Huffman Coding

National Chiao Tung University Chun-Jen Tsai 10/2/2014

Huffman Codes

- Optimum prefix code developed by D. Huffman in a class assignment
- Construction of Huffman codes is based on two ideas:
- In an optimum code, symbols with higher probability should have shorter codewords
- In an optimum prefix code, the two symbols that occur least frequently will have the same length (otherwise, the truncation of the longer codeword to the same length still produce a decodable code)

Principle of Huffman Codes

\square Starting with two least probable symbols γ and δ of an alphabet A, if the codeword for γ is $[\mathrm{m}] 0$, the codeword for δ would be $[m] 1$, where $[m]$ is a string of 1's and 0's.
\square Now, the two symbols can be combined into a group, which represents a new symbol ψ in the alphabet set. The symbol ψ has the probability $P(\gamma)+P(\delta)$.
\square Recursively determine the bit pattern [m$]$ using the new alphabet set.

Example: Huffman Code

- Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{5}\right\}, P\left(a_{i}\right)=\{0.2,0.4,0.2,0.1,0.1\}$.

Symbol	Step 1	Step 2	Step 3	Step 4	Codeword
a_{2}	$0.4 \longrightarrow 0.4$	$\longrightarrow 0.4$	$\longrightarrow 0.60$	1	
a_{1}	$0.2 \longrightarrow 0.2$	$\longrightarrow 0.4$	0	$\Delta 0.41$	01
a_{3}	$0.2 \longrightarrow 0.2\rceil 0$	$0.2 \sqrt{1}$		000	
a_{4}	$0.1\rceil 0$	$\longrightarrow 0.2\urcorner 1$			0010
a_{5}	$0.1\urcorner 1$				0011

佰
Combine last two symbols with lowest probabilities, and use one bit (last bit in codeword) to differentiate between them!

Efficiency of Huffman Codes

Redundancy - the difference between the entropy and the average length of a code

Letter	Probability	Codeword
a_{2}	0.4	1
a_{1}	0.2	01
a_{3}	0.2	000
a_{4}	0.1	0010
a_{5}	0.1	0011

The average codeword length for this code is

$$
l=0.4 \times 1+0.2 \times 2+0.2 \times 3+0.1 \times 4+0.1 \times 4=2.2 \text { bits } / \text { symbol. }
$$

The entropy is around 2.13. Thus, the redundancy is around 0.07 bits/symbol.

- For Huffman code, the redundancy is zero when the probabilities are negative powers of two.

Minimum Variance Huffman Codes

- When more than two "symbols" in a Huffman tree have the same probability, different merge orders produce different Huffman codes.

Symbol	Step 1	Step 2	Step 3	Step 4	Codeword	
a_{2}	0.4	$\longrightarrow 0.4$	$\rightarrow 0.4$	$\rightarrow 0.60$	00	
a_{1}	0.2		$\rightarrow 0.2$	$\wedge 0.4$	0	0.41
a_{3}	0.2		0.2	0	$\Delta 0.2$	1
a_{4}	0.1	0	$\wedge 0.2$	1		
a_{5}	0.1	1				11

\square Two code trees with same symbol probabilities:

We prefer a code with smaller length-variance, Why?

Canonical Huffman Codes

Transmitting the code table to the receiver of the messages may be expansive.

- If a canonical Huffman tree is used, we can just send the code lengths of the symbols to the receiver.
- Example:

If the code length of $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ are $\{2,1,3,4,4\}$, what is the code table?

Length-Limited Huffman Codes

\square Optimal code design only concerns about minimizing the average codeword length.

- Length-limited code design tries to minimize the maximal codeword length $l_{\max }$ as well. If m is the size of the alphabet, clearly we have $l_{\max } \geq\left\lceil\log _{2} m\right\rceil$.
\square The package-merge algorithm by Larmore and Hirchberg (1990) can be used to design lengthlimited Huffman codes.

Example: Package-Merge Algorithm

Letter	Probability	Codeword
a_{1}	0.05	0100
a_{2}	0.1	0101
a_{3}	0.15	011
a_{4}	0.2	10
a_{5}	0.2	11
a_{6}	0.3	00

$$
L_{0}=\left[a_{1}(0.05), a_{2}(0.1), a_{3}(0.15), a_{4}(0.2), a_{5}(0.2), a_{6}(0.3)\right]
$$

Average codeword length $=2.45$
$\operatorname{Merge}_{1}:\left[a_{1}(0.05), a_{2}(0.1), a_{3}(0.15), a_{12}(0.15), a_{4}(0.2), a_{5}(0.2), a_{6}(0.3), a_{34}(0.35), a_{56}(0.5)\right]$

Odd number of items, discard the highest probability item!

