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Power Series

 A power series in (x – a) is a series of the form

Such a series is said to be a power series centered at a.

 A power series is convergent at a value x  I if the limit 
of partial sums exists, i.e.

The interval of convergence, I, of a power series is the 
set of all numbers where the series converges.
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Ratio Test

 Convergence of a power series can often be checked 
by the ratio test: suppose cn  0 for all n in

and that

If L < 1, the series converges absolutely; if L > 1 the 
series diverges; and if L = 1 the test is inconclusive.
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Radius of Convergence                (1/2)

 A power series f(x) = (x – a)n has a radius of 
convergence , such that f(x) converges for |x – a| < 
and diverges for |x – a| > .

 If  > 0, f(x) converges for |x – a| < , and diverges for 
|x – a| > .  If f(x) converges only at its center a, then  = 
0.  If it converges for all x,  = .

 The ratio test is inconclusive at an end point a  .
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Radius of Convergence                (2/2)

 Given the power series g(x) = xn,  if the limit

exists, then
 If  = 0, then g(x) diverges for all x  0.

 If 0 <  < , g(x) converges if |x| < , and diverges if |x| > .

 If  = , then g(x) converges for all x.
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Power Series of a Function f(x)

 The Taylor series of a function f(x) is defined as

If y converges to f(x) for all x in some open interval 
containing a, then we say that the function f(x) is 
analytic at x = a.
 Polynomials are analytic; a rational function is analytic 

wherever the denominator is not zero.

 Arithmetic of power series
 The operations of addition, multiplication, and division can be 

applied to power series as in polynomials.

 If f and g are analytic at a, so are f+g, f·g, and f/g (if g(a)  0).
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Examples of Power Series

 By Taylor ( a) or Maclaurin (a = 0) series expansions, 
common functions can be written in power series forms:
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Example: Adding Two Power Series

 Write as one power 
series.

Solution:
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Power Series Method

 The power series method for solving a DE consists of 
substituting the power series

in the DE and determining the coefficients c0, c1, … so 
that the equation satisfies.

 If , then  .

 If , for all x in the interval of 
convergence, then an = bn for all n  0.
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Example: y' + 2y = 0

 Since , and   ,

we have

Perform change of index n to align xn,

We have a recurrence relation cn+1 = –2cn/(n+1), n  0.

 cn = (–2)nc0/n!, n  1 
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Power Series Solutions

 Suppose the linear 2nd-order DE

a2(x)y" + a1(x)y' + a0(x)y = 0

is put into the standard form

y" + P(x)y' + Q(x)y = 0,
then:

A point x = x0 is said to be an ordinary point of the DE if 
both P(x) and Q(x) are analytic at x0.  A point that is not 
an ordinary point is said to be a singular point of the 
equation.
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Example: Ordinary, Singular Points

 Every finite value of x is an ordinary point of

y" + (ex) y' + (sin x) y = 0.

 x = 0 is a singular point of the DE

y" + (ex) y' + (ln x) y = 0.
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Polynomial-Coefficient DEs

 Recall that a polynomial is analytic at any value x, and 
a rational function is analytic except at points where its 
denominator is zero.  Thus, a 2nd-order polynomial-
coefficient DE has singular points when a2(x) = 0,
since

 Examples
 The Euler equation ax2y + bxy' + cy = 0 has a singular point

at x = 0.

 The equation (x2 + 1)y + xy – y = 0 has singular points
at x = i.
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Solutions Near an Ordinary Point

 Theorem: If x = x0 is an ordinary point of

a2(x)y + a1(x)y + a0(x)y = 0,

we can always find two linearly independent solutions 
in the form of a power series centered at x0, that is,

A series solution converges at least on some interval 
defined by | x – x0 | < , where  is the distance from x0

to the nearest singular point.

 Note that for | x – x0 |  , y(x) may or may not converge.  
Further investigations are required.
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Ex: (x2 – 4)y + 3xy+ y = 0, y(0) = 4, y(0) =1

 Note that the singular points are 2, there should be a 
solution with radius of convergence at least 2.
Since

Therefore,

Combining the terms, we have  .

add dummy terms for n = 0, 1
change of index n add dummy term n = 0
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Ex: (x2 – 4)y + 3xy+ y = 0                (2/2)

 When n = 0, 2, 4, …, we have

When n = 1, 3, 5, …, we have

Therefore, the solution is

and y(0) = c0 = 4, y(0) = c1 = 1.
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Translated Series Solutions

 If the initial condition is given at x0 other than zero, we 
have to assume the general solution form

This way, we can obtain the IVP solution with y(x0) = c0

and y(x0) = c1 easily.

