Partial Differential Equations and Boundary Value Problems ${ }^{\dagger}$

National Chiao Tung University
Chun-Jen Tsai 12/16/2019

Partial Differential Equation

- A partial differential equation (PDE) is a differential equation that contains partial derivatives of a dependent variable that is a function of at least two independent variables.
- Example: one-dimensional heat equation:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}},
$$

- $u(x, t)$ is the temperature function of x (position) and t (time) of a heated rod, k is a constant parameter determined by the material of the rod

Linear Partial Differential Equations

- If u is a function of two independent variables x and y, the general form of a linear $2^{\text {nd }}$-order PDE is given by:

$$
A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=G
$$

where A, B, C, D, \ldots, G are functions of x and y.

- Example: one-dimensional heat propagation equation can be described by:

$$
k \frac{\partial^{2} u(x, t)}{\partial x^{2}}-\frac{\partial u(x, t)}{\partial t}=0
$$

Solving PDE for Separable Functions

- General solutions for PDE are difficult to find, so in practice, we only look for particular solutions.
- In addition to using initial or boundary conditions to constrain our solutions, we often assume that the solution function is separable, that is:

$$
u(x, y)=X(x) Y(y) .
$$

Thus, we have:

$$
\frac{\partial u}{\partial x}=X^{\prime} Y, \quad \frac{\partial u}{\partial y}=X Y^{\prime}, \quad \frac{\partial^{2} u}{\partial x^{2}}=X^{\prime \prime} Y, \quad \text { and } \quad \frac{\partial^{2} u}{\partial y^{2}}=X Y^{\prime \prime} .
$$

Example: Solving $\frac{\partial^{2} u}{\partial x^{2}}=4 \frac{\partial u}{\partial y}$.

- Let $u(x, y)=X(x) Y(y)$, we have $X^{\prime \prime} Y=4 X Y^{\prime}$, or

$$
\frac{X^{\prime \prime}}{4 X}=\frac{Y^{\prime}}{Y}=-\lambda,
$$

where λ is a constant because changing X won't change Y^{\prime} / Y and changing Y won't change $X^{\prime \prime} / 4 X$.
Thus, X and Y must be solutions of

$$
X^{\prime \prime}+4 \lambda X=0 \text { and } Y^{\prime}+\lambda Y=0 .
$$

These are the eigenvalue problem of ODE's ${ }^{\dagger}$.
Consider the three cases: $\lambda=0, \lambda=\alpha^{2}$, and $\lambda=-\alpha^{2}$.

Example: Solving $\frac{\partial^{2} u}{\partial x^{2}}=4 \frac{\partial u}{\partial y}$.

- Case I: $\lambda=0$.

The two equations become $X^{\prime \prime}=0$ and $Y^{\prime}=0$. The general solutions are $X(x)=c_{1}+c_{2} x$ and $Y(y)=c_{3}$, respectively.

Thus, a particular solution of the PDE is $u(x, y)=X(x) Y(y)=\left(c_{1}+c_{2} x\right) c_{3}=C_{1}+C_{2} x$.

Example: Solving $\frac{\partial^{2} u}{\partial x^{2}}=4 \frac{\partial u}{\partial y}$.

- Case II: $\lambda=-\alpha^{2}, \alpha>0$.

The two equations becomes $X^{\prime \prime}-4 \alpha^{2} X=0$ and $Y^{\prime}-\alpha^{2} Y=0$. The general solutions becomes $X(x)=c_{1} \cosh 2 \alpha x+c_{2} \sinh 2 \alpha x$ and $Y(y)=c_{3} e^{\alpha 2 y}$, respectively.

Thus, a particular solution of the PDE is $u(x, y)=X(x) Y(y)=\left(c_{1} \cosh 2 \alpha x+c_{2} \sinh 2 \alpha x\right) c_{3} e^{\alpha^{2} y}$
$=C_{1} e^{\alpha^{2} y} \cosh 2 \alpha x+C_{2} e^{\alpha y} y \sinh 2 \alpha x$.

