
Power Series Methods†

National Chiao Tung University

Chun-Jen Tsai

11/25/2019
† Chapter 6 in the textbook.



/59

Power Series

 A power series in (x – a) is a series of the form

Such a series is said to be a power series centered at a.

 A power series is convergent at a value x  I if the limit 
of partial sums exists, i.e.

The interval of convergence, I, of a power series is the 
set of all numbers where the series converges.
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Ratio Test

 Convergence of a power series can often be checked 
by the ratio test: suppose cn  0 for all n in

and that

If L < 1, the series converges absolutely; if L > 1 the 
series diverges; and if L = 1 the test is inconclusive.
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Radius of Convergence                (1/2)

 A power series f(x) = (x – a)n has a radius of 
convergence , such that f(x) converges for |x – a| < 
and diverges for |x – a| > .

 If  > 0, f(x) converges for |x – a| < , and diverges for 
|x – a| > .  If f(x) converges only at its center a, then  = 
0.  If it converges for all x,  = .

 The ratio test is inconclusive at an end point a  .
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Radius of Convergence                (2/2)

 Given the power series g(x) = xn,  if the limit

exists, then
 If  = 0, then g(x) diverges for all x  0.

 If 0 <  < , g(x) converges if |x| < , and diverges if |x| > .

 If  = , then g(x) converges for all x.
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Power Series of a Function f(x)

 The Taylor series of a function f(x) is defined as

If y converges to f(x) for all x in some open interval 
containing a, then we say that the function f(x) is 
analytic at x = a.
 Polynomials are analytic; a rational function is analytic 

wherever the denominator is not zero.

 Arithmetic of power series
 The operations of addition, multiplication, and division can be 

applied to power series as in polynomials.

 If f and g are analytic at a, so are f+g, f·g, and f/g (if g(a)  0).

.)(
!

)(
0

)(






n

n
n

ax
n

af
y

6



/59

Examples of Power Series

 By Taylor ( a) or Maclaurin (a = 0) series expansions, 
common functions can be written in power series forms:
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Example: Adding Two Power Series

 Write as one power 
series.

Solution:
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Power Series Method

 The power series method for solving a DE consists of 
substituting the power series

in the DE and determining the coefficients c0, c1, … so 
that the equation satisfies.

 If , then  .

 If , for all x in the interval of 
convergence, then an = bn for all n  0.
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Example: y' + 2y = 0

 Since , and   ,

we have

Perform change of index n to align xn,

We have a recurrence relation cn+1 = –2cn/(n+1), n  0.

 cn = (–2)nc0/n!, n  1 
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Power Series Solutions

 Suppose the linear 2nd-order DE

a2(x)y" + a1(x)y' + a0(x)y = 0

is put into the standard form

y" + P(x)y' + Q(x)y = 0,
then:

A point x = x0 is said to be an ordinary point of the DE if 
both P(x) and Q(x) are analytic at x0.  A point that is not 
an ordinary point is said to be a singular point of the 
equation.
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Example: Ordinary, Singular Points

 Every finite value of x is an ordinary point of

y" + (ex) y' + (sin x) y = 0.

 x = 0 is a singular point of the DE

y" + (ex) y' + (ln x) y = 0.
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Polynomial-Coefficient DEs

 Recall that a polynomial is analytic at any value x, and 
a rational function is analytic except at points where its 
denominator is zero.  Thus, a 2nd-order polynomial-
coefficient DE has singular points when a2(x) = 0,
since

 Examples
 The Euler equation ax2y + bxy' + cy = 0 has a singular point

at x = 0.

 The equation (x2 + 1)y + xy – y = 0 has singular points
at x = i.
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Solutions Near an Ordinary Point

 Theorem: If x = x0 is an ordinary point of

a2(x)y + a1(x)y + a0(x)y = 0,

we can always find two linearly independent solutions 
in the form of a power series centered at x0, that is,

A series solution converges at least on some interval 
defined by | x – x0 | < , where  is the distance from x0

to the nearest singular point.

