represented by two numbers q and r,

$$q = \left\lfloor \frac{n}{m} \right\rfloor, \ r = n - qm,$$

where q is coded by unary code, and r is coded by fixed-length binary code (takes $\lfloor \log_2 m \rfloor \sim \lceil \log_2 m \rceil$ bits). \Box Example, m = 5, r needs 2 ~ 3 bits to encode:

25/31

It can be shown that the Golomb code is optimal for the probability model

$$P(n) = p^{n-1}q, \quad q = 1 - p,$$

when

$$m = \left[-\frac{1}{\log_2 p} \right].$$

Rice Codes

- □ A pre-processed sequence of non-negative integers is divided into blocks of *J* integers.
 - The pre-process involves differential coding and remapping
- □ Each block coded using one of several options, e.g., the CCSDS options (with J = 16):
 - Fundamental sequence option: use unary code
 - Split sample option: an *n*-bit number is split into least significant *m* bits (FLC-coded) and most significant (*n* – *m*) bits (unary-coded).
 - Second extension option: encode low entropy block, where two consecutive values are inputs to a hash function. The function value is coded using unary code.
 - Zero block option: encode the number of consecutive zero blocks using unary code

Tunsta	all Code	es		
Tunsta represe source length	Il code use ent differer → errors o codes (VL	es fixed-le nt numbe do not pr C).	ength codeword r of symbols fro opagates like v	d to om the ariable-
🗆 Examp	le: The alp	phabet is	$\{A, B\}$, to enco	de the
sequer	nce AAAB	AABAAE	BAABAAA:	
2-bit Tur	nstall code, OK		Non-Tunstall code, Bad!	
Sequence	С	Codeword	Sequence	Codeword
AAA		00	AAA	00
AAB AB		01 10	ABA	01
B		11	B	11

stall code, Bad!

d	Sequence	Codeword
	AAA	00
	ABA	01
	AB	10
	В	11

Example: Tunstall Codes

□ Design a 3-bit Tunstall code for alphabet $\{A, B, C\}$ where P(A) = 0.6, P(B) = 0.3, P(C) = 0.1.

Initial list

.etter	Probability
Α	0.60
В	0.30
С	0.10
Π	
First iteration	Probability
First iteration Sequence	Probability
First iteration Sequence B	Probability 0.30
First iteration Sequence B C	Probability 0.30 0.10
First iteration Sequence B C AA	Probability 0.30 0.10 0.36
First iteration Sequence B C AA AB	Probability 0.30 0.10 0.36 0.18

Second iteration

Sequence	code
В	000
С	001
AB	010
AC	011
AAA	100
AAB	101
AAC	110

Applications: Image Compression

Direct application of Huffman coding on image data has limited compression ratio

Image Name	Bits/Pixel	Total Size (bytes)	Compression Ratio	
Sena	7.01	57,504	1.14	
Sensin	7.49	61,430	1.07 > no model predictio	n
Earth	4.94	40,534	$1.62 \rightarrow$ no model predictio	Л
Omaha	7.12	58,374	1.12	
Image Name	Bits/Pixel	Total Size (bytes)	Compression Ratio	
Sena	4.02	32,968	1.99	
Sensin	4.70	38,541	$1.70 \rightarrow \text{with model predict}$	tion
Earth	4.13	33,880		lion
Omaha	6.42	52,643	1.24 $(x_n = x_{n-1})$	
		· · · · · · · · · · · · · · · · · · ·		