Example: Solving $\frac{\partial^{2} u}{\partial x^{2}}=4 \frac{\partial u}{\partial y}$.

- Case III: $\lambda=\alpha^{2}, \alpha>0$.

The two equations becomes $X^{\prime \prime}+4 \alpha^{2} X=0$ and $Y^{\prime}+\alpha^{2} Y=0$. The general solutions becomes $X(x)=c_{1} \cos 2 \alpha x+c_{2} \sin 2 \alpha x$ and $Y(y)=c_{3} e^{-\alpha y}$, respectively.

Thus, a particular solution of the PDE is

$$
\begin{aligned}
u(x, y) & =X(x) Y(y)=\left(c_{1} \cos 2 \alpha x+c_{2} \sin 2 \alpha x\right) c_{3} e^{-\alpha^{2} y} \\
& =C_{1} e^{-\alpha^{2} y} \cos 2 \alpha x+C_{2} e^{-\alpha^{2} y} \sin 2 \alpha x
\end{aligned}
$$

Superposition Principle for PDE

- If $u_{1}, u_{2}, \ldots, u_{k}$ are solutions of a homogeneous linear partial differential equation, then the linear combination

$$
\sum_{i=1}^{k} c_{i} u_{i}
$$

where the $c_{i}, i=1,2, \ldots, k$, are constants, is also a solution.

The property is true even when $k=\infty$.

Classification of PDE

- The linear $2^{\text {nd }}$-order partial differential equation with two independent variables,

$$
A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=G,
$$

where A, B, C, D, \ldots, G are real constants, is said to be:

- Hyperbolic if $B^{2}-4 A C>0$,
- Parabolic if $B^{2}-4 A C=0$,
- Elliptic if $B^{2}-4 A C<0$.

Derivation of Classical PDEs

- The derivation of the mathematical model that can be used to explain or predict the behavior of a physical phenomenon is the key to most engineering problems
- Example: the optical flow model. The motion $(d x / d t, d y / d t)$ of the image pixels $E(x, y, t)$ taken by a camera can be approximated by:

$$
\frac{\partial E}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial E}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial E}{\partial t}=0,
$$

Derivation of the Heat Equation

. Assume that we have a heated rod:

$u(x, t)$ is the temperature of the rod at x and time t.

- From empirical study of thermodynamics:
- The amount of heat in a element of mass m and temperature u is $Q=\gamma m u, \gamma$ is a constant parameter of the rod.
- The heat flow $Q_{t}=-K A u_{x}$ is the flow of heat in the direction of decreasing temperature, K is a constant parameter of the rod.

Derivation of the Heat Equation

- The heat content in a segment of the rod is:

$$
Q=\gamma m u=\gamma(\rho A \Delta x) u
$$

and the heat flow in this segment is

$$
\begin{equation*}
d Q / d t=\gamma \rho A \Delta x u_{t}, \text { when } \Delta x \rightarrow 0 \tag{1}
\end{equation*}
$$

- Another way to estimate the heat flow is to compute the difference of amount of heat entering/leaving the segment as $\Delta x \rightarrow 0$:

$$
\begin{equation*}
Q_{t}(x+\Delta x, t)-Q_{t}(x, t)=K A\left[u_{x}(x+\Delta x, t)-u_{x}(x, t)\right] \tag{2}
\end{equation*}
$$

Derivation of the Heat Equation (3/3)

- Eq (1) and (2) should equal each other as $\Delta x \rightarrow 0$, thus

$$
K A\left[u_{x}(x+\Delta x, t)-u_{x}(x, t)\right] \rightarrow \gamma \rho A \Delta x u_{t}, \text { as } \Delta x \rightarrow 0 .
$$

Therefore

$$
\frac{K}{\gamma \rho} \cdot \lim _{\Delta x \rightarrow 0} \frac{\left[u_{x}(x+\Delta x, t)-u_{x}(x, t)\right]}{\Delta x}=u_{t}
$$

Finally, we obtain the following heat equation:

$$
k \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} .
$$

where $k=K / \gamma \rho$ is the thermal diffusivity of the rod.

