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T Chapter 11.1 ~ 11.3 in the textbook.




Orthogonal Functions & Inner Product

Qa Vectors in linear algebra are not just n-tuples

Q If u and v are two n-tuple vectors in 3D-space, then the
inner product (u, v) possesses the following properties:
m (u,v)=(v,u) (inner productis commutable)
m (ku,v)=k(u,v) (kis a scalar)
m (u,u)=0,ifu=0and (w,u)>0,ifuz0
m (utv,w)=(u, w)+ (v, w) (inner product is distributable)

Q The definite integral of two functions, f; and £,, over an
iInterval [a, b] possesses the same properties as well —
we can define “inner product” for functions
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Inner Product of Functions

Q The inner product of two functions f, and £, on an
interval [a, b] is the number

(1) = [ Fix0)fo ()l

Q Two vectors are “orthogonal” if the inner product is zero
— function inner product should be defined similarly:
two functions £, and f, are orthogonal on an interval
[a, b] if

oS =] Fi)f(x)dx =0
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Orthonormal Set of Functions

Q A set of real-valued functions {¢,, ¢,, ¢,, ...} is said to
be orthogonal on an interval [a, b] if

(f-8)=[ $,(0)8,(X)dx =0, mzn

Q The norm of a function ¢ is defined as ||d|| = (¢, ¢)!>.
That is,

ol = || ¢ (s,

If {4} Is an orthogonal set on [a, b] and ||¢ || =1, Vn,
then {¢,} is an orthonormal set of functions on [a, b].

4/29




Orthogonal Series Expansion

a If {4, (x)} is an infinite orthogonal set of functions on the
interval [a, b], is it possible to determine a set of
coefficients ¢, n=0, 1, 2, ... such that

Jfx) = copp(x) T eip(x) + ...+, 0) + ... 7

To find the coefficient of ¢,, we compute (1, ¢,)

(f> #) = co(90,0,) T c1(P1, ) + ... +c,(D0) T ...

Since {¢ (x)} is an orthogonal set, (¢,,¢,) =0, V m # n.
Therefore,

_(/»9)

n 2

n

and f(x)=i

8 5 (o

2

n
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Completeness of an Orthogonal Set

(f»4,)

2

Q In previous discussion, we have /() =Z_; @, (x),

if f{x) can be represented as a linear
combination of ¢,(x) ~ ¢,(x) in the vector space S.

n

However, not every functions in .S can be represented
as a linear combinations of the functions in {¢ (x)}.
This is true only when {¢ (x)} is a complete set of S,
l.e., when {¢ (x)} is a vector basis of S.
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Periodic External Forces

QO Recall that a linear 2"-order DE:
d’x
dt’

where f{(¢) stands for the external force imposed on the

(undamped) system. Often, f{(¢) is a periodic function
(over an interval of interest).

tayx=f(0),

Q Question: Is there a systematic way to represent a
general periodic function?
m Well, Taylor series may work, but can we do better?
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Properties of a Periodic Function

Q Definition: The function f{¢) defined for all ¢ is said to
be periodic provided that there exists a positive number
p such that f(t + p) = f(¥) for all ¢. If p is the smallest
number with this property, then p is called the period of
the function f.

a Remarks:

m Linear combinations of two (or more) periodic functions will still
be a periodic function.

m If we use a set of periodic functions as basis functions to
represent other periodic functions, they should work better
than if we use {1, x, x?, x*, ...}, as in Taylor series.
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Selection of Periodic Basis

Q In 1822, J. Fourier asserted that every function £{7¥) with
period 2 can be represented as a linear combination

of sin nt and cos nt, as follows:

a—zo + i (a, cosnt +b,_ sinnt)
n=1

Q Really? How about the function:
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Fourier Series

Q Note that the set of trigonometric functions:
{1, cos ¢, cos 2¢, cos 3¢, ..., sin ¢, sin 2¢, sin3¢, ...}
are orthogonal on the interval [-7z, 7].
Q The Fourier series of f(r) on [-x, x] is defined as :

where [f(t)= % + Z (an cosnt+b_ sin nt),
n=1

The projection vector of f{r) onto cos nt is

1 ¢7 ‘ 0, )
dy = _I ﬁf(l‘)dl‘ SO, cosnt) ooy Thus, a, = L HCOSZ(;T;
JENE

|| cosnt ||?

b = 1 [ " £()sin ntdt.
/i
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Fourier Series with Period 2p