 As an alternative, we can translate the equation by 
letting t = x – x0 and assume the solution form:
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Ex: (t2–2t–3)y+3(t–1)y+y = 0, y(1) = 4, y(1) = –1

 Perform a change of variable to the DE by x = t – 1:

t2 – 2t – 3 = (x + 1)2 – 2(x + 1) – 3 = x2 – 4,
and

Hence, the DE becomes (x2–4)d2y/dx2 + 3x(dy/dx) + y = 0.
 Same DE as the previous one.

Substituting x = t–1 into the previous solution, we get

which converges if –1 < t < 3.
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Example: y + (cos x) y = 0 (1/2)

 Since
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Example: y + (cos x) y = 0 (2/2)

We have:

Therefore:

with region of convergence | x | < .
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Solutions about Singular Points

 Let y(x) = Scnxn, if P(x) is not analytic at 0, its power 
series form Sbkxk will not converge to P(0) at 0 given 
any bk. However, it is possible that

(Sbkxk) (Sncnxn–1)

may still converge to P(x)y(x).

In short, even if x = 0 is a singular point, the power 
series expression of

y + P(x)y + Q(x)y

may still converge to zero.
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Regular Singular Points

 Assume that a DE in the standard form 

y + P(x)y + Q(x)y = 0 has a singular point at x0.

If there are two functions p(x) and q(x), both are 
analytic at x0, such that p(x) = (x – x0)P(x) and
q(x) = (x – x0)2Q(x), the original DE can be rewritten as:

then, we call x = x0 a regular singular point of the DE.

Otherwise, x = x0 is a irregular singular point.
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Remarks on Singularity of P and Q

 If x = 0 is a singular point, the power series expansion 
of P(x) at 0 approaches .

 However, if P(x) grows slower than 1/x when x  0, 
then xP(x) is convergent. That is, p(x) = xP(x) is analytic 
at 0. Similarly, q(x) is analytic at 0 if Q(x) grows slower 
than 1/x2.

 Note that, for the DE

x = 0 is a regular singular point if p(x) and q(x) are 
polynomials.
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Example: Singular Points

 For (x2 – 4)2y + 3(x – 2)y + 5y = 0, x = 2 and x = –2 are 
singular points.  We have

and

 Obviously x = 2 is a regular singular point,
and x = –2 is an irregular singular point.
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Example: Non-polynomial p(x), q(x)

 The DE x4y + (x2 sin x)y + (1 – cos x)y = 0 can be 
expressed as

Since x = 0 is not an ordinary point and

are both analytic (convergent) at 0, thus x = 0 is a 
regular singular point.
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Solution near Singular Points

 For a constant-coefficient Cauchy-Euler equation
x2y + p0xy + q0y = 0,

where p0 and q0 are constants, we can assume that
y(x) = xr is a solution  r is a root of the equation:

r(r – 1) + p0r + q0 = 0.

If we have coefficient functions p(x) and q(x) instead, is 
it possible that

is a solution?
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Method of Frobenius

 If x = x0 is a regular singular point of the differential 
equation a2(x)y + a1(x)y + a0(x)y = 0, then there exists 
at least one solution of the form

where the number r is a constant to be determined.  
The series will converge on some interval of
0 < x – x0 < R.
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Example: 3xy + y – y = 0                (1/3)

 Solution: let , we have

Therefore,

We have:
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Example: 3xy + y – y = 0                (2/3)

 Hence,

Substituting r = 0 and r = 2/3 into the recurrence eq.,
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Example: 3xy + y – y = 0                (3/3)

 Let c0 = 1, we have two series solutions

Since y1(x) and y2(x) are linearly independent on the 
entire axis, y(x) = k1y1(x) + k2y2(x) is the general solution 
of the DE on any interval not containing the origin (note 
that 00 is undefined).

30

.

)23(741!