BVP of the Heat Equation

- The solution of a PDE involves arbitrary functions of some dependent variables. For example, the partial DE

$$
\frac{\partial u(x, t)}{\partial t}=0
$$

has a general solution $u(x, t)=g(x)$, where $g(x)$ can be any function of x.

Hence, the "initial condition" of a partial DE is a boundary function. In the case of the heated rod, we may have the boundary function $u(x, 0)=f(x)$, where $f(x)$ is the heat function (of x) at time 0 .

BVP of the Heat Equation

- We may also constrain the temperature function at two ends of the rod and try to solve the PDE. For example,

$$
u(0, t)=u(L, t)=0, \text { for all } t>0 .
$$

A boundary value problem of the heated rod PDE may be as follows:

$$
\begin{array}{lc}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} & (0<x<L, t>0) \\
u(0, t)=u(L, t)=0 & (t>0) \\
u(x, 0)=f(x) & (0<x<L)
\end{array}
$$

BVP of the Heat Equation

- Another possible boundary condition for the heated rod is that no heat will flow through either end (i.e. both ends are heat-insulated):

$$
u_{x}(0, t)=u_{x}(L, t)=0, \text { for all } t .
$$

- Physical intuition tells us that if the initial condition $f(x)$ is a reasonable function, there exists a unique solution $u(x, t)$ for the boundary value problem.

Derivation of the Wave Equation (1/2)

\square A PDE that models the vibrations of a string can be derived with the following assumptions:

- A perfectly flexible uniform string with density ρ is stretched under a uniform tension force of T between $x=0$ and $x=L$.
- Each point on the string moves only in u direction
$\rightarrow u(x, t)$ is the shape of the string at time t.
- The slope of the curve is small for all $x \rightarrow \sin \theta \approx \tan \theta=u_{x}(x, t)$.

Derivation of the Wave Equation (2/2)

- Apply Newton's law to the segment $[x, x+\Delta x]$,
$T \sin \theta_{2}-T \sin \theta_{1} \approx T \tan \theta_{2}-T \tan \theta_{1}$

$$
\begin{aligned}
& =T\left[u_{x}(x+\Delta x, t)-u_{x}(x, t)\right] \\
& =(\rho \Delta x) u_{t t^{*}}
\end{aligned}
$$

- So, division by $\Delta x T$ on both side yields

$$
\frac{u_{x}(x+\Delta x, t)-u_{x}(x, t)}{\Delta x}=\frac{\rho}{T} u_{t t} .
$$

As $\Delta x \rightarrow 0$, we have $u_{x x}=(\rho / T) u_{t t}$.

BVP of the Wave Equation

- If we set

$$
a^{2}=\frac{T}{\rho},
$$

we have the one-dimensional wave equation that models the free vibrations of a uniform flexible string:

$$
\begin{aligned}
a^{2} \frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial^{2} u}{\partial t^{2}} \\
u(0, t) & =u(L, t)=0,(t>0), \\
u(x, 0) & =f(x) \\
u_{t}(x, 0) & =g(x) \\
(0<x<L), & (0<x<L) .
\end{aligned}
$$

Laplacian of a 2-D Function $u(x, y)$

- The Laplacian of the function $u(x, y)$ is defined as

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} .
$$

- The Laplace's equation $\nabla^{2} u=0$ is often used to model the steady-state behavior of a 2-D (or higher dimensional) phenomenon (e.g., temperature of an object).

Modeling of 2-D Heat/Wave Equations

- Given a 2-D thin plate with thermal diffusivity k, its temperature $u(x, y, t)$ at the point (x, y) at time t satisfies the 2-D heat equation:

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=k \nabla^{2} u, \quad k=\frac{K}{c \delta}
$$

- Note that $u_{t}=k \nabla^{2} u$ is the 2-D extension of the 1-D heat equation $u_{t}=k u_{x x}$. Similarly, $u_{t t}=a^{2} \nabla^{2} u$ is the 2-D extension of the 1-D wave equation $u_{t t}=a^{2} u_{x x}$.

