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Orthogonal Functions & Inner Product

 Vectors in linear algebra are not just n-tuples

 If u and v are two n-tuple vectors in 3D-space, then the 
inner product (u, v) possesses the following properties:
 (u, v) = (v, u) (inner product is commutable)

 (ku, v) = k(u, v) (k is a scalar)

 (u, u) = 0, if u = 0 and (u, u) > 0, if u  0

 (u+v, w) = (u, w) + (v, w) (inner product is distributable)

 The definite integral of two functions, f1 and f2, over an 
interval [a, b] possesses the same properties as well 
we can define “inner product” for functions
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Inner Product of Functions

 The inner product of two functions f1 and f2 on an 
interval [a, b] is the number

 Two vectors are “orthogonal” if the inner product is zero 
 function inner product should be defined similarly: 
two functions f1 and f2 are orthogonal on an interval
[a, b] if
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Orthonormal Set of Functions

 A set of real-valued functions {f0, f1, f2, …} is said to 
be orthogonal on an interval [a, b] if

 The norm of a function f is defined as ||f|| = (f, f)1/2. 
That is,

If {fn} is an orthogonal set on [a, b] and ||fn|| = 1, n,
then {fn} is an orthonormal set of functions on [a, b].
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Orthogonal Series Expansion

 If {fn(x)} is an infinite orthogonal set of functions on the 
interval [a, b], is it possible to determine a set of 
coefficients cn, n = 0, 1, 2, … such that

f(x) = c0f0(x) + c1f1(x) +  + cnfn(x) +  ?

To find the coefficient of fn, we compute (f , fn)

(f , fn) = c0(f0,fn) + c1(f1,fn) +  + cn(fn,fn) + 

Since {fn(x)} is an orthogonal set, (fm,fn) = 0,  m  n.
Therefore,
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Completeness of an Orthogonal Set

 In previous discussion, we have
if f(x) can be represented as a linear
combination of f0(x) ~ f(x) in the vector space S.

However, not every functions in S can be represented 
as a linear combinations of the functions in {fn(x)}. 
This is true only when {fn(x)} is a complete set of S, 
i.e., when {fn(x)} is a vector basis of S.
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Periodic External Forces

 Recall that a linear 2nd-order DE:

where f(t) stands for the external force imposed on the 
(undamped) system. Often, f(t) is a periodic function 
(over an interval of interest).

 Question: Is there a systematic way to represent a 
general periodic function?
 Well, Taylor series may work, but can we do better?
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Properties of a Periodic Function

 Definition: The function f(t) defined for all t is said to 
be periodic provided that there exists a positive number 
p such that f(t + p) = f(t) for all t. If p is the smallest 
number with this property, then p is called the period of 
the function f.

 Remarks:
 Linear combinations of two (or more) periodic functions will still 

be a periodic function.

 If we use a set of periodic functions as basis functions to 
represent other periodic functions, they should work better 
than if we use {1, x, x2, x3, …}, as in Taylor series.
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Selection of Periodic Basis

 In 1822, J. Fourier asserted that every function f(t) with 
period 2 can be represented as a linear combination 
of sin nt and cos nt, as follows:

 Really? How about the function:
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Fourier Series

 Note that the set of trigonometric functions:

{1, cos t, cos 2t, cos 3t, …, sin t, sin 2t, sin3t, …}

are orthogonal on the interval [–, ].

 The Fourier series of f(t) on [–, ] is defined as :
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Fourier Series with Period 2p

 Note that the set of trigonometric functions

is orthogonal on the interval [–p, p].

 The Fourier Series of a function f(x) on (–p, p) is: 
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Example:                               (1/2)

 Since p = , we have
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Example:                               (2/2)
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Fourier Convergence Theorem

 Theorem: Let f and f  be piecewise continuous on the 
interval (–p, p); that is f and f  be continuous except at 
a finite number of points, then the Fourier series of f
converges to f at a point of continuity.