 Note that for | x – x0 |  , y(x) may or may not converge.  
Further investigations are required.
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Ex: (x2 – 4)y + 3xy+ y = 0, y(0) = 4, y(0) =1

 Note that the singular points are 2, there should be a 
solution with radius of convergence at least 2.
Since

Therefore,

Combining the terms, we have ೙ .

add dummy terms for n = 0, 1
change of index n add dummy term n = 0
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Ex: (x2 – 4)y + 3xy+ y = 0                (2/2)

 When n = 0, 2, 4, …, we have

When n = 1, 3, 5, …, we have

Therefore, the solution is

and y(0) = c0 = 4, y(0) = c1 = 1.
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Translated Series Solutions

 If the initial condition is given at x0 other than zero, we 
have to assume the general solution form

This way, we can obtain the IVP solution with y(x0) = c0

and y(x0) = c1 easily.

 As an alternative, we can translate the equation by 
letting t = x – x0 and assume the solution form:
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Ex: (t2–2t–3)y+3(t–1)y+y = 0, y(1) = 4, y(1) = –1

 Perform a change of variable to the DE by x = t – 1:

t2 – 2t – 3 = (x + 1)2 – 2(x + 1) – 3 = x2 – 4,
and

Hence, the DE becomes (x2–4)d2y/dx2 + 3x(dy/dx) + y = 0.
 Same DE as the previous one.

Substituting x = t–1 into the previous solution, we get

which converges if –1 < t < 3.
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Example: y + (cos x) y = 0 (1/2)

 Since
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Example: y + (cos x) y = 0 (2/2)

We have:

Therefore:

with region of convergence | x | < .
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Solutions about Singular Points

 Let y(x) = Scnxn, if P(x) is not analytic at 0, its power 
series form Sbkxk will not converge to P(0) at 0 given 
any bk. However, it is possible that

(Sbkxk) (Sncnxn–1)

may still converge to P(x)y(x).

In short, even if x = 0 is a singular point, the power 
series expression of

y + P(x)y + Q(x)y

may still converge to zero.
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Regular Singular Points

 Assume that a DE in the standard form 

y + P(x)y + Q(x)y = 0 has a singular point at x0.

If there are two functions p(x) and q(x), both are 
analytic at x0, such that p(x) = (x – x0)P(x) and
q(x) = (x – x0)2Q(x), the original DE can be rewritten as:

then, we call x = x0 a regular singular point of the DE.

Otherwise, x = x0 is a irregular singular point.
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Remarks on Singularity of P and Q

 If x = 0 is a singular point, the power series expansion 
of P(x) at 0 approaches .

 However, if P(x) grows slower than 1/x when x  0, 
then xP(x) is convergent. That is, p(x) = xP(x) is analytic 
at 0. Similarly, q(x) is analytic at 0 if Q(x) grows slower 
than 1/x2.

 Note that, for the DE

x = 0 is a regular singular point if p(x) and q(x) are 
polynomials.
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Example: Singular Points

 For (x2 – 4)2y + 3(x – 2)y + 5y = 0, x = 2 and x = –2 are 
singular points.  We have

and

 Obviously x = 2 is a regular singular point,
and x = –2 is an irregular singular point.
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Example: Non-polynomial p(x), q(x)

 The DE x4y + (x2 sin x)y + (1 – cos x)y = 0 can be 
expressed as

Since x = 0 is not an ordinary point and

are both analytic (convergent) at 0, thus x = 0 is a 
regular singular point.
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Solution near Singular Points

 For a constant-coefficient Cauchy-Euler equation
x2y + p0xy + q0y = 0,

where p0 and q0 are constants, we can assume that
y(x) = xr is a solution  r is a root of the equation:

r(r – 1) + p0r + q0 = 0.

