
Fourier Series Methods†

National Chiao Tung University

Chun-Jen Tsai

12/9/2019
† Chapter 11.1 ~ 11.3 in the textbook.



/29

Orthogonal Functions & Inner Product

 Vectors in linear algebra are not just n-tuples

 If u and v are two n-tuple vectors in 3D-space, then the 
inner product (u, v) possesses the following properties:
 (u, v) = (v, u) (inner product is commutable)

 (ku, v) = k(u, v) (k is a scalar)

 (u, u) = 0, if u = 0 and (u, u) > 0, if u  0

 (u+v, w) = (u, w) + (v, w) (inner product is distributable)

 The definite integral of two functions, f1 and f2, over an 
interval [a, b] possesses the same properties as well 
we can define “inner product” for functions
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Inner Product of Functions

 The inner product of two functions f1 and f2 on an 
interval [a, b] is the number

 Two vectors are “orthogonal” if the inner product is zero 
 function inner product should be defined similarly: 
two functions f1 and f2 are orthogonal on an interval
[a, b] if
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Orthonormal Set of Functions

 A set of real-valued functions {f0, f1, f2, …} is said to 
be orthogonal on an interval [a, b] if

 The norm of a function f is defined as ||f|| = (f, f)1/2. 
That is,

If {fn} is an orthogonal set on [a, b] and ||fn|| = 1, n,
then {fn} is an orthonormal set of functions on [a, b].
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Orthogonal Series Expansion

 If {fn(x)} is an infinite orthogonal set of functions on the 
interval [a, b], is it possible to determine a set of 
coefficients cn, n = 0, 1, 2, … such that

f(x) = c0f0(x) + c1f1(x) +  + cnfn(x) +  ?

To find the coefficient of fn, we compute (f , fn)

(f , fn) = c0(f0,fn) + c1(f1,fn) +  + cn(fn,fn) + 

Since {fn(x)} is an orthogonal set, (fm,fn) = 0,  m  n.
Therefore,
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Completeness of an Orthogonal Set

 In previous discussion, we have
if f(x) can be represented as a linear
combination of f0(x) ~ f(x) in the vector space S.

However, not every functions in S can be represented 
as a linear combinations of the functions in {fn(x)}. 
This is true only when {fn(x)} is a complete set of S, 
i.e., when {fn(x)} is a vector basis of S.
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Periodic External Forces

 Recall that a linear 2nd-order DE:

where f(t) stands for the external force imposed on the 
(undamped) system. Often, f(t) is a periodic function 
(over an interval of interest).

 Question: Is there a systematic way to represent a 
general periodic function?
 Well, Taylor series may work, but can we do better?
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Properties of a Periodic Function

 Definition: The function f(t) defined for all t is said to 
be periodic provided that there exists a positive number 
p such that f(t + p) = f(t) for all t. If p is the smallest 
number with this property, then p is called the period of 
the function f.

 Remarks:
 Linear combinations of two (or more) periodic functions will still 

be a periodic function.

 If we use a set of periodic functions as basis functions to 
represent other periodic functions, they should work better 
than if we use {1, x, x2, x3, …}, as in Taylor series.
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Selection of Periodic Basis

 In 1822, J. Fourier asserted that every function f(t) with 
period 2 can be represented as a linear combination 
of sin nt and cos nt, as follows:

 Really? How about the function:
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Fourier Series

 Note that the set of trigonometric functions:

{1, cos t, cos 2t, cos 3t, …, sin t, sin 2t, sin3t, …}

are orthogonal on the interval [–, ].

 The Fourier series of f(t) on [–, ] is defined as :

where  ,sincos
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Fourier Series with Period 2p

 Note that the set of trigonometric functions

is orthogonal on the interval [–p, p].

 The Fourier Series of a function f(x) on (–p, p) is: 
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Example:                               (1/2)

 Since p = , we have
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Fourier Convergence Theorem

 Theorem: Let f and f  be piecewise continuous on the 
interval (–p, p); that is f and f  be continuous except at 
a finite number of points, then the Fourier series of f
converges to f at a point of continuity.