Q Note that the set of trigonometric functions

TIX 271X 3x .o . 2mx . 3mx
I,cos—,cos——,cos—,+-+,SIn—,sIn——,SIn ——, - - -

P P P P P P

Is orthogonal on the interval [-—p, p].
A The Fourier Series of a function f{(x) on (-p, p) is:

a - nx . N
f(x)=—+) (a,cos—+b, sin—)
2 Z; p p

a, 1 [" f(x)ax
p —-p

an=ljp f(x)cos 2 g, bn=ij” f(x)sin 222 ax
prr p prr p
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0, —n<x<0
T

(1/2)

—x, 0<x<nrx

Example: f(x)={

Q Since p =z, we have
1 ¢=
a, = —j_ f(x)dx
72' T

_ 1 jo 0dx+f(7z—x)dx} : ﬂ\ )

7T
_ T
1 X T
—_ — m—— e
4 0
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(2/2)

09 —r<x<0
T

Example: f(x)={

—x, 0<x<nrx

fﬂ f(x)cosnxdx = % U_Oﬂ Odx + J: (7 —Xx)cos nxdx}

1
a, =—
T

—I{W—X) sin nx
T n

T
1 ¢7 .
+—J sin nxdx
n 0
0

T

—cosnrw+1
= . ( Note that cos nz=(-1)")
0 n°rw

1 cosnx

nw n

_ 1=
I’l272'

n

b, = lJ‘ﬁ(ﬁ—x)sin nxdx _1
7T v0 n

2
nomw n

f(x)= %Jri{l_(_l)n Cosnx+lsin nx}
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Fourier Convergence Theorem

Q Theorem: Let fand /' be piecewise continuous on the
iInterval (—p, p); that is fand /' be continuous except at
a finite number of points, then the Fourier series of f
converges to fat a point of continuity.

At a point of discontinuity the Fourier series converges
to the average:

J(x+)+ f(x-)
2 b
where f(x+) and f{x—) denote the limit of fat x from the
right and the left, respectively
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Example: Converges at Discontinuity

Q The following function is discontinuous at x = 0:

) 0, —m7<x<0
X)=
r—x, 0<x<nrm
Q The series converges to fat x # 0. At x =0, the series

converges to:

fON)+f(0-) 7+0 7«
2 22
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Periodic Extension

Q Fourier series not only represents a function fon the
interval (—p, p), but also gives the periodic extension of f

outside the interval.

A When fis piecewise continuous and the right- and left-
hand derivatives exist at x =—p and x = p, respectively,
then the series converges to the average

[(—p—) + f(-=pH)]/2 = [p-) + —p+)]/2 at the end points:
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Sequence of Partial Sums (1/2)

Q It is interesting to see how the sequence of partial
sums {S,(x)} of a Fourier series approximates a
function. For example,

T T 2 .
S (x)=—, S,(x)=—+—cosx+sinx, ---
4 4 r
y y
_ _ T .
\ \ ; \
\ \ \
\ \ \
\ \ \
\ \ \
[ I [ Y 0\ h\ '
\ \ \
\ \ \
A T . Y __1
| ] I B B I I
10 s o s 10 ~4x 37 21 -7 T 2t 37 4r

Ss(x)on (-4 7, 47)
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Sequence of Partial Sums (2/2)

[EEN

(a) S5(x) on (-7, 7)

y

—

LN
R 4

3O

12 3

(b) S5(x) on (-7, 7)

y
3F
2F
]
Op——————r X
3o 10 17 3

(c) Sg(x) on (-7, 7)

y
3F -
g é
it .
0-.—---.AVAV X
-3 -2 -1 0 1 2 3

(d) Sy5(x) on (-7, 7)
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Even and Odd Functions

Q Afunction is said to be “even” if fi—¢) = f(f) and “odd” if
=) =-A1).
a Note that cos 7 is even while sin ¢ is odd.
/

fin=¢

fte)
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Properties of Even/Odd Functions

Q The product of two even functions is even

Q The product of two odd functions is even

Q The product of an even and an odd functions is odd
a The sum (difference) of two even functions is even
Q The sum (difference) of two odd functions is odd

Q If fis even, then

j f()dt=2 j: f(o)dt.

Q If fis odd, then
j_ F(H)dt=0.
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Cosine and Sine Series

Q If fis an even function on (—p, p), then
1 ¢r 2 P
a = [, Sde =" [ (s,

:_J- f(x)cos—xdx = —J- f(x)cos—xdx

P P
b :—j f(x)sin 2 xax = 0.
pr 4
Q0 Similarly, if fis odd,
a =0,n=0,12,..., =—I f(x)sm—xdx

P
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Fourier Cosine and Sine Series

Q Suppose that the function f(x) is piecewise continuous
on the interval [0, p]. The Fourier cosine series of fis:

ao = nm _ 2 (P nm
f(x)=—+2ancos—x, with a, = —j f(x)cos—uxdx.
2 L p P Jo p
n=1
The Fourier sine series of fis:

- nm _ 2 (P . nm
f(x) = Z b, sin—x, with b, = —J f(x) sin—xdt.
=~ p P Jo p
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-1, —-7<x<0

Example: /®=1% =0m-=

+1, O<x<7z

a Calculate 5, as follows:

bn :lj‘ﬁ f(X)Sinnxdx:...
Vit

zi[icosnx} +1[_1m}:2[1—<—1>"1

7T\ n T n 0 nw

f(x) :iz sin(2n — Ux =i(sinx+lsin3x+lsin5x+---).
Twa (2n-1) T 3 5

The partial sum tends to overshoot the limiting values of f{x) — Gibbs’s Phenomenon:

211 B — 2200

— _5_'3()5) Sy5(x)

s I ! ’

1 osf 0.5} 0.5

ix 0 X 0 x 0 X
| 5:\/\/

] Sk —0-5F 0.5
-1 —-1f -1
3 2 -1 O 1 2 3




Half-Range Expansions

Q Sometimes, we only care about the Fourier series
defined on (0, L). We can define the function fon
(—L, 0) so that the expansion has a simpler form.

Q Three possible choices of extension:

The third one has period L, others have period 2L.
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Example: f(x) =2x —x%, x € (0, 2)

a We can expand f{(x) to the range (-2, 2) and make it an
even (f.,..(x)) or an odd (f, 4,(x)) function:

Foven®) = f(=x) = 2(—x) — (—x)? = 2x — x?, for x <0,

or
foad(®) = A=x) = —[2(=x) — (—x)*] = 2x + x2, for x <O0.

Jeven®) | STX) Joad®)|  fx)
- - CLN - -
/ s\ '/ s\ ,/ \\ ’/ ’I \\
\ 4 \ 4 \ /’ / \
A4 \ 4 A4 4 \
\/ 4 \/ 4 \
i 1 [l 1 1 L 1 '3 I 1 L 1
L] L L] L T L] L] L) L L l L)

L L

L Il \ \ L} I‘ x
4 2 | 2 4 Sa 2N/ N 4

4

ool S AN

(a) Even expansion of f{x) (b) Odd expansion of f{x)

The Fourier expansion of /. .. (x) has only cosine terms

while £, ,4(x) has only sine terms.
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Example: fix) =x%,0<x <L

Q Expand f(x) in a (a) cosine, (b) sine, (c) Fourier series

\ ’
\ l"\ ," \ \ ,"\ F4
\ A AR \ PR /
\ SN /o \ SN /
N\, / N\ / \, N, / \ /
N \ / N \ / \ ,
h N 1 SaLe 1 Soles X
] T 1

(a) Cosine series

y
II [’ II II
/ / / 4
/ ’ / ’
l' ’/ /I 'I
e ——; < X
A T TRl TR A L 2L 3L,74L
/ / / / /
/ 4 4 4 4
! 1 ! 1 1
(b) Sine series
y
. N i J ; ' N
III ll II Il II II II
Je /. J e K J [ ] VA / [ ] ;o
,I 4 ’l 'I ,/ Vs ’
L2 L=’ L.”. Lo~ LoZ. L’ L*’ 1
T T T T 1 T T T X
-4L -3 -2L -L L 2L 3L 4L

(c) Fourier series
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Review: Periodic Driving Force

Q When the driving force f{¢) of a DE is periodic and
defined over [0, p], Half-range expansion of Fourier
series are quite useful. For example, the particular
solution of the DE:

d’x
dt’

+hv= /(1)

m

can be solved by first representing f{¥) by a half-range
sine expansion and assume a particular solution of the
form:
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Example: x"+4x = 4t, x(0)=x(1)=0 (1/2)

Q Assume that 0 <z <1 for f{¢), we can use odd extension
with p =1 to get the Fourier sine series of f:

n+l

4¢ = EZ (=D sin nt.
T n=1

n
The solution x(¢) should be in sine series form as well:

x(t)=Y b, sinnnt.
n=1

Note that x(7) satisfies the boundary conditions.
Substitute the solution into the DE, we have

00 o ¢ 1\nt+l
Z:(—nzﬂ2 +4)b, sinnmt = §Z =1

n=1 T n

sin nt.
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Example: x"+4x = 4t, x(0)=x(1)=0 (2/2)

Q The solution of the coefficients 5, is then
_ 8.(_1)n+1
" nx(d-n*rn?)

The Fourier series solution can be expressed as:

(=)™ sinnm
x(t) =— Z; G 0<t<0).

which is equivalent to 03

sin 2t

x(t)=t—

sin 2

In the interval (-1, 1). 0s]
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