
Operating Systems

National Chiao Tung University

Chun-Jen Tsai

3/23/2012

2/30

History of Operating Systems (1/3)

� No OS (Pre 1950’s):

� Computer runs a program under direct operator control

� Batch processing systems (1950’s – 1960’s):

� The OS put user programs into a job queue in a first-in-first-
out manner (FIFO)

� The OS select one job at a time to run under the computer
until it finishes; then it selects the next job to run

3/30

History of Operating Systems (2/3)

� Simple multi-tasking systems (1960’s – 1970’s)

� Several programs are arranged in the memory at the same
time by the OS

� The OS runs one program until it has to do I/O (executed by
some other small computers), then the OS selects another
program to run

� When the first program finishes its I/O task, it will wait for the
2nd program finishes or tries to do I/O before it start running
again

4/30

History of Operating Systems (3/3)

� Time-sharing systems (1970’s - present)

� The OS divide the CPU computation time into intervals (a.k.a.
time slices or time quantum)

� Each program entered in the job queue run for one time slice
at a time

� At the end of the time slice, the program will be paused and
another program will be selected for execution

5/30

Types of Software

� Application software: perform user tasks

� System software: perform tasks to control computers

� Middleware: system interface software for
applications

Software

Application

System

Utility
Operating
System

Shell Kernel
Compilers,

Text editors,
File tools, etc.

middleware

6/30

What is an Operating System (OS)?

� Main Functions of an OS:

� Schedule programs for execution

� Manage main memories

� Store and retrieve files

� Provide interfaces of input/output devices to programs

� Program development environment (libraries,
compilers, linkers, debuggers, etc.) are often tied to

the OS, especially in the early days of computers

� An OS provides an unified program model and standard
libraries that makes debugging easier

7/30

Components of an Operating System

� Shell: an interface between a user and the kernel of an OS

� There are text-based and window-based shells

� Command line interface: e.g., DOS prompt, Linux bash

� Graphical user interface (GUI): e.g., window manager,

GUIs are often called WIMP – Windows, Icons, Menus, and Pointers

� Shell is not an essential part of an OS → Shells are replaceable

� Kernel: key components performing basic required functions

� Scheduler and dispatcher (process manager)

� Memory manager

� File manager

� Device drivers (I/O subsystem)

kernel

8/30

Batch vs. Interactive Processing

� There are two ways a computer processing tasks:
batch processing and interactive processing

� For batch processing, a user asks the shell to run a special
type of program called “script” to execute a sequence of
programs

� For interactive processing, a user uses a keyboard, a mouse,
and tablets, etc. to issue commands to the shell and input
data into a computer

9/30

Computer Memory Map

� Today, most computers have multiple programs
running in memory simultaneously, under the control

of the OS:

Operating System

Program 1

Program 2

Program 3

CPU

memory

Mass Storage

DMA

bus

10/30

Getting it Started (Bootstrapping)

� The bootstrap program is stored in non-volatile read-
only memory (ROM); its functions are:

� Run by the CPU when power is turned on

� Transfers operating system from mass storage to main
memory

� Executes jump to operating system

11/30

Boot Strapping (Booting)

12/30

Processes

� A program is a static set of instructions

� A process (a.k.a. task or job) is the activity of

executing a program

� A process may occupy more memory space than a program

� The process state (a.k.a. process context) is the

current status of the activity. It is a snapshot of
relevant parts of the machine at a particular time

� Process state usually includes

� program counter and some registers

� associated main memory

� the execution state

13/30

Classification of Tasks (1/2)

� There are different types of tasks a computer runs:

� Background tasks:

� Handling routine (synchronous) tasks

� Usually called task level

� Foreground tasks:

� Handling asynchronous events

� Usually called interrupt level

� Interactive tasks:

� Handling man-machine interfaces

� Can be part of the foreground tasks

14/30

Classification of Tasks (2/2)

� We can also classify tasks based on time constraint:

� Batch (offline) tasks:

� Usually computationally intensive

� Can be executed without human intervention

� Real-time tasks:

� Must finish operations by deadlines

� Hard real-time: missing deadline causes failure

� Soft real-time: missing deadline results in degraded

performance

15/30

Process Execution States

� When a user select a program to run in a computer,
the program becomes a process and it will go

through the following execution states

� Initialization

� Ready

� Running

� Waiting/Sleeping/Blocked/Interrupted

� Halted

Init Ready Running

Waiting

Halted

16/30

Scheduler

� The scheduler maintains a process table within the
OS; When a user runs a program, it creates a new

entry in the process table

� After the initialization, the scheduler will add it to the

ready pool of processes

� If a process cannot continue execution for some
reasons (e.g. waiting for data), it will be added to the

waiting pool

� If a process is finished, the scheduler will remove it

from the process table

17/30

Dispatcher

� Dispatcher is the kernel component that assigns the
CPU to execute a ready process

� Dispatcher gain CPU via one of the following ways:

� Tasks lost CPU to interrupts (preemptive multitasking†)

� Tasks give up CPU voluntarily (cooperative multitasking)

� Dispatchers assign CPU resources base on:

� Priority

� Best effort

† The terminology “multitasking” is called “multiprogramming” in the textbook.

