Fourier Series Methods ${ }^{\dagger}$

National Chiao Tung University
Chun-Jen Tsai
12/9/2019

Orthogonal Functions \& Inner Product

- Vectors in linear algebra are not just n-tuples
- If \mathbf{u} and \mathbf{v} are two n-tuple vectors in 3D-space, then the inner product (\mathbf{u}, \mathbf{v}) possesses the following properties:
- $(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u})$ (inner product is commutable)

■ ($k \mathbf{u}, \mathbf{v}$) $=k(\mathbf{u}, \mathbf{v})(k$ is a scalar)

- (\mathbf{u}, \mathbf{u}) $=0$, if $\mathbf{u}=0$ and $(\mathbf{u}, \mathbf{u})>0$, if $\mathbf{u} \neq 0$
- $(\mathbf{u}+\mathbf{v}, \mathbf{w})=(\mathbf{u}, \mathbf{w})+(\mathbf{v}, \mathbf{w})$ (inner product is distributable)
- The definite integral of two functions, f_{1} and f_{2}, over an interval $[a, b]$ possesses the same properties as well \rightarrow we can define "inner product" for functions

Inner Product of Functions

- The inner product of two functions f_{1} and f_{2} on an interval $[a, b]$ is the number

$$
\left(f_{1}, f_{2}\right)=\int_{a}^{b} f_{1}(x) f_{2}(x) d x
$$

- Two vectors are "orthogonal" if the inner product is zero \rightarrow function inner product should be defined similarly: two functions f_{1} and f_{2} are orthogonal on an interval $[a, b]$ if

$$
\left(f_{1}, f_{2}\right)=\int_{a}^{b} f_{1}(x) f_{2}(x) d x=0
$$

Orthonormal Set of Functions

- A set of real-valued functions $\left\{\phi_{0}, \phi_{1}, \phi_{2}, \ldots\right\}$ is said to be orthogonal on an interval $[a, b]$ if

$$
\left(\phi_{m}, \phi_{n}\right)=\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x=0, \quad m \neq n .
$$

- The norm of a function ϕ is defined as $\|\phi\|=(\phi, \phi)^{1 / 2}$. That is,

$$
\|\phi(x)\|=\sqrt{\int_{a}^{b} \phi^{2}(x) d x}
$$

If $\left\{\phi_{n}\right\}$ is an orthogonal set on $[a, b]$ and $\left\|\phi_{n}\right\|=1, \forall n$, then $\left\{\phi_{n}\right\}$ is an orthonormal set of functions on $[a, b]$.

Orthogonal Series Expansion

- If $\left\{\phi_{n}(x)\right\}$ is an infinite orthogonal set of functions on the interval $[a, b]$, is it possible to determine a set of coefficients $c_{n}, n=0,1,2, \ldots$ such that

$$
f(x)=c_{0} \phi_{0}(x)+c_{1} \phi_{1}(x)+\ldots+c_{n} \phi_{n}(x)+\ldots ?
$$

To find the coefficient of ϕ_{n}, we compute (f, ϕ_{n})

$$
\left(f, \phi_{n}\right)=c_{0}\left(\phi_{0}, \phi_{n}\right)+c_{1}\left(\phi_{1}, \phi_{n}\right)+\ldots+c_{n}\left(\phi_{n}, \phi_{n}\right)+\ldots
$$

Since $\left\{\phi_{n}(x)\right\}$ is an orthogonal set, $\left(\phi_{m}, \phi_{n}\right)=0, \forall m \neq n$. Therefore,

$$
c_{n}=\frac{\left(f, \phi_{n}\right)}{\left\|\phi_{n}\right\|^{2}} \quad \text { and } \quad f(x)=\sum_{n=0}^{\infty} \frac{\left(f, \phi_{n}\right)}{\left\|\phi_{n}\right\|^{2}} \phi_{n}(x) .
$$

Completeness of an Orthogonal Set

- In previous discussion, we have $f(x)=\sum_{n=0}^{\infty} \frac{\left(f, \phi_{n}\right)}{\left\|\phi_{n}\right\|^{2}} \phi_{n}(x)$, if $f(x)$ can be represented as a linear combination of $\phi_{0}(x) \sim \phi_{\infty}(x)$ in the vector space S.