Package $_{2}:\left[a_{12}(0.15), a_{312}(0.3), a_{45}(0.4), a_{634}(0.65)\right]$
$\operatorname{Merge}_{2}:\left[a_{1}(0.05), a_{2}(0.1), a_{3}(0.15), a_{12}(0.15), a_{4}(0.2), a_{5}(0.2)\right.$,

$\left.a_{6}(0.3), a_{312}(0.3), a_{45}(0.4), a_{634}(0.65)\right]$		Average codeword length $=2.5$	
	Letter	Probability	Codeword
	a_{1}	0.05	100
Count the number of occurrences of each	a_{2}	0.1	101
symbol, the codeword lengths are: $\{3,3,3,3,2,2\}$	a_{3}	0.15	110
	a_{4}	0.2	111
	a_{5}	0.2	00

Conditions for Optimal VLC Codes

- Given any two letters, a_{j} and a_{k}, if $P\left[a_{j}\right] \geq P\left[a_{k}\right]$, then $l_{j} \leq l_{k}$, where l_{j} is the number of bits in the codeword for a_{j}.
- The two least probable letters have codewords with the same maximum length l_{m}.
- In the tree corresponding to the optimum code, there must be two branches stemming from each intermediate node.
- Suppose we change an intermediate node into a leaf node by combining all of the leaves descending from it into a composite word of a reduced alphabet. Then, if the original tree was optimal for the original alphabet, the reduced tree would be optimal for the reduced alphabet.

Length of Huffman Codes (1/2)

\square Given a sequence of positive integers $\left\{l_{1}, l_{2}, \ldots, l_{k}\right\}$ satisfies

$$
\sum_{i=1}^{k} 2^{-l_{i}} \leq 1,
$$

there exists a uniquely decodable code whose codeword lengths are given by $\left\{l_{1}, l_{2}, \ldots, l_{k}\right\}$.

- The optimal code for a source s has an average code length $l_{\text {avg }}$ with the following bounds:

$$
H(\mathrm{~S}) \leq l_{\text {avg }}<H(\mathrm{~S})+1,
$$

where $H(S)$ is the entropy of the source.

Length of Huffman Codes (2/2)

The lower-bound can be obtained by showing that:

$$
\begin{aligned}
H(S)-l_{\text {avg }} & =-\sum_{i=1}^{k} P\left(a_{i}\right) \log _{2} P\left(a_{i}\right)-\sum_{i=1}^{k} P\left(a_{i}\right) l_{i} \\
& =\sum_{i=1}^{k} P\left(a_{i}\right) \log _{2}\left[\frac{2^{-l_{i}}}{P\left(a_{i}\right)}\right] \leq \log _{2}\left[\sum_{i=1}^{k} 2^{-l_{i}}\right] \leq 0 .
\end{aligned}
$$

\square For the upper-bound, notice that given an alphabet $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, and a set of codeword lengths

$$
l_{i}=\left\lceil\log _{2}\left(1 / P\left(a_{i}\right)\right)\right\rceil<\log _{2}\left(1 / P\left(a_{i}\right)\right)+1,
$$

the code satisfies the Kraft-McMillan inequality and has $l_{\text {avg }}<H(S)+1$.

Extended Huffman Code (1/2)

- If a symbol a has probability 0.9 , ideally, it's codeword length should be 0.152 bits \rightarrow not possible with Huffman code (since minimal codeword length is 1)!
- To fix this problem, we can group several symbols together to form longer code blocks. Let $A=\left\{a_{1}, a_{2}, \ldots\right.$, $\left.a_{m}\right\}$ be the alphabet of an i.i.d. source S, thus

$$
H(S)=-\sum_{i=1}^{m} P\left(a_{i}\right) \log _{2} P\left(a_{i}\right)
$$

We know that we can generate a Huffman code for this source with rate R (bits per symbol) such that

$$
H(S) \leq R<H(S)+1
$$

Extended Huffman Code (2/2)

