Mathematical Background on Lossless Data Compression

National Chiao Tung University

Chun-Jen Tsai

9/22/2014

Measuring Information Amount

- Shannon defines a quantity, self-information, of an event A with probability $P(A)$ as follows:

$$
i(A)=\log _{b} \frac{1}{P(A)}=-\log _{b} P(A) .
$$

- Note that:
- $i(A)=0$ for $P(A)=1$ (this event is predictable)
- $i(A) \geq 0$ for $0 \leq P(A) \leq 1$ (well, this is debatable)
- $i(A)>i(B)$ for $P(A)<P(B)$
- $i(A B)=i(A)+i(B)$ if A and B are independent events
- Counter-example of Shannon's idea:
- A random string of letters versus a meaningful statement

Flipping of a Fair Coin

Let H and T be the outcomes of flipping a coin, if

$$
P(H)=P(T)=0.5
$$

then,

$$
i(H)=i(T)=1 \text { bit. }
$$

\rightarrow Shannon used this case (an uniform distribution with binary outcome) as a basis of defining the unit of self-information.

Entropy of Random Events

- If we have a set of independent events A_{i}, S is the sample space of all events, then the average selfinformation is given by

$$
H=\sum P\left(A_{i}\right) i\left(A_{i}\right)=-\sum P\left(A_{i}\right) \log _{b} P\left(A_{i}\right) .
$$

This quantity is called the entropy associated with the experiment.

- Given a data source S , its entropy is the minimal average number of bits one must use to describe an output symbol of the source

Entropy of a Data Source

\square For a general source S with alphabet $A=\{1,2, \ldots, m\}$ that generates a sequence $\left\{X_{1}, X_{2}, \ldots\right\}$, the entropy is given by

$$
H(\mathrm{~S})=\lim _{n \rightarrow \infty} \frac{1}{n} G_{n},
$$

where

$$
G_{n}=-\sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \cdots \sum_{i_{n}=1}^{m} P\left(X_{1}=i_{1}, \cdots, X_{n}=i_{n}\right) \log P\left(X_{1}=i_{1}, \cdots, X_{n}=i_{n}\right) .
$$

Question: what happens if the output is i.i.d.?

Estimation of Source Entropy (1/2)

It is in general not possible to know the entropy of a physical source, for example

$$
s \rightarrow 123234545678910 \ldots
$$

But, can we estimate it?

Estimation of Source Entropy (2/2)

- Given the same source s, if we compute the difference between neighboring samples, we have the residual sequence:

$$
\mathrm{R} \rightarrow 1 \begin{array}{lllllllllllll}
1 & 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

The sequence has only two symbols, estimated entropy is only 0.70 bits

Question: Are the two sources S and R equivalent?

Is the Entropy of a Source Constant?

- Given a source S, can you perform some invertible manipulations to the output of S so that the entropy of S is reduced?
- Information theory tells you no!
- But what just happened in previous example?

Let's try it again! What is the entropy of the following source?

$$
s \rightarrow 12123333123333123312
$$

Why Do We Use Log Function?

\square Given a set of independent events $A_{1}, A_{2}, \ldots, A_{n}$ with probability $p_{i}=P\left(A_{i}\right)$, we want the definition of the information measure $H()$ to satisfy:

1. Small change in p_{i} cause small change in the measure (i.e., $H()$ is a continuous function of p_{i})
2. If $p_{i}=1 / n$, for all i, then the measure $H()$ should be a monotonically increasing function of n
3. Partition the outcome of a source into several groups shall not change its total entropy