1
1)(

)23(1185!

1
1)(

1

0
2

1

3/2
1














































n

n

n

n

x
nn

xxy

x
nn

xxy







/59

Indicial Equation

 The equation derived from the coefficient of the 
smallest degree of x in the Frobenius method is the 
indicial equation.

 The solutions of the indicial equation with respect to r
are called the indicial roots.
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Frobenius Series Solutions           (1/2)

 Theorem: If x = 0 is a regular singular point of

x2y + xp(x)y + q(x)y = 0.

Let  > 0 denote the minimum of the radii of 
convergence of the power series

Let r1 and r2 be the (real) roots, with r1  r2, of the 
indicial equation

r(r – 1) + p0r + q0 = 0.

Then, we have the following properties:

32

.)()(
00  








n

n
nn

n
n xqxqxpxp and



/59

Frobenius Series Solutions           (2/2)

1. For x > 0, there exists a solution of the form

corresponding to the larger root r1.

2. If r1  r2 and r1 – r2 Z+, then there exists a 2nd linearly 
independent solution for x > 0 of the form

corresponding to the smaller root r2.

3. The radii of convergence of the solutions are at least ,
the nearest distance to the nearby singular point.
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Example: 2xy + (1 + x) y + y = 0

 Since x2y + ½ x(1+x) y + ½ xy = 0,  p(x) = (1+x)/2 and 
q(x) = x/2  p0 =  ½ and q0 = 0  r2 – r/2 = 0,  r = 0, ½.

For r1 = ½, let భ, then 


బ
 .

For r2 = 0, let మ,  we have

The general solution is y = c1y1(x) + c2y2(x).
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Example: xy + 2y + xy = 0 (1/3)

 When r1 – r2 is a positive integer, the Frobenius solution 
is only guaranteed for r1. However, in this example, we 
still have two solutions even if r1 – r2 = 1.

The DE can be written as

The indicial equation r(r – 1) + 2r = 0 has roots 0, –1.
Start with r2 = –1, we have

Hence,
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Example: xy + 2y + xy = 0 (2/3)

The first two terms gives us 0·c0= 0 and 0·c1= 0, which 
means c0 and c1 can be arbitrary constants.
Thus, the recurrence relation cn = –cn–2/n(n–1), n  2
can be divided into two groups of coefficients:

Therefore, a general solution is
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Example: xy + 2y + xy = 0 (3/3)

 Now, if you pay attention, you will recognize that the 
solution is simply

y(x) = x–1(c0 cos x + c1 sin x).

The graph of the solution is:
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2nd Solution by Reduction of Order

 If there is only one solution in Frobenius form for

y + P(x)y + Q(x)y = 0,

we can find the 2nd solution by reduction of order.

Recall that the reduction of order formula tells us
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Summary of Indicial Roots (1/2)

 Case I: r1 and r2 are distinct, r1 – r2  N, for some 
integer N  exists two linearly independent solutions of 
the form

 Case II: r1 – r2 = N, for some integer N  exist two 
linearly independent solutions of the form

Note that C could be zero.
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Summary of Indicial Roots (2/2)

 Case III: If r1 = r2, there exists two linearly independent 
solutions of the form

40

.
ln)()(

0,)(

112

0 01

1

1
























n

rn
n

n

rn
n

xbxxyxy

cxcxy



/59

Bessel’s Equations

 Bessel’s equation of order v  0 is defined as

x2y + xy + (x2 – v2)y = 0.

The solutions are called Bessel functions of order v.

 Bessel’s functions first appear in 1764 when Euler was 
studying the vibration of drum membrane. Later, the 
functions appears in many physics problems, from fluid 
equations to planet motions.
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Gamma Function (x)

 The gamma function (or generalized factorial function) 
is defined as

For x > 0, we have (x+1) = x (x).
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Solution of Bessel’s Equation       (1/2)

 Let the solution be , we have

The indicial equation is r2 – v2 = 0, pick r = v
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Solution of Bessel’s Equation       (2/2)

Therefore, we have
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Bessel Functions of the 1st Kind   (1/2)

 The solutions of Bessel’s Equation can be written as

Similarly, starting from r = –v, we have

Jv(x) and J–v(x) are called Bessel’s functions of the first 
kind of order v and –v.
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Bessel Functions of the 1st Kind   (2/2)

