Power Series Methods ${ }^{\dagger}$

National Chiao Tung University
Chun-Jen Tsai 11/25/2019
\dagger Chapter 6 in the textbook.

Power Series

- A power series in $(x-a)$ is a series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

Such a series is said to be a power series centered at a.

- A power series is convergent at a value $x \in I$ if the limit of partial sums exists, i.e.

$$
f(x)=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} c_{n}(x-a)^{n}
$$

The interval of convergence, I, of a power series is the set of all numbers where the series converges.

Ratio Test

- Convergence of a power series can often be checked by the ratio test: suppose $c_{n} \neq 0$ for all n in

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

and that

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}(x-a)^{n+1}}{c_{n}(x-a)^{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=L .
$$

If $L<1$, the series converges absolutely; if $L>1$ the series diverges; and if $L=1$ the test is inconclusive.

Radius of Convergence

- A power series $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has a radius of convergence ρ, such that $f(x)$ converges for $|x-a|<\rho$ and diverges for $|x-a|>\rho$.
- If $\rho>0, f(x)$ converges for $|x-a|<\rho$, and diverges for $|x-a|>\rho$. If $f(x)$ converges only at its center a, then $\rho=$ 0 . If it converges for all $x, \rho=\infty$.
\square The ratio test is inconclusive at an end point $a \pm \rho$.

Radius of Convergence

- Given the power series $g(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$, if the limit

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right|
$$

exists, then

- If $\rho=0$, then $g(x)$ diverges for all $x \neq 0$.
- If $0<\rho<\infty, g(x)$ converges if $|x|<\rho$, and diverges if $|x|>\rho$.
- If $\rho=\infty$, then $g(x)$ converges for all x.

Power Series of a Function $f(x)$

- The Taylor series of a function $f(x)$ is defined as

$$
y=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

If y converges to $f(x)$ for all x in some open interval containing a, then we say that the function $f(x)$ is analytic at $x=a$.

- Polynomials are analytic; a rational function is analytic wherever the denominator is not zero.
- Arithmetic of power series
- The operations of addition, multiplication, and division can be applied to power series as in polynomials.
- If f and g are analytic at a, so are $f+\mathrm{g}, f \cdot g$, and f / g (if $g(a) \neq 0$).

Examples of Power Series

- By Taylor $(\forall a)$ or Maclaurin $(a=0)$ series expansions, common functions can be written in power series forms:

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \\
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n!}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots
\end{aligned}
$$

Example: Adding Two Power Series

- Write $\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} c_{n} x^{n+1}$ as one power series.

Solution:

$$
\begin{aligned}
\sum_{n=2}^{\infty} & n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} c_{n} x^{n+1}=2 \cdot 1 \cdot c_{2} x^{0}+\sum_{n=3}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} c_{n} x^{n+1} \\
& =2 c_{2}+\sum_{k=1}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+\sum_{k=1}^{\infty} c_{k-1} x^{k} \\
& =2 c_{2}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}+c_{k-1}\right] x^{k} .
\end{aligned}
$$

Power Series Method

- The power series method for solving a DE consists of substituting the power series

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

in the DE and determining the coefficients c_{0}, c_{1}, \ldots so that the equation satisfies.

- If $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$, then $f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n} x^{n-1}$.
- If $\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} b_{n} x^{n}$, for all x in the interval of convergence, then $a_{n}=b_{n}$ for all $n \geq 0$.