Example: Partition a Source

\square Assume that $\mathrm{S}=\left\{A_{1}, A_{2}, A_{3}\right\}$ and $P\left(A_{i}\right)=p_{i}$. If we partition S into two different sources S_{1} and S_{2}, where $\mathrm{S}_{1}=\left\{A_{1}\right\}$ and $\mathrm{S}_{2}=\left\{A_{2}, A_{3}\right\}$. Then, we have:

$$
\begin{aligned}
& H\left(p_{1}, p_{2}, p_{3}\right)= \\
& \quad H\left(P(\mathrm{~S}), P\left(\mathrm{~S}_{2}\right)\right)+P(\mathrm{~S}) H\left(\frac{p_{1}}{P(\mathrm{~S})}\right)+P\left(\mathrm{~S}_{2}\right) H\left(\frac{p_{2}}{P\left(\mathrm{~S}_{2}\right)}, \frac{p_{3}}{P\left(\mathrm{~S}_{2}\right)}\right) .
\end{aligned}
$$

Note that $P\left(\mathrm{~S}_{1}\right)=p_{1}$ and $P\left(\mathrm{~S}_{2}\right)=p_{2}+p_{3}$.

Shannon's Great Contribution

- Shannon showed that the only way all these conditions could be satisfied was if

$$
H=-K \sum p_{i} \log p_{i},
$$

where K is an arbitrary positive constant.

- Conclusion
- if you agree that the probability of an event is the exclusive factor of the amount of information it carries, then the log function is the only way to define the information measure!

Models for Coding

- Physical Models
- Vocal cord model for speech coding
- Head and shoulder model for video coding
- I.I.D. Probability Models
- For source alphabet $A=\left\{a_{1}, a_{2}, \ldots, a_{M}\right\}$, we can have a probability model $\mathrm{P}=\left\{P\left(a_{1}\right), P\left(a_{2}\right), \ldots, P\left(a_{M}\right)\right\}$ if we can assume that the symbols coming from the source are independent to each others.
- Markov Models
- The past always changes the future;

But, how can we mathematically describe such influences?

Markov Models

- A sequence $\left\{x_{n}\right\}$ fits a k th-order Markov model if

$$
P\left(x_{n} \mid x_{n-1}, \ldots, x_{n-k}\right)=P\left(x_{n} \mid x_{n-1}, \ldots, x_{n-k}, \ldots\right) .
$$

\rightarrow Probability of the next symbols can be determined completely by knowing the past k symbols.

- Each sequence of x_{n-1}, \ldots, x_{n-k} is called a state; if the alphabet set has size m, the number of states is m^{k}.
- First-order Markov model is most commonly used.

Markov Source Model

\square The sequence generated by a linear 1st-order Markov model can be expressed by

$$
x_{n}=\rho x_{n-1}+\varepsilon_{n},
$$

where ε_{n} is a white noise.

- Markov model can also be described using a state transition diagram, e.g. a two-state Markov model:

Entropy of Finite State Process

- The entropy of a finite state process with state S_{i} can be computed by:

$$
H=\sum_{i=1}^{M} P\left(S_{i}\right) H\left(S_{i}\right),
$$

where $H\left(S_{i}\right)$ is the entropy of a state S_{i}.

- For example, for the two-state Markov model:

$$
H\left(S_{w}\right)=-P(b \mid w) \log P(b \mid w)-P(w \mid w) \log P(w \mid w)
$$

where $P(w \mid w)=1-P(b \mid w)$.

Example: I.I.D. vs. Markov Model

- For the two-state model, assume that

$$
P\left(S_{w}\right)=30 / 31, P\left(S_{b}\right)=1 / 31,
$$

$$
P(w \mid w)=0.99, P(b \mid w)=0.01
$$

$$
P(b \mid b)=0.7, P(w \mid b)=0.3 .
$$

What is the entropy of the source given i.i.d. model? How about Markov model?

Composite Source Model

- A composite source model can be described by n different sources and the probability P_{i} to select i th source:

Definitions of Coding

Coding is the process of assigning binary sequences to an alphabet.

For example:

\square The set of all codewords is called a code. The average number of bits per symbol is called the rate of the code.

Uniquely Decodable Codes

\square Given any messages represented using a code, if there is only one way to reconstruct the messages in the original alphabet, the code is uniquely decodable

- Example: $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$.