Heat/Wave Eqs with Influences

- The 1-D heat/wave equation can be modified to take into account external and internal influences:

$$
k \frac{\partial^{2} u}{\partial x^{2}}+G\left(x, t, u, u_{x}\right)=\frac{\partial u}{\partial t}
$$

and

$$
a^{2} \frac{\partial^{2} u}{\partial x^{2}}+F\left(x, t, u, u_{t}\right)=\frac{\partial^{2} u}{\partial t^{2}},
$$

where $G()$ may be the ambient temperature influences to the heated rod; and $F()$ may represent the external, damping, and restoring forces of the string vibration

Solution to the BVP of Heat Equation

- Note that the BVP of a heated rod is modelled as:

$$
\begin{array}{lc}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} & (0<x<L, t>0) \\
u(0, t)=u(L, t)=0 & (t>0) \\
u(x, 0)=f(x) & (0<x<L)
\end{array}
$$

- Note that the heat equation is linear. That is, if u_{1} and u_{2} satisfy the PDE, $w=c_{1} u_{1}+c_{2} u_{2}$ also satisfies the PDE.

However, a solution of the PDE must also satisfy the boundary conditions.

Meeting Boundary Conditions

- If u_{1} and u_{2} satisfies the (homogeneous) conditions

$$
u(0, t)=u(L, t)=0, \text { for all } t>0,
$$

$w=c_{1} u_{1}+c_{2} u_{2}$ will also satisfy the condition. However, the general form of w may not satisfy the boundary condition \rightarrow only a particular choice of c_{1} and c_{2} satisfy the non-homogeneous boundary condition:

$$
u(x, 0)=f(x), 0<x<L
$$

Meeting Boundary Conditions

- In general, we must find an infinite sequence u_{1}, u_{2}, u_{3}, \ldots, of solutions that satisfies both the PDE and the homogeneous boundary conditions, and assume the general solution form as follows:

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} u_{n}(x, t) .
$$

Then, determine the coefficients $c_{1}, c_{2}, c_{3}, \ldots$ that satisfy the non-homogeneous boundary condition.

General Solutions of a Linear BVP

- Suppose that each of the functions $u_{1}, u_{2}, u_{3}, \ldots$, satisfies both the PDE for $0<x<L$ and $t>0$ and the homogeneous conditions, and $c_{1}, c_{2}, c_{3}, \ldots$ are chosen to meet the following three criteria:

1. For $0<x<L$ and $t>0$, the function $u(x, t)=\sum c_{n} u_{n}(x, t)$ is continuous and term-wise differentiable (for $\partial / \partial t$ and $\partial^{2} / \partial x^{2}$).
2. $\sum_{n=1}^{\infty} c_{n} u_{n}(x, 0)=f(x)$ for $0<x<L$.
3. The function $u(x, t)=\sum c_{n} u_{n}(x, t)$ is continuous within, and at the boundary of the region $0 \leq x \leq L$ and $t \geq 0$.
Then $u(x, t)$ is a solution of the BVP.

Separation of Variables

- In solving the heated rod problem, Fourier sought for a sequence of solutions $u_{1}, u_{2}, u_{3}, \ldots$, which are "separable." That is for each of u_{i}, we have

$$
u(x, t)=X(x) T(t),
$$

where $X(x)$ and $T(t)$ are functions of x and t, respectively. Substitution of such $u(x, t)$ into the heat equation $u_{t}=k u_{x x}$ yields $X T=k X^{\prime \prime} T$, or

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{k T}=-\lambda,
$$

where λ is a constant because changing x (or t) does not change $T^{\prime} / k T$ (or $X^{\prime \prime} / X$).