At a point of discontinuity the Fourier series converges 
to the average:

where f(x+) and f(x–) denote the limit of f at x from the 
right and the left, respectively

,
2

)()( - xfxf

14



/29

Example: Converges at Discontinuity

 The following function is discontinuous at x = 0:

 The series converges to f at x  0. At x = 0, the series 
converges to:
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Periodic Extension

 Fourier series not only represents a function f on the 
interval (–p, p), but also gives the periodic extension of f
outside the interval.

 When f is piecewise continuous and the right- and left-
hand derivatives exist at x = –p and x = p, respectively, 
then the series converges to the average
[f(–p–) + f(–p+)]/2 = [f(p–) + f(–p+)]/2 at the end points:
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Sequence of Partial Sums (1/2)

 It is interesting to see how the sequence of partial 
sums {SN(x)} of a Fourier series approximates a 
function.  For example,
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Sequence of Partial Sums (2/2)
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Even and Odd Functions

 A function is said to be “even” if f(–t) = f(t) and “odd”  if 
f(–t) = –f(t).

 Note that cos t is even while sin t is odd.
f

t
t0

f(t) = t2

–t0

f(–t0)

f

t

f(t) = t3

f(t0)

t0

–t0

f(–t0)

f(t0)

19



/29

Properties of Even/Odd Functions

 The product of two even functions is even

 The product of two odd functions is even

 The product of an even and an odd functions is odd

 The sum (difference) of two even functions is even

 The sum (difference) of two odd functions is odd

 If f is even, then

 If f is odd, then
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Cosine and Sine Series

 If f is an even function on (–p, p), then

 Similarly, if f is odd,
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Fourier Cosine and Sine Series

 Suppose that the function f(x) is piecewise continuous 
on the interval [0, p]. The Fourier cosine series of f is:

The Fourier sine series of f is: 
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Example:

 Calculate bn as follows:
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The partial sum tends to overshoot the limiting values of f(x)  Gibbs’s Phenomenon: 
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Half-Range Expansions

 Sometimes, we only care about the Fourier series 
defined on (0, L). We can define the function f on
(–L, 0) so that the expansion has a simpler form.

 Three possible choices of extension:

The third one has period L, others have period 2L.
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Example: f(x) = 2x – x2, x  (0, 2)

 We can expand f(x) to the range (–2, 2) and make it an 
even (feven(x)) or an odd (fodd(x)) function:

feven(x) = f(–x) = 2(–x) – (–x)2 = –2x – x2, for  x < 0,

or
fodd(x) = –f(–x) = –[2(–x) – (–x)2] = 2x + x2 , for  x < 0.

The Fourier expansion of feven(x) has only cosine terms 
while fodd(x) has only sine terms.

(a) Even expansion of f(x)

feven(x)

x
–4 –2 2 4

(b) Odd expansion of f(x)

x
–4 –2 2 4

fodd(x)f(x) f(x)
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Example: f(x) = x2, 0 < x < L

 Expand f(x) in a (a) cosine, (b) sine, (c) Fourier series
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(c) Fourier series
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Review: Periodic Driving Force

 When the driving force f(t) of a DE is periodic and 
defined over [0, p], Half-range expansion of Fourier 
series are quite useful.  For example, the particular 
solution of the DE:

can be solved by first representing f(t) by a half-range 
sine expansion and assume a particular solution of the 
form:
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Example: x"+4x = 4t, x(0)=x(1)=0 (1/2)

 Assume that 0 < t < 1 for f(t), we can use odd extension 
with p = 1 to get the Fourier sine series of f:

The solution x(t) should be in sine series form as well:

Note that x(t) satisfies the boundary conditions. 
Substitute the solution into the DE, we have
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Example: x"+4x = 4t, x(0)=x(1)=0 (2/2)

 The solution of the coefficients bn is then

The Fourier series solution can be expressed as:

which is equivalent to

in the interval (–1, 1).
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