Data Storage

National Chiao Tung University Chun-Jen Tsai 2/24/2012

Bits and Their Meaning

- ☐ First, we must consider how information can be stored inside computers
 - By "Information," we mean numbers, text, images, sound, video, ..., etc.
- ☐ For today's computers, information is encoded as patterns of 0's and 1's called bits (Blnary digiTs)
 - The reason we use only two symbols (0 and 1) for information encoding is because it's *simple*, not because it's powerful.
 - Non-binary computers made of multi-level electrical components are possible but not popular yet.

Digital Data Representation

- ☐ Some possible meanings for a single bit
 - Numeric value (1 or 0)
 - Boolean value (true or false)
 - Voltage (high or low)
- □ A bit can only represent one of two values, for more values, we need a long string of bits to represent them

Boolean Operations

- □ Human beings are made of cells; Computers are made of small devices that can compute Boolean functions extremely fast
 - Boolean operations are operations that manipulate one or more 1/0 (or true/false) values
- ☐ Some examples of Boolean operations:

■ AND:
$$\frac{0}{0}$$
 $\frac{0}{0}$ $\frac{0}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$

■ XOR:
$$\frac{XOR \stackrel{0}{0}}{0} \stackrel{XOR \stackrel{1}{1}}{1} \stackrel{XOR \stackrel{1}{0}}{1} \stackrel{XOR \stackrel{1}{0}}{1}$$

Gates

- □ The small devices that compute Boolean operations are called "gates"
 - Often implemented as electronic circuits
 - The building blocks from which computers are constructed

Example of Simple Circuit

☐ A digital circuit's operation can be summarized by a *truth table*

Truth Table

Input a, b, c	Output
000	1
001	1
010	0
011	1
100	0
101	0
110	1
111	1

Flip-Flops

- ☐ In addition to performing Boolean operations, gates can also be used to store information
- ☐ A flip-flop is built from gates that stores one bit of data
 - Has an input line which sets its stored value to 1
 - Has an input line which sets its stored value to 0
 - When both inputs = 0, most recently stored value is preserved

7/41

Note: Feedback Systems

- ☐ To understand the operation of flip-flops, you must understand the concept of a feedback system:
 - At time t, we have two inputs to the "black box", one is a_t , what is the other one?

Alternative Flip-Flops

☐ There is more than one way to implement a flip-flop:

☐ Compare this to previous design, which one is better?

Data Storage Hardware

- □ In addition to flip-flops, there are other fundamental bit-level data-storage devices based on, for example, magnetic or optical technologies
- ☐ A data storage device can be volatile or non-volatile:
 - Volatile memory holds its value until the power is turned off Example: flip-flops
 - Non-volatile memory holds its value after the power is off Example: magnetic storage

Radix-N Number Coding

- ☐ Bit numbers are coded in radix-2 (a.k.a. base-2) while human-friendly numbers are coded in radix-10
- ☐ The conversion between radix-2 and radix-10 is not trivial, sometimes, it is easier to use a number coding system that is:
 - Easily readable by human
 - Can be converted to/from radix-2 easily (why?)
- □ Popular radix-N notation that fulfill these two points are radix-8 (octal notation) and radix-16 (hexadecimal notation)

Different Coding Systems

Binary	Octal	Hexadecimal	Decimal
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	Α	10
1011	13	В	11
1100	14	С	12
1101	15	D	13
1110	16	E	14
1111	17	F	15

Main Memory Logical Units

- Data are stored in memory cells in a computer system; each cell is a memory access unit
- □ The smallest memory access unit of the CPU is called a byte, usually equals 8 bits; If you want to emphasize that it is composed of 8 bits, you can call it an "octet"
 - In the good old days, a byte may be composed of 10 bits
- □ Bits in a byte has orders:

Main Memory Addresses

- □ An address is a "name" to uniquely identify one cell in the computer's main memory
 - The addresses for cells in a computer are consecutive numbers, usually starting at zero
- □ A Random Access Memory (RAM) is a memory device where any cell can be accessed independently