Separation of Variables

- Thus, the solution can be obtained by solving two ODEs for some common value of λ :

$$
\begin{aligned}
& X^{\prime \prime}(x)+\lambda X(x)=0, \\
& T^{\prime}(t)+\lambda k T(t)=0 .
\end{aligned}
$$

For $X(x)$, we have $u(0, t)=X(0) T(t)=0, u(L, t)=X(L) T(t)=0$. Thus $X(0)=X(L)=0$ if $T(t)$ is nontrivial. $X(x)$ has a nontrivial solution if and only if

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, \quad n=1,2,3, \ldots
$$

and then

$$
X_{n}(x)=\sin \frac{n \pi x}{L}, \quad n=1,2,3, \ldots
$$

Separation of Variables

- To solve for $T(t)$, substituting the value λ into the ODE for $T(t)$ as

$$
T_{n}^{\prime}+\frac{n^{2} \pi^{2} k}{L^{2}} T_{n}=0 .
$$

A nontrivial solution of $T_{n}(t)$ is

$$
T_{n}(t)=\exp \left(-n^{2} \pi^{2} k t / L^{2}\right), \quad n=1,2,3, \ldots
$$

Separation of Variables

- Now, we have sequences of solutions to the PDE

$$
u_{n}(x, t)=X(x) T(t)=\exp \left(-n^{2} \pi^{2} k t / L^{2}\right) \sin (n \pi x / L),
$$

$n=1,2,3, \ldots$ Each of these functions satisfies the heat equation and the homogeneous conditions. We want to find $c_{1}, c_{2}, c_{3}, \ldots$ such that $\sum c_{n} u_{n}(x, t)$ satisfies

$$
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{L}=f(x), \quad 0<x<L .
$$

But this is the Fourier series of $f(x)$ on $[0, L]$. Thus,

$$
c_{n}=b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x, \quad n=1,2,3, \ldots .
$$

Insulated Endpoint Conditions

- When the heated rod is insulated at both ends, the homogeneous boundary condition becomes $u_{x}(0, t)=u_{x}(L, t)=0$. We can use the separation of variables approach again to solve this problem.

Solving the ODE of $X(x)$ gives us:

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, X_{n}(x)=\cos \frac{n \pi x}{L} .
$$

Similarly, solving the ODE of $T(t)$ gives us:

$$
T_{n}(t)=\exp \left(\frac{-n^{2} \pi^{2} k t}{L^{2}}\right)
$$

Heated Rod with Insulated Ends

- For a heated rod with zero endpoint temperatures, the general solution is

$$
u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \exp \left(-n^{2} \pi^{2} k t / L^{2}\right) \cos \frac{n \pi x}{L}
$$

where $\left\{a_{n}\right\}$ are the Fourier cosine coefficients of $u(x, 0)$.

Solution to the BVP of Wave Equation

- The BVP of a vibrating string is modelled as:

$$
\begin{array}{ll}
a^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}} & (0<x<L, t>0) \\
u(0, t)=u(L, t)=0,(t>0) \\
u(x, 0)=f(x) & (0<x<L) \\
u_{t}(x, 0)=g(x) & (0<x<L)
\end{array}
$$

Here, we have two non-homogeneous boundary conditions.

Problems with Two Nonzero BCs

- To solve the wave equation, we divide the system into two sub-problems:
- Problem A:

$$
-u_{t t}=a^{2} u_{x x} ; u(0, t)=u(L, t)=0, u(x, 0)=f(x) ;, u_{t}(x, 0)=0 .
$$

- Problem B:

$$
-u_{t t}=a^{2} y_{x x} ; u(0, t)=u(L, t)=0, u(x, 0)=0, u_{t}(x, 0)=g(x) .
$$

The overall solution is the sum of the two sub-problems since

$$
\begin{aligned}
& u(x, 0)=u_{A}(x, 0)+u_{B}(x, 0)=f(x)+0=f(x) \\
& u_{t}(x, 0)=\left\{u_{A}\right\}_{t}(x, 0)+\left\{u_{B}\right\}_{t}(x, 0)=0+g(x)=g(x)
\end{aligned}
$$

Problem A Solution (1/3)

- By separation of variables, substitution of $u(x, t)=X(x) T(t)$ in $u_{t t}=a^{2} u_{x x}$ yields $X T^{\prime \prime}=a^{2} X^{\prime \prime} T$ for all x and t. Therefore, assume that