If we have coefficient functions p(x) and q(x) instead, is 
it possible that

is a solution?
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Method of Frobenius

 If x = x0 is a regular singular point of the differential 
equation a2(x)y + a1(x)y + a0(x)y = 0, then there exists 
at least one solution of the form

where the number r is a constant to be determined.  
The series will converge on some interval of
0 < x – x0 < R.
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Example: 3xy + y – y = 0                (1/3)

 Solution: let , we have

Therefore,

We have:
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Example: 3xy + y – y = 0                (2/3)

 Hence,

Substituting r = 0 and r = 2/3 into the recurrence eq.,
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Example: 3xy + y – y = 0                (3/3)

 Let c0 = 1, we have two series solutions

Since y1(x) and y2(x) are linearly independent on the 
entire axis, y(x) = k1y1(x) + k2y2(x) is the general solution 
of the DE on any interval not containing the origin (note 
that 00 is undefined).
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Indicial Equation

 The equation derived from the coefficient of the 
smallest degree of x in the Frobenius method is the 
indicial equation.

 The solutions of the indicial equation with respect to r
are called the indicial roots.
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Frobenius Series Solutions           (1/2)

 Theorem: If x = 0 is a regular singular point of

x2y + xp(x)y + q(x)y = 0.

Let  > 0 denote the minimum of the radii of 
convergence of the power series

Let r1 and r2 be the (real) roots, with r1  r2, of the 
indicial equation

r(r – 1) + p0r + q0 = 0.

Then, we have the following properties:

32

.)()(
00  








n

n
nn

n
n xqxqxpxp and



/59

Frobenius Series Solutions           (2/2)

1. For x > 0, there exists a solution of the form

corresponding to the larger root r1.

2. If r1  r2 and r1 – r2 Z+, then there exists a 2nd linearly 
independent solution for x > 0 of the form

corresponding to the smaller root r2.

3. The radii of convergence of the solutions are at least ,
the nearest distance to the nearby singular point.
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Example: 2xy + (1 + x) y + y = 0

 Since x2y + ½ x(1+x) y + ½ xy = 0,  p(x) = (1+x)/2 and 
q(x) = x/2  p0 =  ½ and q0 = 0  r2 – r/2 = 0,  r = 0, ½.

For r1 = ½, let భ, then 
೙

బ
೙ .

For r2 = 0, let మ,  we have

The general solution is y = c1y1(x) + c2y2(x).
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Example: xy + 2y + xy = 0 (1/3)

 When r1 – r2 is a positive integer, the Frobenius solution 
is only guaranteed for r1. However, in this example, we 
still have two solutions even if r1 – r2 = 1.

The DE can be written as

The indicial equation r(r – 1) + 2r = 0 has roots 0, –1.
Start with r2 = –1, we have

Hence,
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Example: xy + 2y + xy = 0 (2/3)

The first two terms gives us 0·c0= 0 and 0·c1= 0, which 
means c0 and c1 can be arbitrary constants.
Thus, the recurrence relation cn = –cn–2/n(n–1), n  2
can be divided into two groups of coefficients:

Therefore, a general solution is
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Example: xy + 2y + xy = 0 (3/3)

 Now, if you pay attention, you will recognize that the 
solution is simply

y(x) = x–1(c0 cos x + c1 sin x).

The graph of the solution is:
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2nd Solution by Reduction of Order

 If there is only one solution in Frobenius form for

y + P(x)y + Q(x)y = 0,

we can find the 2nd solution by reduction of order.

Recall that the reduction of order formula tells us
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Summary of Indicial Roots (1/2)

 Case I: r1 and r2 are distinct, r1 – r2  N, for some 
integer N  exists two linearly independent solutions of 
the form

 Case II: r1 – r2 = N, for some integer N  exist two 
linearly independent solutions of the form

Note that C could be zero.
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Summary of Indicial Roots (2/2)

 Case III: If r1 = r2, there exists two linearly independent 
solutions of the form
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Bessel’s Equations

 Bessel’s equation of order v  0 is defined as

x2y + xy + (x2 – v2)y = 0.

The solutions are called Bessel functions of order v.

 Bessel’s functions first appear in 1764 when Euler was 
studying the vibration of drum membrane. Later, the 
functions appears in many physics problems, from fluid 
equations to planet motions.