However, not every functions in S can be represented as a linear combinations of the functions in $\left\{\phi_{n}(x)\right\}$. This is true only when $\left\{\phi_{n}(x)\right\}$ is a complete set of S, i.e., when $\left\{\phi_{n}(x)\right\}$ is a vector basis of S.

Periodic External Forces

- Recall that a linear $2^{\text {nd }}$-order DE:

$$
\frac{d^{2} x}{d t^{2}}+\omega_{0}^{2} x=f(t),
$$

where $f(t)$ stands for the external force imposed on the (undamped) system. Often, $f(t)$ is a periodic function (over an interval of interest).

- Question: Is there a systematic way to represent a general periodic function?
- Well, Taylor series may work, but can we do better?

Properties of a Periodic Function

- Definition: The function $f(t)$ defined for all t is said to be periodic provided that there exists a positive number p such that $f(t+p)=f(t)$ for all t. If p is the smallest number with this property, then p is called the period of the function f.
- Remarks:
- Linear combinations of two (or more) periodic functions will still be a periodic function.
- If we use a set of periodic functions as basis functions to represent other periodic functions, they should work better than if we use $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$, as in Taylor series.

Selection of Periodic Basis

- In 1822, J. Fourier asserted that every function $f(t)$ with period 2π can be represented as a linear combination of $\sin n t$ and $\cos n t$, as follows:

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right),
$$

- Really? How about the function:

Fourier Series

- Note that the set of trigonometric functions:
$\{1, \cos t, \cos 2 t, \cos 3 t, \ldots, \sin t, \sin 2 t, \sin 3 t, \ldots\}$
are orthogonal on the interval $[-\pi, \pi]$.
- The Fourier series of $f(t)$ on $[-\pi, \pi]$ is defined as:
where $f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)$,

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t .
\end{aligned}
$$

Fourier Series with Period $2 p$

- Note that the set of trigonometric functions

$$
\left\{1, \cos \frac{\pi x}{p}, \cos \frac{2 \pi x}{p}, \cos \frac{3 \pi x}{p}, \cdots, \sin \frac{\pi x}{p}, \sin \frac{2 \pi x}{p}, \sin \frac{3 \pi x}{p}, \cdots\right\}
$$

is orthogonal on the interval $[-p, p]$.

- The Fourier Series of a function $f(x)$ on $(-p, p)$ is:

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{p}+b_{n} \sin \frac{n \pi x}{p}\right) \\
a_{0} & =\frac{1}{p} \int_{-p}^{p} f(x) d x \\
a_{n} & =\frac{1}{p} \int_{-p}^{p} f(x) \cos \frac{n \pi x}{p} d x, \quad b_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \sin \frac{n \pi x}{p} d x
\end{aligned}
$$

Example: $\quad f(x)=\left\{\begin{array}{lr}0, & -\pi<x<0 \\ \pi-x, & 0 \leq x<\pi\end{array} \quad(1 / 2)\right.$

\square Since $p=\pi$, we have

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& =\frac{1}{\pi}\left[\int_{-\pi}^{0} 0 d x+\int_{0}^{\pi}(\pi-x) d x\right] \\
& =\frac{1}{\pi}\left[\pi x-\frac{x^{2}}{2}\right]_{0}^{\pi}=\frac{\pi}{2}
\end{aligned}
$$

Example: $\quad f(x)=\left\{\begin{array}{ll}0, & -\pi<x<0 \\ \pi-x, & 0 \leq x<\pi\end{array} \quad(2 / 2)\right.$