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{a^{2} T}=-\lambda, \text { for some } \lambda .
$$

\rightarrow we have a system of ODE:

$$
\left\{\begin{array}{cc}
X^{\prime \prime}+\lambda X=0, & X(0)=X(L)=0 \\
T^{\prime \prime}+\lambda a^{2} T=0, & T^{\prime}(0)=0
\end{array}\right.
$$

The first equation is an eigenvalue problem:
$\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, n=1,2,3, \ldots$ and $X_{n}(x)=\sin \frac{n \pi x}{L}, n=1,2,3, \ldots$

Problem A Solution (2/3)

\square Substitute λ_{n} into the second equation:

$$
T_{n}^{\prime \prime}+\frac{n^{2} \pi^{2} a^{2}}{L^{2}} T_{n}=0, T_{n}^{\prime}(0)=0
$$

The solution to the IVP is $T_{n}(t)=A_{n} \cos \frac{n \pi a t}{L}, n=1,2,3, \ldots$

- Hence,

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} X_{n}(x) T_{n}(t)=\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi a t}{L} \sin \frac{n \pi x}{L}
$$

satisfies all the homogeneous boundary conditions.
\rightarrow Choose $\left\{A_{n}\right\}$ to satisfy the non-homogeneous boundary condition

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L}=f(x), 0<x<L .
$$

Problem A Solution (3/3)

- If we choose $A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x$.
the condition is simply the Fourier sine series expansion of $f(x)$ on $[0, L]$.
- Example: if $f(x)=\left\{\begin{array}{cc}b x, & 0 \leq x \leq L / 2 \\ b(L-x), & L / 2 \leq x \leq L\end{array}\right.$, and $g(x)=0$, the solution $u(x, t)$ is

$$
u(x, t)=\frac{4 b L}{\pi^{2}} \sum_{n=1}^{\infty}\left(\frac{1}{n^{2}} \sin \frac{n \pi}{2}\right) \cos \frac{n \pi a t}{L} \sin \frac{n \pi x}{L} .
$$

d'Alembert form of Solution (1/2)

- An alternative form of solution of problem A can be obtained by applying trigonometric identity:

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi a t}{L} \sin \frac{n \pi x}{L} \\
& =\frac{1}{2} \sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{L}(x+a t)+\frac{1}{2} \sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{L}(x-a t) .
\end{aligned}
$$

If we define $F(x)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L}$,
we have

$$
u(x, t)=[F(x+a t)+F(x-a t)] / 2 .
$$

d'Alembert form of Solution (2/2)

- The functions $F(x+a t)$ and $F(x-a t)$ in d'Alembert form of Solution represents waves moving to the left and right, respectively, along the string with speed a.

Problem B Solution (1/2)

- Solution for Problem B is similar to that for A, except that

$$
\frac{d^{2} T_{n}}{d t^{2}}+\frac{n^{2} \pi^{2} a^{2}}{L^{2}} T_{n}=0, T_{n}(0)=0
$$

A non-trivial solution is

Hence,

$$
T_{n}(t)=B_{n} \sin \frac{n \pi a t}{L}, n=1,2,3, \ldots
$$

$$
u(x, t)=\sum_{n=1}^{\infty} X_{n}(x) T_{n}(t)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi a t}{L} \sin \frac{n \pi x}{L} .
$$

Problem B Solution (2/2)

- Again, the coefficients $\left\{B_{n}\right\}$ that satisfies the nonhomogeneous boundary condition

$$
u_{t}(x, 0)=\sum_{n=1}^{\infty} B_{n} \frac{n \pi a}{L} \sin \frac{n \pi x}{L}=g(x), 0<x<L .
$$

would be the Fourier sine coefficient b_{n} of $g(x)$ on $[0, L]$ divided by $n \pi a / L$:

$$
B_{n} \frac{n \pi a}{L}=b_{n}=\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x .
$$

Hence, we choose

$$
B_{n}=\frac{2}{n \pi a} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x .
$$

