
Data Storage

National Chiao Tung University

Chun-Jen Tsai

2/24/2012

2/41

Bits and Their Meaning

� First, we must consider how information can be
stored inside computers

� By “Information,” we mean numbers, text, images, sound,
video, …, etc.

� For today’s computers, information is encoded as

patterns of 0’s and 1’s called bits (BInary digiTs)

� The reason we use only two symbols (0 and 1) for
information encoding is because it’s simple, not because it’s
powerful.

� Non-binary computers made of multi-level electrical
components are possible but not popular yet.

3/41

Digital Data Representation

� Some possible meanings for a single bit

� Numeric value (1 or 0)

� Boolean value (true or false)

� Voltage (high or low)

� A bit can only represent one of two values, for more

values, we need a long string of bits to represent
them

4/41

Boolean Operations

� Human beings are made of cells;
Computers are made of small devices that can
compute Boolean functions extremely fast
� Boolean operations are operations that manipulate one or

more 1/0 (or true/false) values

� Some examples of Boolean operations:

� AND:

� OR:

� XOR:

� NOT:

0
AND 0

0

0
OR 0

0

0
XOR 0

0

0
AND 1

0

1
AND 0

0

1
AND 1

1

NOT 0
1

NOT 1
0

0
OR 1

1

1
OR 0

1

1
OR 1

1

0
XOR 1

1

1
XOR 0

1

1
XOR 1

0

5/41

Gates

� The small devices
that compute

Boolean operations

are called “gates”

� Often implemented as
electronic circuits

� The building blocks
from which computers
are constructed

6/41

Example of Simple Circuit

� A digital circuit’s operation can be summarized by a
truth table

Truth Table

a

output

b

c

1111

1110

0101

0100

1011

0010

1001

1000

OutputInput a, b, c

Circuit

7/41

Flip-Flops

� In addition to performing Boolean operations, gates
can also be used to store information

� A flip-flop is built from gates that stores one bit of data

� Has an input line which sets its stored value to 1

� Has an input line which sets its stored value to 0

� When both inputs = 0, most recently stored value is preserved

An example circuit of flip-flop

input

input

output

Timing is important

when analyzing the

operation of a flip-flop!

8/41

Note: Feedback Systems

� To understand the operation of flip-flops, you must
understand the concept of a feedback system:

� At time t, we have two inputs to the “black box”, one is at,
what is the other one?

Black box

feedback

at bt+1

?

9/41

Alternative Flip-Flops

� There is more than one way to implement a flip-flop:

� Compare this to previous design, which one is better?

input

input
output

10/41

Data Storage Hardware

� In addition to flip-flops, there are other fundamental
bit-level data-storage devices based on, for example,

magnetic or optical technologies

� A data storage device can be volatile or non-volatile:

� Volatile memory – holds its value until the power is turned
off – Example: flip-flops

� Non-volatile memory – holds its value after the power is off –
Example: magnetic storage

11/41

Radix-N Number Coding

� Bit numbers are coded in radix-2 (a.k.a. base-2) while
human-friendly numbers are coded in radix-10

� The conversion between radix-2 and radix-10 is not
trivial, sometimes, it is easier to use a number coding

system that is:

� Easily readable by human

� Can be converted to/from radix-2 easily (why?)

� Popular radix-N notation that fulfill these two points
are radix-8 (octal notation) and radix-16 (hexadecimal

notation)

12/41

Different Coding Systems

17

16

15

14

13

12

11

10

7

6

5

4

3

2

1

0

Octal

14E1110

15F1111

13D1101

12C1100

11B1011

10A1010

991001

881000

770111

660110

550101

440100

330011

220010

110001

000000

DecimalHexadecimalBinary

13/41

Main Memory Logical Units

� Data are stored in memory cells in a computer system; each cell
is a memory access unit

� The smallest memory access unit of the CPU is called a byte,
usually equals 8 bits; If you want to emphasize that it is
composed of 8 bits, you can call it an “octet”

� In the good old days, a byte may be composed of 10 bits

� Bits in a byte has orders:

High-order end 0 1 0 1 1 0 1 0 Low-order end

most significant bit least significant bit

14/41

Main Memory Addresses

� An address is a “name” to uniquely identify one cell

in the computer’s main memory
� The addresses for cells in a computer are consecutive

numbers, usually starting at zero

� A Random Access Memory (RAM) is a memory
device where any cell can be accessed
independently

15/41

Memory Capacity Measure

� For computer memory/storage, the unit prefixes are
slightly different from those of the metric system:

� “kB” means 1,000 byte; but KB (or more precisely, KiB)
means 210 = 1024 bytes

� “MB” normally means 1,000,000 byte; but MiB means 220 =
1,048,576 bytes

� Note: the unit KiB (kibi), MiB (mebi), GiB (gibi), etc., were
adopted by IEC in 1999.

� For any other computer related units, we stick only to
the metric prefix system:

� The bandwidth unit Mbps always means 106 bits-per-second

16/41

Mass Storage Systems (1/3)

� For mass storage, rotating
disks are usually used

� Hard disk, floppy disk,
CD-ROM

� Characteristics:

� Seek time – the time to move the head to the right track

� Latency time – the time to rotate the disk for half a cycle

� Access time – seek time + latency time

� Transfer rate – the speed data transferred to or from the disk

17/41

Mass Storage Systems (2/3)

� Back in 1956, disk storage
are huge†

IBM 305 Computer System

IBM 350 Disk Storage Unit

(1200 rpm, 5MB storage)

† http://www.ibm.com/ibm/history

18/41

Mass Storage Systems (3/3)

� Some “old” mass storage devices use magnetic
tapes:

� Some “newer” mass storages use flash memory:

19/41

Disk Rotating Speed & Sector Size

� Constant angular speed � Variable angular speed

Read/write head
Read/write head

20/41

Logical Record vs. Physical Record

� Information stored in a mass storage is organized
into files; each file is composed of many smaller units,

called logical records

� The mapping between logical record and physical

record is not one-to-one:

21/41

Representing Text

� For text-representation, each character (letter,
punctuation, etc.) is assigned a unique bit pattern.