Memory Capacity Measure

- ☐ For computer memory/storage, the unit prefixes are slightly different from those of the metric system:
 - "kB" means 1,000 byte; but KB (or more precisely, KiB) means 2¹⁰ = 1024 bytes
 - "MB" normally means 1,000,000 byte; but MiB means 2²⁰ = 1,048,576 bytes
 - Note: the unit KiB (kibi), MiB (mebi), GiB (gibi), etc., were adopted by IEC in 1999.
- ☐ For any other computer related units, we stick only to the metric prefix system:
 - The bandwidth unit Mbps always means 10⁶ bits-per-second

Mass Storage Systems (1/3)

☐ For mass storage, rotating disks are usually used

Hard disk, floppy disk, CD-ROM

Track divided

■ Characteristics:

- Seek time the time to move the head to the right track
- Latency time the time to rotate the disk for half a cycle
- Access time seek time + latency time
- Transfer rate the speed data transferred to or from the disk

Mass Storage Systems (2/3)

□ Back in 1956, disk storage are huge[†]

IBM 305 Computer System

IBM 350 Disk Storage Unit (1200 rpm, 5MB storage)

Mass Storage Systems (3/3)

☐ Some "old" mass storage devices use magnetic tapes:

Tape reel

Take-up reel

☐ Some "newer" mass storages use flash memory:

Disk Rotating Speed & Sector Size

Logical Record vs. Physical Record

- □ Information stored in a mass storage is organized into files; each file is composed of many smaller units, called logical records
- ☐ The mapping between logical record and physical record is not one-to-one:

Representing Text

- ☐ For text-representation, each character (letter, punctuation, etc.) is assigned a unique bit pattern. There are several coding standards:
 - ASCII: 7-bit coding for most symbols used in written English

- Extended ASCII (ISO 8859-1): 8-bit coding, including more western language symbols
- Unicode: 16-bit coding for most symbols used in most world languages today
- ISO 10646 Universal Character Set (UCS): a text coding system which uses 32-bit values for each characters

Representing Numeric Values

- ☐ There are some limitations of computer representations of numeric values
 - Overflow happens if a number is too big to be represented
 - Underflow happens when the number is too small
 - Truncation happens when a number is fallen between two representable numbers
- ☐ For example, 3-bit encoding of numbers can only represent 8 different values; each red dot in the following interval is a numerical values we can represent *accurately*

Representing Natural Phenomena

- □ Natural phenomena is usually detected in analog form; must be converted to digital form for computer to store and/or process
- □ Example: a sound wave can be represented by a sequence of numbers: 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0

Radix Conversion

- ☐ The conversion of number from one radix (base) to another is important
- □ Each digit in a number has a base quantity called position's quantity
- ☐ Position's quantity is the power of the base

a. Base ten system

b. Base two system

Conversion from Radix-2 to Radix-10

☐ For example, 100101 can be decoded as follows:

Conversion from Radix-10 to Radix-2

- ☐ Method to convert from Radix-10 to radix-2:
 - Divide the value by 2 and record the remainder
 - Continue to divide the quotient by two and record the remainder until the quotient is zero
- \square For example, convert (13)₁₀ to radix-2

Binary Arithmetic

- Modern computers usually use binary representation of numerical data, therefore, numerical calculations must be done in radix-2 as well
- □ Binary calculations are simple, but remembering a long sequence of binary numbers is the difficult part (good thing that computers have photographic memory):

Binary Representation of Fractions

□ A simple way to represent numbers with fractions is to use a fixed point representation:

Converting Fractions to Binary Rep.