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi}\left[\int_{-\pi}^{0} 0 d x+\int_{0}^{\pi}(\pi-x) \cos n x d x\right] \\
& =\frac{1}{\pi}\left[\left.(\pi-x) \frac{\sin n x}{n}\right|_{0} ^{\pi}+\frac{1}{n} \int_{0}^{\pi} \sin n x d x\right] \\
& =-\left.\frac{1}{n \pi} \frac{\cos n x}{n}\right|_{0} ^{\pi}=\frac{-\cos n \pi+1}{n^{2} \pi} \quad\left(\text { Note that } \cos n \pi=(-1)^{n}\right) \\
& =\frac{1-(-1)^{n}}{n^{2} \pi} \\
b_{n} & =\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) \sin n x d x=\frac{1}{n} \\
f(x) & =\frac{\pi}{4}+\sum_{n=1}^{\infty}\left\{\frac{1-(-1)^{n}}{n^{2} \pi} \cos n x+\frac{1}{n} \sin n x\right\}
\end{aligned}
$$

Fourier Convergence Theorem

- Theorem: Let f and f^{\prime} be piecewise continuous on the interval $(-p, p)$; that is f and f^{\prime} be continuous except at a finite number of points, then the Fourier series of f converges to f at a point of continuity.

At a point of discontinuity the Fourier series converges to the average:

$$
\frac{f(x+)+f(x-)}{2},
$$

where $f(x+)$ and $f(x-)$ denote the limit of f at x from the right and the left, respectively

Example: Converges at Discontinuity

- The following function is discontinuous at $x=0$:

$$
f(x)=\left\{\begin{array}{lr}
0, & -\pi<x<0 \\
\pi-x, & 0 \leq x<\pi
\end{array}\right.
$$

- The series converges to f at $x \neq 0$. At $x=0$, the series converges to:

$$
\frac{f(0+)+f(0-)}{2}=\frac{\pi+0}{2}=\frac{\pi}{2}
$$

Periodic Extension

\square Fourier series not only represents a function f on the interval $(-p, p)$, but also gives the periodic extension of f outside the interval.

- When f is piecewise continuous and the right- and lefthand derivatives exist at $x=-p$ and $x=p$, respectively, then the series converges to the average
$\left[f(-p-)+f\left(-p^{+}\right)\right] / 2=\left[f(p-)+f\left(-p^{+}\right)\right] / 2$ at the end points:

Sequence of Partial Sums (1/2)

- It is interesting to see how the sequence of partial sums $\left\{S_{N}(x)\right\}$ of a Fourier series approximates a function. For example,

$$
S_{1}(x)=\frac{\pi}{4}, S_{2}(x)=\frac{\pi}{4}+\frac{2}{\pi} \cos x+\sin x, \cdots
$$

Sequence of Partial Sums (2/2)

(a) $S_{3}(x)$ on $(-\pi, \pi)$

(b) $S_{5}(x)$ on $(-\pi, \pi)$

(d) $S_{15}(x)$ on $(-\pi, \pi)$

Even and Odd Functions

- A function is said to be "even" if $f(-t)=f(t)$ and "odd" if $f(-t)=-f(t)$.
- Note that $\cos t$ is even while $\sin t$ is odd.

Properties of Even/Odd Functions

- The product of two even functions is even
- The product of two odd functions is even
- The product of an even and an odd functions is odd
- The sum (difference) of two even functions is even
- The sum (difference) of two odd functions is odd
- If f is even, then

$$
\int_{-a}^{a} f(t) d t=2 \int_{0}^{a} f(t) d t .
$$

- If f is odd, then

$$
\int_{-a}^{a} f(t) d t=0
$$

Cosine and Sine Series

- If f is an even function on $(-p, p)$, then

$$
\begin{aligned}
& a_{0}=\frac{1}{p} \int_{-p}^{p} f(x) d x=\frac{2}{p} \int_{0}^{p} f(x) d x, \\
& a_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \cos \frac{n \pi}{p} x d x=\frac{2}{p} \int_{0}^{p} f(x) \cos \frac{n \pi}{p} x d x, \\
& b_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \sin \frac{n \pi}{p} x d x=0 .
\end{aligned}
$$

- Similarly, if f is odd,

$$
a_{n}=0, n=0,1,2, \ldots, \quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \frac{n \pi}{p} x d x .
$$