- If we group n symbols into a new "extended" symbol, the extended alphabet becomes:

$$
A^{(n)}=\{\overbrace{a_{1} a_{1 \ldots}^{n \text { times }}}^{a_{1}}, a_{1} a_{1 \ldots} a_{2}, \ldots, a_{m} a_{m \ldots} a_{m}\} .
$$

There are m^{n} symbols in $A^{(n)}$. For such source $\mathbf{S}^{(n)}$, the rate $R^{(n)}$ satisfies:

$$
H\left(\mathbf{S}^{(n)}\right) \leq R^{(n)}<H\left(\mathbf{S}^{(n)}\right)+1 .
$$

Note that $R=R^{(n)} / n$ and $H\left(\mathbf{S}^{(n)}\right)=n H(\mathrm{~S})$.
Therefore, by grouping symbols, we can achieve

$$
H(\mathrm{~S}) \leq R<H(\mathrm{~S})+\frac{1}{n} .
$$

Example: Extended Huffman Code

\square Consider an i.i.d. source with alphabet $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and model $P\left(a_{1}\right)=0.8, P\left(a_{2}\right)=0.02$, and $P\left(a_{3}\right)=0.18$. The entropy for this source is 0.816 bits/symbol.

Huffman code

Letter	Codeword
a_{1}	0
a_{2}	11
a_{3}	10

Average code length $=1.2 \mathrm{bits} /$ symbol

Extended Huffman code

Letter	Probability	Code
$a_{1} a_{1}$	0.64	0
$a_{1} a_{2}$	0.016	10101
$a_{1} a_{3}$	0.144	11
$a_{2} a_{1}$	0.016	101000
$a_{2} a_{2}$	0.0004	10100101
$a_{2} a_{3}$	0.0036	1010011
$a_{3} a_{1}$	0.1440	100
$a_{3} a_{2}$	0.0036	10100100
$a_{3} a_{3}$	0.0324	1011

Average code length $=0.8614$ bits/symbol

Huffman Code Decoding

- Decoding of Huffman code can be expensive:
- If a large sparse code table is used, memory is wasted
- If a code tree is used, too many if-then-else's are required
- In practice, we employ a code tree where small tables are used to represents sub-trees

Letter	Code
A	0
B	10101
C	11
D	101000
E	10100101
F	1010011
G	100
H	10100100
I	1011

Letter	Code
0000	$A, 1$
0001	$A, 1$
0010	$A, 1$
0011	$A, 1$
0100	$A, 1$
0101	$A, 1$
0110	$A, 1$
0111	$A, 1$
1000	$G, 3$
1001	$G, 3$
1010	Table II
1011	$I, 4$
1100	$C, 2$
1101	$C, 2$
1110	$C, 2$
1111	$C, 2$

Non-binary Huffman Codes

\square Huffman codes can be applied to n -ary code space. For example, codewords composed of $\{0,1,2\}$, we have ternary Huffman code
L Let $A=\left\{a_{1}, \ldots, a_{5}\right\}, P\left(a_{i}\right)=\{0.25,0.25,0.2,0.15,0.15\}$.

Symbol	Step 1	Step 2	Codeword
a_{1}	0.25	0.5	0
a_{2}	0.25	0.25	1
a_{3}	0.20	0	$0.25)^{2}$
a_{4}	0.15	1	
a_{5}	0.15	2	

Adaptive Huffman Coding

- Huffman codes require exact probability model of the source to compute optimal codewords. For messages with unknown duration, this is not possible.
- One can try to re-compute the probability model for every received symbol, and re-generate a new set of codewords based on the new model for the next symbol from scratch \rightarrow too expensive!
- Adaptive Huffman coding tries to achieve this goal at lower cost.

Adaptive Huffman Coding Tree

- Adaptive Huffman coding maintains a dynamic code tree. The tree will be updated synchronously on both transmitter-side and receiver-side. If the alphabet size is m, the total number of nodes $\leq 2 m-1$.

Initial Codewords

- Before transmission of any symbols, all symbols in the source alphabet $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ belongs to the NYT list.
- Each symbol in the alphabet has an initial codeword using either $\left\lfloor\log _{2} m\right\rfloor$ or $\left\lfloor\log _{2} m\right\rfloor+1$ bits fixed-length binary code.
When a symbol a_{i} is transmitted for the first time, the code for NYT is transmitted, followed by the fixed code for a_{i}. A new node is created for a_{i} and a_{i} is taken out of the NYT list.
- From this point on, we follow the update procedure to maintain the Huffman code tree.