☐ To convert ⁵/₈ to binary digits 0.101, you can inverse the above-mentioned process:

$$\frac{5}{8} \times 2 = \frac{5}{4} = 1 + \frac{1}{4} \longrightarrow \frac{5}{8} = 1 \times 2^{-1} + 2^{-1} \times \frac{1}{4}$$

$$\frac{1}{4} \times 2 = \frac{1}{2} = 0 + \frac{1}{2} \longrightarrow \frac{1}{4} = 0 \times 2^{-1} + 2^{-1} \times \frac{1}{2}$$

$$\longrightarrow \frac{5}{8} = 1 \times 2^{-1} + 2^{-1} \times (0 \times 2^{-1} + 2^{-1} \times \frac{1}{2})$$

$$\longrightarrow \frac{5}{8} = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

Representing Integers

- ☐ Unsigned integers can be represented in base two
- □ Signed integers are numbers that can be positive or negative. For negative numbers, there are several ways to represent it:
 - One's complement –
 bitwise "NOT" of a positive number is the negative
 representation of the number
 - Two's complement notation the most popular representation of negative numbers
 - Excess notation –
 often used in representing floating point exponents

Two's Compliment Representation

a. Using patterns of length three

Bit pattern	Value represented
011	3
010	2
001	1
000	0
111	-1
110	-2
101	-3
100	-4

b. Using patterns of length four

Bit pattern	Value represented
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	- 3
1100	-4
1011	- 5
1010	- 6
1001	- 7
1000	-8

Coding Rules of 2's Complement

- □ Algorithm:
 - First, complement all the digits of the number
 - The, add one to the complemented number
- ☐ For example, —6 can be represented as follows:
 - \bullet (6)₁₀ = (0110)₂
 - **■** 0110 →1001
 - $1001 + 1 = 1010 = (-6)_{10}$
- ☐ The nice part about 2's Complement representation of negative numbers is that addition matches natural representation

2's Complement Arithmetic

Excess Notation Systems

- □ Excess notation preserves the natural ordering of (negative) numbers
- □ Arithmetic operations become less trivial
- ☐ Examples of negative numbers represented using excess system:

Bit pattern	Value represented
111	3
110	2
101	1
100	0
011	-1
010	-2
001	-3
000	-4

excess 3

Bit	Value
pattern	represented
1111	7
1110	6
1101	5
1100	4
1011	3
1010	2
1001	1
1000	0
0111 0110 0101 0100 0011 0010 0001 0000	-1 -2 -3 -4 -5 -6 -7

excess 8

Floating Point Representation (1/2)

- □ A number with fractions can be represented in fixed point, as well as in floating point
- □ A floating point representation is composed of four parts:

Floating Point Representation (2/2)

- □ Coding of each field of a floating point number:
 - For mantissa, fixed point representation is obviously the logical choice (remember scientific notations?)
 - For exponent, we need to represent positive and negative numbers → excess notation is often used (why?)
 - For sign bit, a single bit can be used to record the sign
- ☐ There is an international standard, IEEE-754, that defines the representation as well as the arithmetic of floating point computations
 - It is different (more complicated) from the one described in our textbook, but the concept is the same

Example: Coding of $2\frac{5}{8}$

37/41

Coding for Error Protection

- □ Sometimes, computing systems are not reliable. Numbers stored in a computing system can have random bit errors over time.
- ☐ To detect and/or correct errors, the number representation has to be robust to random bit errors
- ☐ Two types of error-robust coding are possible:
 - Error detection coding (e.g. parity bits)
 - Error correcting coding (add redundant bits to increase robustness)

Parity Bit Coding

- ☐ Each number can be appended with one extra bit (called parity bit) for error detection
 - The extra bit force the total bit pattern has an odd or even number of 1's.
 - Odd parity the number of 1's is odd
 - Even parity the number of 1's is even

Error Correction Coding (ECC)

☐ For ECC, we don't use all possible representations, instead, we increase the "distance" between meaningful representations:

Symbol	Code
A B	000000
С	010011 —
D E	011100 -
F G	101001 110101
Н	111010 -

Example: Decoding of 010100

Character	Distance between the received pattern and the character being considered
A	2
В	4
С	3
D	1 Smallest
E	3 distance
F	5
G	2
Н	4