There are several coding standards:

� ASCII: 7-bit coding for most symbols used in written English

� Extended ASCII (ISO 8859-1): 8-bit coding, including more
western language symbols

� Unicode: 16-bit coding for most symbols used in most world
languages today

� ISO 10646 Universal Character Set (UCS): a text coding
system which uses 32-bit values for each characters

22/41

Representing Numeric Values

� There are some limitations of computer
representations of numeric values

� Overflow happens if a number is too big to be represented

� Underflow happens when the number is too small

� Truncation happens when a number is fallen between two
representable numbers

� For example, 3-bit encoding of numbers can only
represent 8 different values; each red dot in the

following interval is a numerical values we can
represent accurately

[|]

7 1782.5800

23/41

Representing Natural Phenomena

� Natural phenomena is usually detected in analog
form; must be converted to digital form for computer

to store and/or process

� Example: a sound wave can be represented by a

sequence of numbers: 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0,

3.0, 0

24/41

Radix Conversion

� The conversion of number from one radix (base) to
another is important

� Each digit in a number
has a base quantity

called position’s

quantity

� Position’s quantity

is the power of the
base

25/41

Conversion from Radix-2 to Radix-10

� For example, 100101 can be decoded as follows:

26/41

Conversion from Radix-10 to Radix-2

� Method to convert from Radix-10 to radix-2:

� Divide the value by 2 and record the remainder

� Continue to divide the quotient by two and record the
remainder until the quotient is zero

� For example, convert (13)10 to radix-2

13 = 2 × 6 + 1

6 = 2 × 3 + 0

3 = 2 × 1 + 1

1 = 2 × 0 + 1

(13)10 = (1101)2

27/41

Binary Arithmetic

� Modern computers usually use binary representation
of numerical data, therefore, numerical calculations

must be done in radix-2 as well

� Binary calculations are simple, but remembering a

long sequence of binary numbers is the difficult part

(good thing that computers have photographic
memory):

28/41

Binary Representation of Fractions

� A simple way to represent numbers with fractions is
to use a fixed point representation:

29/41

Converting Fractions to Binary Rep.

� To convert 5/8 to binary digits 0.101, you can inverse
the above-mentioned process:

321

1111

11

11

212021
8

5

)
2

1
220(221

8

5

2

1
220

4

1

2

1
0

2

1
2

4

1

4

1
221

8

5

4

1
1

4

5
2

8

5

−−−

−−−−

−−

−−

×+×+×=→

×+××+×=→

×+×=→+==×

×+×=→+==×

30/41

Representing Integers

� Unsigned integers can be represented in base two

� Signed integers are numbers that can be positive or

negative. For negative numbers, there are several
ways to represent it:

� One’s complement –
bitwise “NOT” of a positive number is the negative
representation of the number

� Two’s complement notation –
the most popular representation of negative numbers

� Excess notation –
often used in representing floating point exponents

31/41

Two’s Compliment Representation

32/41

Coding Rules of 2’s Complement

� Algorithm:

� First, complement all the digits of the number

� The, add one to the complemented number

� For example, –6 can be represented as follows:

� (6)10 = (0110)2

� 0110 →1001

� 1001 + 1 = 1010 = (–6)10

� The nice part about 2’s Complement representation
of negative numbers is that addition matches natural

representation

33/41

2’s Complement Arithmetic

34/41

Excess Notation Systems

� Excess notation preserves the natural ordering of
(negative) numbers

� Arithmetic operations become less trivial

� Examples of negative numbers

represented using excess system:

excess 3 excess 8

35/41

Floating Point Representation (1/2)

� A number with fractions can be represented in fixed
point, as well as in floating point

� A floating point representation is composed of four
parts:

± mantissa × 2exponent

36/41

Floating Point Representation (2/2)

� Coding of each field of a floating point number:

� For mantissa, fixed point representation is obviously the
logical choice (remember scientific notations?)

� For exponent, we need to represent positive and negative

numbers → excess notation is often used (why?)

� For sign bit, a single bit can be used to record the sign

� There is an international standard, IEEE-754, that

defines the representation as well as the arithmetic of
floating point computations

� It is different (more complicated) from the one described in
our textbook, but the concept is the same

37/41

Example: Coding of
8
52

1 1 00

38/41

Coding for Error Protection

� Sometimes, computing systems are not reliable.
Numbers stored in a computing system can have

random bit errors over time.

� To detect and/or correct errors, the number

representation has to be robust to random bit errors

� Two types of error-robust coding are possible:

� Error detection coding (e.g. parity bits)

� Error correcting coding (add redundant bits to increase
robustness)

39/41

Parity Bit Coding

� Each number can be appended with one extra bit
(called parity bit) for error detection

� The extra bit force the total bit pattern has an odd or even
number of 1’s.

� Odd parity – the number of 1’s is odd

� Even parity – the number of 1’s is even

40/41

Error Correction Coding (ECC)

� For ECC, we don’t use all possible representations,
instead, we increase the “distance” between

meaningful representations:

distance = 4

distance = 4
distance = 3

41/41

Example: Decoding of 010100