Example: $y^{\prime}+2 y=0$

- Since $y=\sum_{n=0}^{\infty} c_{n} x^{n}$, and $y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n-1}$,
we have

$$
\sum_{n=1}^{\infty} n c_{n} x^{n-1}+2 \sum_{n=0}^{\infty} c_{n} x^{n}=0 .
$$

Perform change of index n to align x^{n},

$$
\sum_{n=0}^{\infty}(n+1) c_{n+1} x^{n}+2 \sum_{n=0}^{\infty} c_{n} x^{n}=0 \rightarrow \sum_{n=0}^{\infty}\left[(n+1) c_{n+1}+2 c_{n}\right] x^{n}=0 .
$$

We have a recurrence relation $c_{n+1}=-2 c_{n} /(n+1), n \geq 0$.
$\rightarrow c_{n}=(-2)^{n} c_{0} / n!, n \geq 1 \rightarrow y(x)=\sum_{n=0}^{\infty} \frac{(-2)^{n} c_{0}}{n!} x^{n}$.

Power Series Solutions

- Suppose the linear $2^{\text {nd }}$-order DE

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

is put into the standard form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

then:
A point $x=x_{0}$ is said to be an ordinary point of the DE if both $P(x)$ and $Q(x)$ are analytic at x_{0}. A point that is not an ordinary point is said to be a singular point of the equation.

Example: Ordinary, Singular Points

Every finite value of x is an ordinary point of

$$
y^{\prime \prime}+\left(e^{x}\right) y^{\prime}+(\sin x) y=0 .
$$

- $x=0$ is a singular point of the DE

$$
y^{\prime \prime}+\left(e^{x}\right) y^{\prime}+(\ln x) y=0 .
$$

Polynomial-Coefficient DEs

- Recall that a polynomial is analytic at any value x, and a rational function is analytic except at points where its denominator is zero. Thus, a $2^{\text {nd }}$-order polynomialcoefficient DE has singular points when $a_{2}(x)=0$, since

$$
P(x)=\frac{a_{1}(x)}{a_{2}(x)}, \quad \mathrm{Q}(x)=\frac{a_{0}(x)}{a_{2}(x)} .
$$

- Examples
- The Euler equation $a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0$ has a singular point at $x=0$.
- The equation $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$ has singular points at $x= \pm i$.

Solutions Near an Ordinary Point

- Theorem: If $x=x_{0}$ is an ordinary point of

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0,
$$

we can always find two linearly independent solutions in the form of a power series centered at x_{0}, that is,

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} .
$$

A series solution converges at least on some interval defined by $\left|x-x_{0}\right|<\rho$, where ρ is the distance from x_{0} to the nearest singular point.

- Note that for $\left|x-x_{0}\right| \geq \rho, y(x)$ may or may not converge. Further investigations are required.

Ex: $\left(x^{2}-4\right) y^{\prime \prime}+3 x y^{\prime}+y=0, y(0)=4, y^{\prime}(0)=1$

- Note that the singular points are ± 2, there should be a solution with radius of convergence at least 2 .
Since

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n}, y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n-1}, \text { and } y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}
$$

Therefore,
dermmy for $n=0$,
change of index $n \quad$ add dummy term $n=0$
$\sum_{n=0}^{\infty} n(n-1) c_{n} x^{n}-4 \sum_{n=0}^{\infty}(n+2)(n+1) c_{n+2} x^{n}+3 \sum_{n=0}^{\infty} n c_{n} x^{n}+\sum_{n=0}^{\infty} c_{n} x^{n}=0$.
Combining the terms, we have $c_{n+2}=\frac{(n+1) c_{n}}{4(n+2)}, n \geq 0$.

Ex: $\left(x^{2}-4\right) y^{\prime \prime}+3 x y^{\prime}+y=0$

- When $n=0,2,4, \ldots$, we have
$c_{2}=\frac{c_{0}}{4 \cdot 2}, c_{4}=\frac{3 c_{0}}{4^{2} \cdot 2 \cdot 4}, c_{6}=\frac{3 \cdot 5 c_{0}}{4^{3} \cdot 2 \cdot 4 \cdot 6}, \cdots \rightarrow c_{2 n}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{4^{n} \cdot 2 \cdot 4 \cdots(2 n)} c_{0}$.
When $n=1,3,5, \ldots$, we have
$c_{3}=\frac{2 c_{1}}{4 \cdot 3}, c_{5}=\frac{2 \cdot 4 c_{1}}{4^{2} \cdot 3 \cdot 5}, c_{7}=\frac{2 \cdot 4 \cdot 6 c_{1}}{4^{3} \cdot 3 \cdot 5 \cdot 7}, \cdots \rightarrow c_{2 n+1}=\frac{2 \cdot 4 \cdot 6 \cdots(2 n)}{4^{n} \cdot 1 \cdot 3 \cdots(2 n+1)} c_{1}$.
Therefore, the solution is