Total Solution to the Wave Equation

- The complete solution is the summation of Problem A and Problem B:

$$
u(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi a t}{L}+B_{n} \sin \frac{n \pi a t}{L}\right) \sin \frac{n \pi x}{L}
$$

where

$$
\begin{aligned}
& A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \\
& B_{n}=\frac{2}{n \pi a} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

Steady-State Temperature

- The steady-state temperature of a plate can be described by a function $u(x, y)$, i.e., $u_{t}=0$. Thus, we have the 2-D Laplace equation:

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

\square A boundary value problem of the Laplace equation can be formulated as follows (i.e. the Dirichlet problem):

$$
\left\{\begin{array}{cc}
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad(\text { within } \mathrm{R}) \\
u(x, y)=f(x, y) & (\text { if }(x, y) \text { is on } C)
\end{array} .\right.
$$

Solutions to the Laplace's Equation

- Suppose we want to find the steady-state temperature $u(x, y)$ in a thin rectangular plate with width a and height b. The problem can be formulated as a BVP problem as follows:

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \\
& u(0, y)=f_{1}(x), u(a, y)=f_{2}(x), u(x, b)=f_{3}(x), u(x, 0)=f_{4}(x) .
\end{aligned}
$$

This is called the Dirichlet problem.

Example: The Dirichlet Problem

- Solve the boundary value problem for the rectangle R.

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \\
& u(0, y)=u(a, y)=u(x, b)=0 \\
& u(x, 0)=f(x)
\end{aligned}
$$

Assume that $u(x, y)=X(x) Y(y)$, we have $X^{\prime \prime} Y+X Y^{\prime \prime}=0$. Thus,

$$
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda \quad \rightarrow\left\{\begin{array}{c}
X^{\prime \prime}+\lambda X=0 \\
X(0)=X(a)=0
\end{array} .\right.
$$

Example: The Dirichlet Problem

- The eigenvalues and eigenfunctions of X are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{a^{2}}, \quad X_{n}(x)=\sin \frac{n \pi x}{a}, \quad n=1,2,3, \ldots
$$

As a result,

$$
Y_{n}^{\prime \prime}-\frac{n^{2} \pi^{2}}{a^{2}} Y_{n}=0, \quad Y_{n}(b)=0
$$

The general solution of Y_{n} is

$$
Y_{n}(y)=A_{n} \cosh \frac{n \pi y}{a}+B_{n} \sinh \frac{n \pi y}{a} .
$$

Example: The Dirichlet Problem

- To compute the particular solution, we must solve A_{n} and B_{n} using $Y_{n}(b)=0$:

$$
\begin{aligned}
& Y_{n}(b)=A_{n} \cosh \frac{n \pi b}{a}+B_{n} \sinh \frac{n \pi b}{a}=0 . \\
\rightarrow \quad & B_{n}=-A_{n} \cosh \frac{n \pi b}{a} / \sinh \frac{n \pi b}{a} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
Y_{n}(y) & =A_{n} \cosh \frac{n \pi y}{a}-\left(A_{n} \cosh \frac{n \pi b}{a} / \sinh \frac{n \pi b}{a}\right) \sinh \frac{n \pi y}{a} \\
& =c_{n} \sinh \frac{n \pi(b-y)}{a}, c_{n}=A_{n} / \sinh (n \pi b / a)
\end{aligned}
$$

Example: The Dirichlet Problem

. The formal series solution is then

$$
u(x, y)=\sum_{n=1}^{\infty} X_{n}(x) Y_{n}(y)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{a} \sinh \frac{n \pi(b-y)}{a}
$$

c_{n} must satisfy the nonhomogeneous condition

$$
u(x, 0)=\sum_{n=1}^{\infty}\left(c_{n} \sinh \frac{n \pi b}{a}\right) \sin \frac{n \pi x}{a}=f(x)
$$

Therefore,

$$
c_{n}=\frac{2}{a \sinh (n \pi b / a)} \int_{0}^{a} f(x) \sin \frac{n \pi x}{a} d x
$$