Fourier Cosine and Sine Series

- Suppose that the function $f(x)$ is piecewise continuous on the interval $[0, p]$. The Fourier cosine series of f is:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi}{p} x, \text { with } a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \frac{n \pi}{p} x d x .
$$

The Fourier sine series of f is:

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi}{p} x, \text { with } b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \frac{n \pi}{p} x d t
$$

Example: $f(x)=\left\{\begin{array}{cc}0, & x=0, \pi,-\pi \\ +1, & 0<x<\pi\end{array}\right.$

- Calculate b_{n} as follows:

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\cdots \\
& =\frac{1}{\pi}\left[\frac{1}{n} \cos n x\right]_{-\pi}^{0}+\frac{1}{\pi}\left[-\frac{1}{n} \cos n x\right]_{0}^{\pi}=\frac{2\left[1-(-1)^{n}\right]}{n \pi} . \\
f(x) & =\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{(2 n-1)}=\frac{4}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\cdots\right) .
\end{aligned}
$$

The partial sum tends to overshoot the limiting values of $f(x) \rightarrow$ Gibbs's Phenomenon:

Half-Range Expansions

- Sometimes, we only care about the Fourier series defined on $(0, L)$. We can define the function f on $(-L, 0)$ so that the expansion has a simpler form.
- Three possible choices of extension:

The third one has period L, others have period $2 L$.

Example: $f(x)=2 x-x^{2}, x \in(0,2)$

- We can expand $f(x)$ to the range $(-2,2)$ and make it an even $\left(f_{\text {even }}(x)\right)$ or an odd $\left(f_{\text {odd }}(x)\right)$ function:

$$
f_{\text {even }}(x)=f(-x)=2(-x)-(-x)^{2}=-2 x-x^{2}, \text { for } x<0,
$$

or

$$
\begin{aligned}
& f_{\text {odd }}(x)=-f(-x)=-\left[2(-x)-(-x)^{2}\right]=2 x+x^{2}, \text { for } x<0 . \\
& \\
& \text { (a) Even expansion of } f(x)
\end{aligned}
$$

The Fourier expansion of $f_{\text {even }}(x)$ has only cosine terms while $f_{\text {odd }}(x)$ has only sine terms.

Example: $f(x)=x^{2}, 0<x<L$

- Expand $f(x)$ in a (a) cosine, (b) sine, (c) Fourier series

(a) Cosine series

(b) Sine series

(c) Fourier series

Review: Periodic Driving Force

- When the driving force $f(t)$ of a DE is periodic and defined over $[0, p]$, Half-range expansion of Fourier series are quite useful. For example, the particular solution of the DE:

$$
m \frac{d^{2} x}{d t^{2}}+k x=f(t)
$$

can be solved by first representing $f(t)$ by a half-range sine expansion and assume a particular solution of the form:

$$
x_{p}(t)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi}{p} t
$$

Example: $x^{\prime \prime}+4 x=4 t, x(0)=x(1)=0(1 / 2)$

- Assume that $0<t<1$ for $f(t)$, we can use odd extension with $p=1$ to get the Fourier sine series of f :

$$
4 t=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n \pi t .
$$

The solution $x(t)$ should be in sine series form as well:

$$
x(t)=\sum_{n=1}^{\infty} b_{n} \sin n \pi t .
$$

Note that $x(t)$ satisfies the boundary conditions.
Substitute the solution into the DE, we have

$$
\sum_{n=1}^{\infty}\left(-n^{2} \pi^{2}+4\right) b_{n} \sin n \pi t=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n \pi t .
$$

Example: $x^{\prime \prime}+4 x=4 t, x(0)=x(1)=0(2 / 2)$

- The solution of the coefficients b_{n} is then

$$
b_{n}=\frac{8 \cdot(-1)^{n+1}}{n \pi\left(4-n^{2} \pi^{2}\right)} .
$$

The Fourier series solution can be expressed as:

$$
x(t)=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin n \pi t}{n\left(4-n^{2} \pi^{2}\right)}, \quad(0 \leq t \leq 1) .
$$

which is equivalent to

$$
x(t)=t-\frac{\sin 2 t}{\sin 2}
$$

in the interval $(-1,1)$.

