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Partial Differential Equation

 A partial differential equation (PDE) is a differential 
equation that contains partial derivatives of a 
dependent variable that is a function of at least two 
independent variables.

 Example: one-dimensional heat equation:

 u(x, t) is the temperature function of x (position) and t (time) of 
a heated rod, k is a constant parameter determined by the 
material of the rod
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Linear Partial Differential Equations

 If u is a function of two independent variables x and y, 
the general form of a linear 2nd-order PDE is given by:

where A, B, C, D, …, G are functions of x and y.

 Example: one-dimensional heat propagation equation 
can be described by:

3

ଶ

ଶ

ଶ ଶ

ଶ

ଶ

ଶ



/49

Solving PDE for Separable Functions

 General solutions for PDE are difficult to find, so in 
practice, we only look for particular solutions.

 In addition to using initial or boundary conditions to 
constrain our solutions, we often assume that the 
solution function is separable, that is:

u(x, y) = X(x)Y(y).
Thus, we have:
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Example: Solving                          (1/4)

 Let u(x, y) = X(x)Y(y), we have XY = 4XY, or

where l is a constant because changing X won’t 
change Y/Y and changing Y won’t change X/4X.
Thus, X and Y must be solutions of

X + 4lX = 0 and Y + lY = 0.

These are the eigenvalue problem of ODE’s†.
Consider the three cases: l = 0, l = a2, and l = –a2.
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Example: Solving                          (2/4)

 Case I: l = 0.

The two equations become X = 0 and Y = 0. The 
general solutions are X(x) = c1 + c2 x and Y(y) = c3, 
respectively.

Thus, a particular solution of the PDE is
u(x, y) = X(x)Y(y) = (c1 + c2 x)c3 = C1 + C2 x.
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Example: Solving                          (3/4)

 Case II: l = –a2, a > 0.

The two equations becomes X – 4a2X = 0 and
Y – a2Y = 0. The general solutions becomes
X(x) = c1 cosh 2ax + c2 sinh 2ax and Y(y) = c3ea2y, 
respectively.

Thus, a particular solution of the PDE is
u(x, y) = X(x)Y(y) = (c1 cosh 2ax + c2 sinh 2ax)c3ea2y

= C1 ea2ycosh 2ax + C2 ea2ysinh 2ax.
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Example: Solving                          (4/4)

 Case III: l = a2, a > 0.

The two equations becomes X + 4a2X = 0 and
Y + a2Y = 0. The general solutions becomes
X(x) = c1 cos 2ax + c2 sin 2ax and Y(y) = c3e–a2y, 
respectively.

Thus, a particular solution of the PDE is
u(x, y) = X(x)Y(y) = (c1 cos 2ax + c2 sin 2ax)c3e–a2y

= C1 e–a2ycos 2ax + C2 e–a2ysin 2ax.
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Superposition Principle for PDE

 If u1, u2, …, uk are solutions of a homogeneous linear 
partial differential equation, then the linear combination

where the ci, i = 1, 2, …, k, are constants, is also a 
solution.

The property is true even when k = .
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Classification of PDE

 The linear 2nd-order partial differential equation with 
two independent variables,

where A, B, C, D, …, G are real constants, is said to be:
 Hyperbolic if B2 – 4 AC > 0,

 Parabolic if B2 – 4 AC = 0,

 Elliptic if B2 – 4 AC < 0.
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Derivation of Classical PDEs

 The derivation of the mathematical model that can be 
used to explain or predict the behavior of a physical 
phenomenon is the key to most engineering problems

 Example: the optical flow model.
The motion (dx/dt, dy/dt) of the image pixels E(x, y, t)
taken by a camera can be approximated by:
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Derivation of the Heat Equation    (1/3)

 Assume that we have a heated rod:

u(x, t) is the temperature of the rod at x and time t.

 From empirical study of thermodynamics:
 The amount of heat in a element of mass m and temperature u

is Q = g mu, g is a constant parameter of the rod.

 The heat flow Qt = –KAux is the flow of heat in the direction of 
decreasing temperature, K is a constant parameter of the rod.
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Derivation of the Heat Equation    (2/3)

 The heat content in a segment of the rod is:

Q = g mu = g (ADx)u,

and the heat flow in this segment is

dQ/dt = gADx ut, when Dx  0                     (1)

 Another way to estimate the heat flow is to compute 
the difference of amount of heat entering/leaving the 
segment as Dx  0:

Qt(x+Dx, t) – Qt(x, t) = KA[ux(x+Dx, t) – ux(x, t)]         (2)
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Derivation of the Heat Equation    (3/3)

 Eq (1) and (2) should equal each other as Dx  0, thus

KA[ux(x+Dx, t) – ux(x, t)]  gADx ut, as Dx  0.

Therefore

Finally, we obtain the following heat equation:

where k = K/g is the thermal diffusivity of the rod.
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BVP of the Heat Equation             (1/3)

 The solution of a PDE involves arbitrary functions of 
some dependent variables. For example,
the partial DE

has a general solution u(x, t) = g(x), where g(x) can be 
any function of x.

