Mathematical Background on Lossless Data Compression

National Chiao Tung University Chun-Jen Tsai 9/22/2014

□ Shannon defines a quantity, self-information, of an event *A* with probability P(A) as follows:

$$i(A) = \log_b \frac{1}{P(A)} = -\log_b P(A).$$

□ Note that:

- i(A) = 0 for P(A) = 1 (this event is predictable)
- $i(A) \ge 0$ for $0 \le P(A) \le 1$ (well, this is debatable)
- i(A) > i(B) for P(A) < P(B)
- i(AB) = i(A) + i(B) if A and B are independent events
- □ Counter-example of Shannon's idea:
 - A random string of letters versus a meaningful statement

 \Box Let *H* and *T* be the outcomes of flipping a coin, if

P(H) = P(T) = 0.5

then,

$$i(H) = i(T) = 1$$
 bit.

→ Shannon used this case (an uniform distribution with binary outcome) as a basis of defining the unit of self-information.

□ Question: what happens if the output is i.i.d.?

□ Assume that $S = \{A_1, A_2, A_3\}$ and $P(A_i) = p_i$. If we partition S into two different sources S_1 and S_2 , where $S_1 = \{A_1\}$ and $S_2 = \{A_2, A_3\}$. Then, we have:

 $H(p_1, p_2, p_3) =$

$$H(P(\S_1), P(\S_2)) + P(\S_1)H(\frac{p_1}{P(\S_1)}) + P(\S_2)H(\frac{p_2}{P(\S_2)}, \frac{p_3}{P(\S_2)}).$$

Note that $P(S_1) = p_1$ and $P(S_2) = p_2 + p_3$.

10/27

Models for Coding

Physical Models

- Vocal cord model for speech coding
- Head and shoulder model for video coding
- □ I.I.D. Probability Models
 - For source alphabet $A = \{a_1, a_2, ..., a_M\}$, we can have a probability model $P = \{P(a_1), P(a_2), ..., P(a_M)\}$ if we can assume that the symbols coming from the source are independent to each others.

Markov Models

- The past always changes the future;
 - But, how can we mathematically describe such influences?

□ The entropy of a finite state process with state S_i can be computed by:

$$H = \sum_{i=1}^{M} P(S_i) H(S_i),$$

where $H(S_i)$ is the entropy of a state S_i .

□ For example, for the two-state Markov model:

 $H(S_{w}) = -P(b | w) \log P(b | w) - P(w | w) \log P(w | w),$

where P(w | w) = 1 - P(b | w).

 S_w is treated as a data source that outputs a black or a white pixel in next time instance. The entropy of S_w , $H(S_w)$, is computed using probabilities leaving state S_w (for the generation of the next pixel).

15/27

Definitions of Coding
Coding is the process of assigning binary sequences to an alphabet.
For example:
$\underbrace{1000011}_{\text{codeword}} \rightarrow \underbrace{a}_{\text{alphabet, symbol}}$
The set of all codewords is called a code. The average number of bits per symbol is called the rate of the code.
18/27

A Test for Unique Decodability

Definitions

- Prefix: if the beginning subsequence of codeword b is equal to codeword a, then a is a prefix
- Dangling suffix: if a is a prefix of b, then the subsequence of b excluding the prefix a is called a dangling suffix

□ Procedure:

- Check if any codeword is a prefix of another codeword, if so, add the dangling suffix to the codeword list unless it has already been added in a previous iteration.
- Repeat the procedure until:
 - (1) you get a dangling suffix that is a codeword,
 - (2) there are no more unique dangling suffixes.

If you get (1), the code is not uniquely decodable.

□ Let C be a code with N codewords with lengths l_1 , l_2 , ..., l_N . If C is uniquely decodable, then

$$K(\mathbf{C}) = \sum_{i=1}^{N} 2^{-l_i} \le 1.$$

Key points of the proof:

- 1) If $[K(C)]^n$ does not grow exponentially, $K(C) \le 1$.
- 2) There can be at most 2^k different *decodable messages of* length k (i.e., $l_{i1} + l_{i2} + ... + l_{in} = k$). If A_k is the number of possible messages of length k of this code, $A_k \le 2^k$.
- 3) $[K(C)]^n = \sum_{k=n..nl} A_k 2^{-k} \le n(l-1)+1$, where *l* is the max codeword length and Thus, $[K(C)]^n$ does not grow exponentially.

Efficiency of Prefix Code

□ Given a set of integers $l_1, l_2, ..., l_N$ that satisfy the inequality,

$$\sum_{i=1}^N 2^{-l_i} \le 1.$$

we can always find a prefix code with codeword lengths $l_1, l_2, ..., l_N$.

Key point of the proof:

Use binary representation of $\sum_{i=1..j-1} 2^{-l_i}$ as the codeword prefix for l_j , j > 1, and 0 as the codeword prefix for l_1 . The trailing bits of codeword are all zeros.

Minimum Description Length Principle

□ J. Risannen in 1978 argued that:

Let M_j be a model from a set of models M that attempt to characterize the structure in a sequence x. Let D_{M_j} be the number of bits required to describe the model M_j , $R_{M_j}(x)$ be the number of bits required to represent x w.r.t. the model M_j . The minimum description length would be given by

$$\min_{j}(D_{\mathsf{M}_{j}}+R_{\mathsf{M}_{j}}(x)).$$

26/27