At a point of discontinuity the Fourier series converges 
to the average:

where f(x+) and f(x–) denote the limit of f at x from the 
right and the left, respectively
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Example: Converges at Discontinuity

 The following function is discontinuous at x = 0:

 The series converges to f at x  0. At x = 0, the series 
converges to:
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Periodic Extension

 Fourier series not only represents a function f on the 
interval (–p, p), but also gives the periodic extension of f
outside the interval.

 When f is piecewise continuous and the right- and left-
hand derivatives exist at x = –p and x = p, respectively, 
then the series converges to the average
[f(–p–) + f(–p+)]/2 = [f(p–) + f(–p+)]/2 at the end points:

–pp–2p–3p–4 p p2 p3 p4
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Sequence of Partial Sums (1/2)

 It is interesting to see how the sequence of partial 
sums {SN(x)} of a Fourier series approximates a 
function.  For example,
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Sequence of Partial Sums (2/2)
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Even and Odd Functions

 A function is said to be “even” if f(–t) = f(t) and “odd”  if 
f(–t) = –f(t).

 Note that cos t is even while sin t is odd.
f
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Properties of Even/Odd Functions

 The product of two even functions is even

 The product of two odd functions is even

 The product of an even and an odd functions is odd

 The sum (difference) of two even functions is even

 The sum (difference) of two odd functions is odd

 If f is even, then

 If f is odd, then
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Cosine and Sine Series

 If f is an even function on (–p, p), then

 Similarly, if f is odd,
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Fourier Cosine and Sine Series

 Suppose that the function f(x) is piecewise continuous 
on the interval [0, p]. The Fourier cosine series of f is:

The Fourier sine series of f is: 
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Example:

 Calculate bn as follows:
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The partial sum tends to overshoot the limiting values of f(x)  Gibbs’s Phenomenon: 
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Half-Range Expansions

 Sometimes, we only care about the Fourier series 
defined on (0, L). We can define the function f on
(–L, 0) so that the expansion has a simpler form.

 Three possible choices of extension:

The third one has period L, others have period 2L.
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Example: f(x) = 2x – x2, x  (0, 2)

 We can expand f(x) to the range (–2, 2) and make it an 
even (feven(x)) or an odd (fodd(x)) function:

feven(x) = f(–x) = 2(–x) – (–x)2 = –2x – x2, for  x < 0,

or
fodd(x) = –f(–x) = –[2(–x) – (–x)2] = 2x + x2 , for  x < 0.

The Fourier expansion of feven(x) has only cosine terms 
while fodd(x) has only sine terms.

(a) Even expansion of f(x)

feven(x)

x
–4 –2 2 4

(b) Odd expansion of f(x)

x
–4 –2 2 4

fodd(x)f(x) f(x)
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Example: f(x) = x2, 0 < x < L

 Expand f(x) in a (a) cosine, (b) sine, (c) Fourier series

y

x

(a) Cosine series

- 4L - 3L - 2L - L L 2L 3L 4L

y

x

(b) Sine series

- 4L - 3L - 2L - L L 2L 3L 4L

y

x

(c) Fourier series

- 4L - 3L - 2L - L L 2L 3L 4L
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Review: Periodic Driving Force

 When the driving force f(t) of a DE is periodic and 
defined over [0, p], Half-range expansion of Fourier 
series are quite useful.  For example, the particular 
solution of the DE:

can be solved by first representing f(t) by a half-range 
sine expansion and assume a particular solution of the 
form:
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Example: x"+4x = 4t, x(0)=x(1)=0 (1/2)

 Assume that 0 < t < 1 for f(t), we can use odd extension 
with p = 1 to get the Fourier sine series of f:

The solution x(t) should be in sine series form as well:

Note that x(t) satisfies the boundary conditions. 
Substitute the solution into the DE, we have
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Example: x"+4x = 4t, x(0)=x(1)=0 (2/2)

 The solution of the coefficients bn is then

The Fourier series solution can be expressed as:

which is equivalent to

in the interval (–1, 1).
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