Encoding Procedure

Decoding Procedure

Unary Code

- Golomb-Rice codes are a family of codes that designed to encode integers where the larger the number, the smaller the probability
- Unary code:

The codeword of n is n 1's followed by a 0 . For example:

$$
4 \rightarrow 11110,7 \rightarrow 11111110, \text { etc. }
$$

Unary code is optimal when $A=\{1,2,3, \ldots\}$ and

$$
P(k)=\frac{1}{2^{k}} .
$$

Golomb Codes

\square For Golomb code with parameter m, the codeword of n is represented by two numbers q and r,

$$
q=\left\lfloor\frac{n}{m}\right\rfloor, r=n-q m
$$

where q is coded by unary code, and r is coded by fixed-length binary code (takes $\left\lfloor\log _{2} m\right\rfloor \sim\left\lceil\log _{2} m\right\rceil$ bits).
\square Example, $m=5, r$ needs $2 \sim 3$ bits to encode:

n	q	r	Codeword	n	q	r	Codeword
0	0	0	000	8	1	3	10110
1	0	1	001	9	1	4	10111
2	0	2	0110	10	2	0	11000
3	0	3	0110	11	2	1	11001
4	0	4	0111	12	2	2	11010
5	1	0	1000	13	2	3	110110
6	1	1	1001	14	2	4	110111
7	1	2	1010	15	3	0	111000

Optimality of Golomb Code

It can be shown that the Golomb code is optimal for the probability model

$$
P(n)=p^{n-1} q, \quad q=1-p,
$$

when

$$
m=\left\lceil-\frac{1}{\log _{2} p}\right\rceil
$$

Rice Codes

- A pre-processed sequence of non-negative integers is divided into blocks of J integers.
- The pre-process involves differential coding and remapping
- Each block coded using one of several options, e.g., the CCSDS options (with $J=16$):
- Fundamental sequence option: use unary code
- Split sample option: an n-bit number is split into least significant m bits (FLC-coded) and most significant ($n-m$) bits (unary-coded).
- Second extension option: encode low entropy block, where two consecutive values are inputs to a hash function. The function value is coded using unary code.
- Zero block option: encode the number of consecutive zero blocks using unary code

Tunstall Codes

- Tunstall code uses fixed-length codeword to represent different number of symbols from the source \rightarrow errors do not propagates like variablelength codes (VLC).
- Example: The alphabet is $\{A, B\}$, to encode the sequence AAABAABAABAABAAA:

Non-Tunstall code, Bad!

Tunstall Code Algorithm

Two design goals of Tunstall code

- Can encode/decode any source sequences
- Maximize source symbols per each codeword
\square To design an n-bit Tunstall code (2^{n} codewords) for an i.i.d. source with alphabet size N :

1. Start with N symbols of the source alphabet
2. Remove the most probable symbol, add N new entries to the codebook by concatenate the rest of symbols with the most probable one
3. Repeat the process in step 2 for K time, where

$$
N+K(N-1) \leq 2^{n}
$$

Example: Tunstall Codes

- Design a 3-bit Tunstall code for alphabet $\{A, B, C\}$ where $P(A)=0.6, P(B)=0.3, P(C)=0.1$.

Initial list

Letter	Probability
A	0.60
B	0.30
C	0.10

First iteration

Sequence	Probability
B	0.30
C	0.10
$A A$	0.36
$A B$	0.18
$A C$	0.06

Second iteration	
	Sequence
B	code
C	000
$A B$	001
$A C$	011
$A A A$	100
$A A B$	101
$A A C$	110

Applications: Image Compression

\square Direct application of Huffman coding on image data has limited compression ratio

Image Name	Bits/Pixel	Total Size (bytes)	Compression Ratio
Sena	7.01	57,504	1.14
Sensin	7.49	61,430	1.07
Earth	4.94	40,534	1.62
Omaha	7.12	58,374	1.12
Image Name	Bits/Pixel	Total Size (bytes)	Compression Ratio
Sena	4.02	32,968	1.99
Sensin	4.70	38,541	1.70
Earth	3.13	53,880	1.93
Omaha	6.42		1.24
		$\left(x_{n}^{\prime}=x_{n-1}\right)$	