Letters	Probability	Code 1	Code 2	Code 3	Code 4
a_{1}	0.5	0	0	0	0
a_{2}	0.25	0	1	10	01
a_{3}	0.125	1	00	110	011
a_{4}	0.125	10	11	111	0111
	Average length	1.125	1.25	1.75	1.875

Instantaneous Code

- If a codeword can be identified before we see the next codeword, the code is called instantaneous code.

Example: can we decode the following message?

011111111111111111

Letter	Codeword
a_{1}	0
a_{2}	01
a_{3}	11

A Test for Unique Decodability

- Definitions

- Prefix: if the beginning subsequence of codeword b is equal to codeword a, then a is a prefix
- Dangling suffix: if a is a prefix of b, then the subsequence of b excluding the prefix a is called a dangling suffix
- Procedure:
- Check if any codeword is a prefix of another codeword, if so, add the dangling suffix to the codeword list unless it has already been added in a previous iteration.
- Repeat the procedure until:
(1) you get a dangling suffix that is a codeword,
(2) there are no more unique dangling suffixes.

If you get (1), the code is not uniquely decodable.

Prefix Code

If no codeword is a prefix of the others, the code is definitely uniquely decodable. In this case, we call the code a prefix code.

- A code tree is a binary tree where each codeword of a code corresponds to a node in the binary tree.

Code 2

Code 3

A prefix code has all codewords on leaf nodes.

Kraft-McMillan Inequality

- Let C be a code with N codewords with lengths l_{1}, l_{2}, \ldots, l_{N}. If C is uniquely decodable, then

$$
K(\mathrm{C})=\sum_{i=1}^{N} 2^{-l_{i}} \leq 1 .
$$

Key points of the proof:

1) If $[K(\mathrm{C})]^{n}$ does not grow exponentially, $K(\mathrm{C}) \leq 1$.
2) There can be at most 2^{k} different decodable messages of length k (i.e., $l_{i 1}+l_{i 2}+\ldots+l_{i n}=k$). If A_{k} is the number of possible messages of length k of this code, $A_{k} \leq 2^{k}$.
3) $[K(\mathrm{C})]^{n}=\Sigma_{k=n . n l} A_{k^{2}} \leq n(l-1)+1$, where l is the max codeword length and Thus, $[K(\mathrm{C})]^{n}$ does not grow exponentially.

Efficiency of Prefix Code

\square Given a set of integers $l_{1}, l_{2}, \ldots, l_{N}$ that satisfy the inequality,

$$
\sum_{i=1}^{N} 2^{-l_{i}} \leq 1 .
$$

we can always find a prefix code with codeword lengths $l_{1}, l_{2}, \ldots, l_{N}$.

Key point of the proof:

Use binary representation of $\Sigma_{i=1 . . j-1} 2^{-l_{i}}$ as the codeword prefix for $l_{j}, j>1$, and 0 as the codeword prefix for l_{1}. The trailing bits of codeword are all zeros.

Algorithmic Information Theory

- Kolmogorov complexity $K(x)$ of a sequence x is the size of the program, including all the required input data, needed to generate x.
- Bad news: no systematic way of computing or approximating $K(x)$.

Worse case scenario of $K(x)$: the size of the data sequence plus the size of a small program that output a sequence.

But, what is the lower bound?

Minimum Description Length Principle

- J. Risannen in 1978 argued that:

Let M_{j} be a model from a set of models M that attempt to characterize the structure in a sequence x. Let D_{Mi} be the number of bits required to describe the model $\mathrm{M}_{j}, R_{\mathrm{M}}(x)$ be the number of bits required to represent x w.r.t. the model M_{j}. The minimum description length would be given by

$$
\min _{j}\left(D_{\mathrm{M}_{j}}+R_{\mathrm{M}_{j}}(x)\right)
$$

Example: MDL Principle

- If we use k th-order polynomial to model a set of data,
- High-order model: accurate, hard to describe
- Low-order model: less accurate, easy to describe

Q Question: which one do you prefer?

