
Mathematical Background on 

Lossless Data Compression

National Chiao Tung University

Chun-Jen Tsai

9/22/2014



Measuring Information Amount

� Shannon defines a quantity, self-information, of an 
event A with probability P(A) as follows:

� Note that:

� i(A) = 0 for P(A) = 1 (this event is predictable)

� i(A) ≥ 0 for 0 ≤ P(A) ≤ 1 (well, this is debatable)

� i(A) > i(B) for P(A) < P(B)

� i(AB) = i(A) + i(B) if A and B are independent events

� Counter-example of Shannon’s idea:

� A random string of letters versus a meaningful statement

† If the base b = 2, the unit of self-information is bits.
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Flipping of a Fair Coin

� Let H and T be the outcomes of flipping a coin, if

P(H) = P(T) = 0.5

then,
i(H) = i(T) = 1 bit.

→ Shannon used this case (an uniform distribution

with binary outcome) as a basis of defining

the unit of self-information.
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Entropy of Random Events

� If we have a set of independent events Ai, S is the 

sample space of all events, then the average self-

information is given by

This quantity is called the entropy associated with 

the experiment.

� Given a data source S, its entropy is the minimal

average number of bits one must use to describe an 

output symbol of the source
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Entropy of a Data Source

� For a general source S with alphabet A = {1, 2, …, m}

that generates a sequence {X1, X2, …}, the entropy is 

given by

where

� Question: what happens if the output is i.i.d.?
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Estimation of Source Entropy (1/2)

� It is in general not possible to know the entropy of a 

physical source, for example

S → 1  2  3  2  3  4  5  4  5  6  7  8  9  10 . . .

But, can we estimate it?

† Hint: a “reasonable” estimate of the entropy of S is 3.25 bits.
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Estimation of Source Entropy (2/2)

� Given the same source S, if we compute the 

difference between neighboring samples, we have 

the residual sequence:

R → 1  1  1  –1  1  1  1  –1  1  1  1  1  1 . . .

The sequence has only two symbols, estimated 

entropy is only 0.70 bits

Question: Are the two sources S and R equivalent?
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Is the Entropy of a Source Constant?

� Given a source S, can you perform some invertible 

manipulations to the output of S so that the entropy of 

S is reduced?

� Information theory tells you no!

� But what just happened in previous example?

� Let’s try it again! What is the entropy of the following 

source?

S → 1  2  1  2  3  3  3  3  1  2  3  3  3  3  1  2  3  3  1  2

8/27



Why Do We Use Log Function?

� Given a set of independent events A1, A2, …, An with 

probability pi = P(Ai), we want the definition of the 

information measure H() to satisfy:

1. Small change in pi cause small change in the

measure (i.e., H() is a continuous function of pi)

2. If pi = 1/n, for all i, then the measure H() should 

be a monotonically increasing function of n

3. Partition the outcome of a source into several

groups shall not change its total entropy
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Example: Partition a Source

� Assume that S = {A1, A2, A3} and P(Ai) = pi. If we 

partition S into two different sources S1 and S2, where

S1 = {A1} and S2 = {A2, A3}. Then, we have:

Note that P(S1) = p1 and P(S2) = p2 + p3.
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Shannon’s Great Contribution

� Shannon showed that the only way all these 

conditions could be satisfied was if

where K is an arbitrary positive constant.

� Conclusion

� if you agree that the probability of an event is the exclusive 
factor of the amount of information it carries, then the log

function is the only way to define the information measure!
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Models for Coding

� Physical Models

� Vocal cord model for speech coding

� Head and shoulder model for video coding

� I.I.D. Probability Models

� For source alphabet A = {a1, a2, …, aM}, we can have a 
probability model P = {P(a1), P(a2), …, P(aM)} if we can 

assume that the symbols coming from the source are 
independent to each others.

� Markov Models

� The past always changes the future;
But, how can we mathematically describe such influences?
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Markov Models

� A sequence {xn} fits a kth-order Markov model if

→ Probability of the next symbols can be determined
completely by knowing the past k symbols.

� Each sequence of xn–1, …, xn–k is called a state;

if the alphabet set has size m, the number of states

is mk.

� First-order Markov model is most commonly used.

,...).,...,|(),...,|( 11 knnnknnn xxxPxxxP −−−− =

13/27



Markov Source Model

� The sequence generated by a linear 1st-order 

Markov model can be expressed by

xn = ρxn–1 + εn,

where εn is a white noise.