18/30

Context Switch (Process Switch)

� The operation of assigning CPU to run another task
is called context switching. Context switching steps:

� Save current registers

� Loading new task registers

CPU

Prog. Counter

R0

R1

RF

CPU Context

CPU hardware

Memory
CPU Register

Store 1

kernel

Control Data

CPU Register

Store 2

kernel

Control Data

CPU Register

Store 3

kernel

Control Data

ALU

Program 1 Program 2 Program 3Context 1 Context 2 Context 3

19/30

Cooperative Multitasking

User Space Kernel Space (OS)

Task 2

dispatcher T
im

e

code

execution

Task 1

return CPU to OS

End of task 1

End of task 2

assign CPU to task

return CPU to OS

20/30

Preemptive Multitasking

User Space Kernel Space

Task 2

dispatcher T
im

e

code

execution

Task 1

CPU taken away
by interrupt

Task 1

End of task 1

21/30

Time-Sharing

� Time-sharing is one type of preemptive multitasking

� Each process gets the CPU for a short period of time (a few
tens of milliseconds); the time period is called timeslice

22/30

Handling Competition for Resources

� Semaphore

� A “variable” (semaphore) is used to tell if a resource is in use

� Test and set operations on the semaphore must be done

atomically → CPUs need a test-and-set instruction

� Critical region

� A critical region is a sequence of instructions that can be
executed by only one process at a time (mutual exclusion)

� Usually protected by a semaphore

Program 1 Program 2

Critical region A

Critical region A

Shared
Resource ‘A’

23/30

Deadlock

� Two processes block each other from continuing

� Conditions that lead to deadlock

1. Competition for non-sharable resources

2. At least two resources are needed by both processes

3. An allocated resource can not be forcibly retrieved

24/30

Spooling (Very Old Stuff)

� Spool stands for Simultaneous Peripheral Operation
On-Line

� A spooling system stores the output requests from
the main CPU to a mass storage device (typically

controlled by a smaller processor) so that the main

CPU does not have to wait until the request is done

� For example, for output, the main CPU first sends data to the
mass storage

� Later, the I/O processor reads data from the mass storage
and send them to the output devices

25/30

Memory Manager

� Computer main memory must be well organized
when multiple processes are running simultaneously

26/30

Memory Manager Tasks

� Allocate space in physical memory to a processes for
their execution

� Manages virtual memory so that the total memory
space of all running processes can be larger than the

main memory

� process images kept in secondary storage

� images returned to main memory on demand during

execution → this techniques is called paging

27/30

Virtual Memory Concept

� Virtual Memory:
“imaginary” memory space

created by shuffling units of

data/code, called segments
or pages, between actual

main memory space and
mass storage

RAM

fast mass storage

ROM

physical memory

virtual memory

system
RAM

CPU

System RAM

ROM

program 1

program 2

program 3

Running

programs

28/30

File Manager

� A file manager controls a machine’s mass storage
� A file is the logical unit in a computing systems that stores a

coherent set of data

� The way data are structured on a mass storage device is
called a file system; a file manager may use different file
system for different device

� For example, MS Windows file manager deal with at least three
different file systems: FAT, FAT32, and NTFS

� File manager usually groups files into a bundle called
directory or folder
� The chain of directories leads to the location of a file is called

a directory path

� A file descriptor contains the run time information to
manipulate the file

29/30

Security Issue – External Attacks

� Most computer systems today are protected by using
a login system

� Problems with a login system

� Insecure passwords (password cracker, network sniffer,
Trojan Horse login)

� Sniffing software (a.k.a. spyware)

� Counter measures

� Auditing software – a program that monitors the operation of

a computer and report anything abnormal to the
administrator

30/30

Security Issue – Internal Attacks

� To keep a user of a computer from manipulating data
that does not belongs to him/her, a computer uses

the following approaches:

� CPU must support at least two privilege levels: one for
regular programs, the other one for the OS kernel

� In non-privilege mode, a program’s capability is limited by

some special purpose registers

� The OS control process activities via privileged modes and
privileged instructions

� Most OS’s today have bugs that allow a hacker to get

into privileged mode