Hence, the “initial condition” of a partial DE is a 
boundary function. In the case of the heated rod, we 
may have the boundary function u(x, 0) = f(x), where f(x)
is the heat function (of x) at time 0.
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BVP of the Heat Equation             (2/3)

 We may also constrain the temperature function at two 
ends of the rod and try to solve the PDE. For example,

u(0, t) = u(L, t) = 0, for all t > 0. 

A boundary value problem of the heated rod PDE may 
be as follows:
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BVP of the Heat Equation             (3/3)

 Another possible boundary condition for the heated rod 
is that no heat will flow through either end (i.e. both 
ends are heat-insulated):

ux(0, t) = ux(L, t) = 0, for all t. 

 Physical intuition tells us that if the initial condition f(x)
is a reasonable function, there exists a unique solution 
u(x, t) for the boundary value problem.
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Derivation of the Wave Equation  (1/2)

 A PDE that models the vibrations of a string can be 
derived with the following assumptions:
 A perfectly flexible uniform string with density  is stretched 

under a uniform tension force of T between x = 0 and x = L.

 Each point on the string moves only in u direction
 u(x, t) is the shape of the string at time t.

 The slope of the curve is small for all x  sin   tan = ux(x, t).
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Derivation of the Wave Equation  (2/2)

 Apply Newton’s law to the segment [x, x + Dx],

Tsin2 – Tsin1  Ttan2 – Ttan1

= T[ux(x + Dx, t) – ux(x, t)]
= (Dx)utt.

 So, division by DxT on both side yields

As Dx  0, we have uxx = (/T)utt.
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BVP of the Wave Equation

 If we set

we have the one-dimensional wave equation that 
models the free vibrations of a uniform flexible string:
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Laplacian of a 2-D Function u(x, y)

 The Laplacian of the function u(x, y) is defined as

 The Laplace’s equation 2u = 0 is often used to model 
the steady-state behavior of a 2-D (or higher 
dimensional) phenomenon (e.g., temperature of an 
object).
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Modeling of 2-D Heat/Wave Equations

 Given a 2-D thin plate with thermal diffusivity k, its 
temperature u(x, y, t) at the point (x, y) at time t
satisfies the 2-D heat equation:

 Note that ut = k2u is the 2-D extension of the 1-D heat 
equation ut = kuxx. Similarly, utt = a22u is the 2-D 
extension of the 1-D wave equation utt = a2uxx.
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Heat/Wave Eqs with Influences

 The 1-D heat/wave equation can be modified to take 
into account external and internal influences:

and

where G() may be the ambient temperature influences 
to the heated rod; and F() may represent the external, 
damping, and restoring forces of the string vibration
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Solution to the BVP of Heat Equation

 Note that the BVP of a heated rod is modelled as:

 Note that the heat equation is linear. That is, if u1 and u2

satisfy the PDE, w = c1u1 + c2u2 also satisfies the PDE.

However, a solution of the PDE must also satisfy the 
boundary conditions.
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Meeting Boundary Conditions       (1/2)

 If u1 and u2 satisfies the (homogeneous) conditions

u(0, t) = u(L, t) = 0, for all t > 0, 

w = c1u1 + c2u2 will also satisfy the condition. However, 
the general form of w may not satisfy the boundary 
condition  only a particular choice of c1 and c2 satisfy 
the non-homogeneous boundary condition:

u(x, 0) = f(x),  0 < x < L.
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Meeting Boundary Conditions       (2/2)

 In general, we must find an infinite sequence u1, u2, 
u3, …, of solutions that satisfies both the PDE and the 
homogeneous boundary conditions, and assume the 
general solution form as follows: 

Then, determine the coefficients c1, c2, c3, … that satisfy 
the non-homogeneous boundary condition.
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General Solutions of a Linear BVP

 Suppose that each of the functions u1, u2, u3, …, 
satisfies both the PDE for 0 < x < L and t > 0 and the 
homogeneous conditions, and c1, c2, c3, … are chosen 
to meet the following three criteria:
1. For 0 < x < L and t > 0, the function u(x, t) = cnun(x, t) is 

continuous and term-wise differentiable (for /t and 2/x2).

2.

3. The function u(x, t) = cnun(x, t) is continuous within, and at the 
boundary of the region 0  x  L and t  0.

Then u(x, t) is a solution of the BVP.
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Separation of Variables               (1/4)

 In solving the heated rod problem, Fourier sought for a 
sequence of solutions u1, u2, u3, …, which are 
“separable.” That is for each of ui, we have

u(x, t) = X(x)T(t),

where X(x) and T(t) are functions of x and t, 
respectively. Substitution of such u(x, t) into the heat 
equation ut = kuxx yields XT = kX"T, or

where l is a constant because changing x (or t) does 
not change T/kT (or X"/X).
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Separation of Variables               (2/4)

 Thus, the solution can be obtained by solving two 
ODEs for some common value of l:

For X(x), we have u(0, t) = X(0)T(t) = 0, u(L, t) = X(L)T(t) = 0. 
Thus X(0) = X(L) = 0 if T(t) is nontrivial.
X(x) has a nontrivial solution if and only if

and then

.0)()(

,0)()(




tkTtT

xXxX

l
l

,...3,2,1,
2

22

 n
L

n
n

l

,...3,2,1,sin)(  n
L

xn
xX n



29



/49

Separation of Variables               (3/4)