� Markov model can also be described using a state 

transition diagram, e.g. a two-state Markov model:
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Entropy of Finite State Process

� The entropy of a finite state process with state Si can 

be computed by:

where H(Si) is the entropy of a state Si.

� For example, for the two-state Markov model:

where P(w | w) = 1 – P(b | w).
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Sw is treated as a data source that outputs a black or a white pixel in
next time instance. The entropy of Sw, H(Sw), is computed using
probabilities leaving state Sw (for the generation of the next pixel).

15/27



Example: I.I.D. vs. Markov Model

� For the two-state model, assume that
P(Sw) = 30/31, P(Sb) = 1/31,

P(w | w) = 0.99, P(b | w) = 0.01,

P(b | b) = 0.7, P(w | b) = 0.3.

What is the entropy of the source given i.i.d. model?

How about Markov model?
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Composite Source Model

� A composite source model can be described by n 
different sources and the probability Pi to select ith 

source:

Source 2

Source n
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Definitions of Coding

� Coding is the process of assigning binary sequences 

to an alphabet.

For example:

� The set of all codewords is called a code. The 

average number of bits per symbol is called the rate 

of the code.

1000011       → a

codeword alphabet, symbol
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Uniquely Decodable Codes

� Given any messages represented using a code, if 

there is only one way to reconstruct the messages in 

the original alphabet, the code is uniquely decodable

� Example: A = {a1, a2, a3, a4}.
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Instantaneous Code

� If a codeword can be identified before we see the 

next codeword, the code is called instantaneous code.

� Example: can we decode the following message?

011111111111111111
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A Test for Unique Decodability

� Definitions
� Prefix: if the beginning subsequence of codeword b is equal 

to codeword a, then a is a prefix

� Dangling suffix: if a is a prefix of b, then the subsequence of 
b excluding the prefix a is called a dangling suffix

� Procedure:
� Check if any codeword is a prefix of another codeword, if so, 

add the dangling suffix to the codeword list unless it has 
already been added in a previous iteration.

� Repeat the procedure until:
(1) you get a dangling suffix that is a codeword,
(2) there are no more unique dangling suffixes.

If you get (1), the code is not uniquely decodable.
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Prefix Code

� If no codeword is a prefix of the others, the code is 

definitely uniquely decodable. In this case, we call the 

code a prefix code.

� A code tree is a binary tree where each codeword of 

a code corresponds to a node in the binary tree.

A prefix code has all codewords on leaf nodes.
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Kraft-McMillan Inequality

� Let C be a code with N codewords with lengths l1, 

l2, …, lN. If C is uniquely decodable, then

Key points of the proof:

1) If [K(C)]n does not grow exponentially, K(C) ≤ 1.

2) There can be at most 2k different decodable messages of

length k (i.e., li1 + li2 + … + lin = k). If Ak is the number of
possible messages of length k of this code, Ak ≤ 2k.

3) [K(C)]n = Σk=n..nl Ak2
–k ≤ n(l–1)+1, where l is the max codeword

length and Thus, [K(C)]n does not grow exponentially.
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Efficiency of Prefix Code

� Given a set of integers l1, l2, …, lN that satisfy the 

inequality,

we can always find a prefix code with codeword 
lengths l1, l2, …, lN.

Key point of the proof:

Use binary representation of Σi=1..j–12
– li as the 

codeword prefix for lj, j > 1, and 0 as the codeword 

prefix for l1. The trailing bits of codeword are all zeros.
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Algorithmic Information Theory

� Kolmogorov complexity K(x) of a sequence x is the 

size of the program, including all the required input 
data, needed to generate x.

� Bad news: no systematic way of computing or approximating 
K(x).

� Worse case scenario of K(x): the size of the data 

sequence plus the size of a small program that output 

a sequence.

But, what is the lower bound?
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Minimum Description Length Principle

� J. Risannen in 1978 argued that:

Let Mj be a model from a set of models M that 

attempt to characterize the structure in a sequence x. 

Let D
Mj be the number of bits required to describe the 

model Mj, RMj(x) be the number of bits required to 

represent x w.r.t. the model Mj. The minimum 

description length would be given by
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Example: MDL Principle

� If we use kth-order polynomial to model a set of data,

� High-order model: accurate, hard to describe

� Low-order model: less accurate, easy to describe

� Question: which one do you prefer?
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