 Now, we want to find the general solution of the 
Bessel’s DE.  Notice that r1 – r2 = 2v:

1. If 2v ≠ integer, then  Jv(x) and J– v(x) are linearly independent.

2. If 2v = 2m + 1, m is an integer, then Jm+1/2(x) and
J–m–1/2(x) are still linearly independent.

3. If 2v = 2m, m is an integer, then  Jm(x) and J– m(x) are linear 
dependent solutions of Bessel’s DE.
 must find another solution!
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Jm & J–m are Linearly Dependent   (1/2)

 Proof:
Assume that v = m is an integer, we want to show that
J–m(x) = (–1)m Jm(x).

1) Perform change of index on J–m(x):

Let 2k+m = 2n–m  k = n–m and n = k+m, we have
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Jm & J–m are Linearly Dependent   (2/2)

2) Since  | (x) | = , for x = 0, –1, –2, …, we have

3) Finally, note that

(k+m)!(1+k) = [(k + m)(k+m–1) … (k+2)(k+1)] k! (1+k)
= k! [(k+m)(k+m–1) … (k+2)] (2+k)
= k! (1 + m + k).

Therefore,

#
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Bessel Functions of the 2nd Kind

 If v is any non-integer number, we can apply linear 
combinations of Jv(x) and J–v(x) to obtain another 
solution:

For m  integer, Ym(x) = limvmYv(x) still converges.

 For any non-integer value of v, the general solution of 
Bessel’s DE can also be written as

y = c1Jv(x)＋c2Yv(x).

Yv(x) is called the Bessel function of the 2nd kind.
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Example: The Aging Spring

 The DE for the free undamped motion of a mass on an 
aging spring is given by: mx + ke–tx = 0.  The change 
of variable,

turns the DE into

Therefore, it’s the Bessel DE with v = 0.  The general 
solution is
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Properties of Bessel Functions

 For m = 0, 1, 2, …, we have:
 J–m(x) = (–1)mJm(x)

 Jm(–x) = (–1)mJm(x)

 Jm(0) = 0 if m > 0; Jm(0) = 1, if m = 0

 limx0+ Ym(x) = –∞
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Bessel Functions with v = 0

 When v = 0, we have Jv(x) = J– v(x), the 2nd solution can 
be obtained by Case III of the method of Frobenius:  
y1(x) = Jv(x), and

Substitute y2(x) into the DE and solve for bn, we have:

 = 0.57721566 is Euler’s constant.
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Differential Recurrence Relation

 Bessel functions satisfy differential recurrence relations 
as follows:
 xJv(x) = vJv(x) – xJv+1(x)

 xJv(x) = xJv–1(x) – vJv(x)

 To prove the relations, first, we have to show that

The recurrence relations can be derived easily, e.g.,

53

    ).()()()( 11 xJxxJx
dx

d
xJxxJx

dx

d
v

v
v

v
v

v
v

v



    and  

 
).()()(

)()()()(

1

1
1

xxJxvJxJx

xJxxJxxJvxxJx
dx

d

vvv

v
v

v
v

v
v

v
v












/59

Differentiation of  xvJv(x)

 Since

then
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Legendre’s Equation

 Legendre’s equation of order  is the 2nd-order linear 
DE of the form

(1 – x2)y – 2xy + ( + 1)y = 0,

where the real number  > –1. The only singular points 
of the Legendre’s equation are at +1 and –1.
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Solution of Legendre’s Equation   (1/2)

 Since x = 0 is an ordinary point of the equation, 
substitute y = Scmxm into the Legendre’s equation,
we have

It can be shown that,

and
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Solution of Legendre’s Equation   (2/2)

 If  = n, a non-negative integer, we have

and

Notice that if n is an even integer, y1(x) terminates.  
When n is an odd integer, y2(x) terminates.
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Legendre Polynomials                  (1/2)

 The solution polynomial of Legendre equation of order 
n, with special selection of c0 (n even) or c1 (n odd), are 
called Legendre polynomial of degree n:

where N = n/2. For example:
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Legendre Polynomials                  (2/2)

They are the solutions of

Legendre polynomials are
orthogonal over [–1, 1].

1
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