 To solve for T(t), substituting the value l into the ODE 
for T(t) as

A nontrivial solution of Tn(t) is
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Separation of Variables               (4/4)

 Now, we have sequences of solutions to the PDE

un(x, t) = X(x)T(t) = exp(–n22kt/L2)sin(nx/L),

n = 1, 2, 3, …. Each of these functions satisfies the heat 
equation and the homogeneous conditions.
We want to find c1, c2, c3, … such that cnun(x, t)
satisfies

But this is the Fourier series of f(x) on [0, L]. Thus,
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Insulated Endpoint Conditions

 When the heated rod is insulated at both ends, the 
homogeneous boundary condition becomes
ux(0, t) = ux(L, t) = 0. We can use the separation of 
variables approach again to solve this problem.

Solving the ODE of X(x) gives us:

Similarly, solving the ODE of T(t) gives us:
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Heated Rod with Insulated Ends

 For a heated rod with zero endpoint temperatures, the 
general solution is

where {an} are the Fourier cosine coefficients of u(x, 0).
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Solution to the BVP of Wave Equation

 The BVP of a vibrating string is modelled as:

Here, we have two non-homogeneous boundary 
conditions.
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Problems with Two Nonzero BCs

 To solve the wave equation, we divide the system into 
two sub-problems:
 Problem A:

 utt = a2 uxx;  u(0, t) = u(L, t) = 0,  u(x, 0) = f(x),  ut(x, 0) = 0.

 Problem B:
 utt = a2 yxx;  u(0, t) = u(L, t) = 0,  u(x, 0) = 0,  ut(x, 0) = g(x).

The overall solution is the sum of the two sub-problems 
since

u(x, 0) = uA(x, 0) + uB(x, 0) = f(x) + 0 = f(x),
ut(x, 0) = {uA}t(x, 0) + {uB}t(x, 0) = 0 + g(x) = g(x).

nonzero initial offset

nonzero initial velocity
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Problem A Solution (1/3)

 By separation of variables, substitution of
u(x, t) = X(x)T(t) in utt = a2uxx yields XT = a2XT for all x
and t. Therefore, assume that

 we have a system of ODE:

The first equation is an eigenvalue problem:
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Problem A Solution (2/3)

 Substitute ln into the second equation:

The solution to the IVP is

 Hence,

satisfies all the homogeneous boundary conditions.

 Choose {An} to satisfy the non-homogeneous
boundary condition
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Problem A Solution (3/3)

 If we choose

the condition is simply the Fourier sine series 
expansion of f(x) on [0, L].

 Example: if

and g(x) = 0, the solution u(x, t) is
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d’Alembert form of Solution (1/2)

 An alternative form of solution of problem A can be 
obtained by applying trigonometric identity:

If we define

we have
u(x, t) = [F(x + at) + F(x – at)]/2.
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d’Alembert form of Solution (2/2)

 The functions F(x + at) and F(x – at) in d’Alembert form 
of Solution represents waves moving to the left and 
right, respectively, along the string with speed a.
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Problem B Solution (1/2)

 Solution for Problem B is similar to that for A, except 
that

A non-trivial solution is

Hence,
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Problem B Solution (2/2)

 Again, the coefficients {Bn} that satisfies the non-
homogeneous boundary condition

would be the Fourier sine coefficient bn of g(x) on
[0, L] divided by na/L:

Hence, we choose
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Total Solution to the Wave Equation

 The complete solution is the summation of Problem A 
and Problem B:

where
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Steady-State Temperature

 The steady-state temperature of a plate can be 
described by a function u(x, y), i.e., ut = 0. Thus, we 
have the 2-D Laplace equation:

 A boundary value problem of the Laplace equation can 
be formulated as follows (i.e. the Dirichlet problem):
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Solutions to the Laplace’s Equation

 Suppose we want to find the steady-state temperature 
u(x, y) in a thin rectangular plate with width a and height 
b. The problem can be formulated as a BVP problem 
as follows:

uxx + uyy = 0;
u(0, y) = f1(x), u(a, y) = f2(x), u(x, b) = f3(x), u(x, 0) = f4(x).

This is called the Dirichlet problem.
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 Solve the boundary value problem for the rectangle R.

uxx + uyy = 0;
u(0, y) = u(a, y) = u(x, b) = 0,
u(x, 0) = f(x).

Assume that u(x, y) = X(x)Y(y), we have XY + XY = 0.
Thus,

Example: The Dirichlet Problem    (1/4)
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Example: The Dirichlet Problem    (2/4)

 The eigenvalues and eigenfunctions of X are

As a result,

The general solution of Yn is
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Example: The Dirichlet Problem    (3/4)

 To compute the particular solution, we must solve An

and Bn using Yn(b) = 0:



Therefore,
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Example: The Dirichlet Problem    (4/4)

 The formal series solution is then

cn must satisfy the nonhomogeneous condition

Therefore,
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