41



/59

Gamma Function (x)

 The gamma function (or generalized factorial function) 
is defined as

For x > 0, we have (x+1) = x (x).
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Solution of Bessel’s Equation       (1/2)

 Let the solution be , we have

The indicial equation is r2 – v2 = 0, pick r = v
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Solution of Bessel’s Equation       (2/2)

Therefore, we have
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Bessel Functions of the 1st Kind   (1/2)

 The solutions of Bessel’s Equation can be written as

Similarly, starting from r = –v, we have

Jv(x) and J–v(x) are called Bessel’s functions of the first 
kind of order v and –v.
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Bessel Functions of the 1st Kind   (2/2)

 Now, we want to find the general solution of the 
Bessel’s DE.  Notice that r1 – r2 = 2v:

1. If 2v ≠ integer, then  Jv(x) and J– v(x) are linearly independent.

2. If 2v = 2m + 1, m is an integer, then Jm+1/2(x) and
J–m–1/2(x) are still linearly independent.

3. If 2v = 2m, m is an integer, then  Jm(x) and J– m(x) are linear 
dependent solutions of Bessel’s DE.
 must find another solution!
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Jm & J–m are Linearly Dependent   (1/2)

 Proof:
Assume that v = m is an integer, we want to show that
J–m(x) = (–1)m Jm(x).

1) Perform change of index on J–m(x):

Let 2k+m = 2n–m  k = n–m and n = k+m, we have
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Jm & J–m are Linearly Dependent   (2/2)

2) Since  | (x) | = , for x = 0, –1, –2, …, we have

3) Finally, note that

(k+m)!(1+k) = [(k + m)(k+m–1) … (k+2)(k+1)] k! (1+k)
= k! [(k+m)(k+m–1) … (k+2)] (2+k)
= k! (1 + m + k).

Therefore,

#
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Bessel Functions of the 2nd Kind

 If v is any non-integer number, we can apply linear 
combinations of Jv(x) and J–v(x) to obtain another 
solution:

For m  integer, Ym(x) = limvmYv(x) still converges.

 For any non-integer value of v, the general solution of 
Bessel’s DE can also be written as

y = c1Jv(x)＋c2Yv(x).

Yv(x) is called the Bessel function of the 2nd kind.
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Example: The Aging Spring

 The DE for the free undamped motion of a mass on an 
aging spring is given by: mx + ke–tx = 0.  The change 
of variable,

turns the DE into

Therefore, it’s the Bessel DE with v = 0.  The general 
solution is
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Properties of Bessel Functions

 For m = 0, 1, 2, …, we have:
 J–m(x) = (–1)mJm(x)

 Jm(–x) = (–1)mJm(x)

 Jm(0) = 0 if m > 0; Jm(0) = 1, if m = 0

 limx0+ Ym(x) = –∞
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Bessel Functions with v = 0

 When v = 0, we have Jv(x) = J– v(x), the 2nd solution can 
be obtained by Case III of the method of Frobenius:  
y1(x) = Jv(x), and

Substitute y2(x) into the DE and solve for bn, we have:

 = 0.57721566 is Euler’s constant.
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Differential Recurrence Relation

 Bessel functions satisfy differential recurrence relations 
as follows:
 xJv(x) = vJv(x) – xJv+1(x)

 xJv(x) = xJv–1(x) – vJv(x)

 To prove the relations, first, we have to show that

The recurrence relations can be derived easily, e.g.,
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Differentiation of  xvJv(x)

 Since

then
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Legendre’s Equation

 Legendre’s equation of order  is the 2nd-order linear 
DE of the form

(1 – x2)y – 2xy + ( + 1)y = 0,

where the real number  > –1. The only singular points 
of the Legendre’s equation are at +1 and –1.
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Solution of Legendre’s Equation   (1/2)

 Since x = 0 is an ordinary point of the equation, 
substitute y = Scmxm into the Legendre’s equation,
we have

It can be shown that,

and
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Solution of Legendre’s Equation   (2/2)

 If  = n, a non-negative integer, we have

and

Notice that if n is an even integer, y1(x) terminates.  
When n is an odd integer, y2(x) terminates.
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Legendre Polynomials                  (1/2)

 The solution polynomial of Legendre equation of order 
n, with special selection of c0 (n even) or c1 (n odd), are 
called Legendre polynomial of degree n:

where N = n/2. For example:
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Legendre Polynomials                  (2/2)

They are the solutions of

Legendre polynomials are
orthogonal over [–1, 1].
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