$$
\begin{aligned}
& y(x)=c_{0}\left(1+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{3 n} n!} x^{2 n}\right)+c_{1}\left(x+\sum_{n=1}^{\infty} \frac{n!}{2^{n} \cdot 1 \cdot 3 \cdots(2 n+1)} x^{2 n+1}\right) . \\
& \text { and } y(0)=c_{0}=4, y^{\prime}(0)=c_{1}=1 .
\end{aligned}
$$

Translated Series Solutions

- If the initial condition is given at x_{0} other than zero, we have to assume the general solution form

$$
y(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} .
$$

This way, we can obtain the IVP solution with $y\left(x_{0}\right)=c_{0}$ and $y^{\prime}\left(x_{0}\right)=c_{1}$ easily.
\square As an alternative, we can translate the equation by letting $t=x-x_{0}$ and assume the solution form:

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

$$
\text { Ex: }\left(t^{2}-2 t-3\right) y^{\prime \prime}+3(t-1) y^{\prime}+y=0, y(1)=4, y^{\prime}(1)=-1
$$

- Perform a change of variable to the DE by $x=t-1$:

$$
t^{2}-2 t-3=(x+1)^{2}-2(x+1)-3=x^{2}-4,
$$

and

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\frac{d y}{d x}, \frac{d^{2} y}{d t^{2}}=\left[\frac{d}{d x}\left(\frac{d y}{d x}\right)\right] \frac{d x}{d t}=\frac{d^{2} y}{d x^{2}} .
$$

Hence, the DE becomes $\left(x^{2}-4\right) d^{2} y / d x^{2}+3 x(d y / d x)+y=0$.
\rightarrow Same DE as the previous one.
Substituting $x=t-1$ into the previous solution, we get

$$
y(t)=4+(t-1)+\frac{1}{2}(t-1)^{2}+\frac{1}{6}(t-1)^{3}+\frac{3}{32}(t-1)^{4}+\cdots
$$

which converges if $-1<t<3$.

Example: $y^{\prime \prime}+(\cos x) y=0$

- Since

$$
\begin{aligned}
y^{\prime \prime} & +(\cos x) y \\
& =\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right) \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =2 c_{2}+6 c_{3} x+12 c_{4} x^{2}+\cdots+\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\right)\left(c_{0}+c_{1} x+c_{2} x^{2}+\cdots\right) \\
& =2 c_{2}+c_{0}+\left(6 c_{3}+c_{1}\right) x+\left(12 c_{4}+c_{2}-\frac{1}{2} c_{0}\right) x^{2}+\cdots=0
\end{aligned}
$$

Example: $y^{\prime \prime}+(\cos x) y=0$

(2/2)

We have:

$$
2 c_{2}+c_{0}=0,6 c_{3}+c_{1}=0,12 c_{4}+c_{2}-\frac{1}{2} c_{0}=0, \cdots
$$

Therefore:

$$
y_{1}(x)=1-\frac{1}{2} x^{2}+\frac{1}{12} x^{4}-\cdots, y_{2}(x)=x-\frac{1}{6} x^{3}+\frac{1}{30} x^{5}-\cdots
$$

with region of convergence $|x|<\infty$.

(a) Plot of $y_{1}(x)$ vs. x

(b) Plot of $y_{2}(x)$ vs. x

Solutions about Singular Points

Let $y(x)=\Sigma c_{n} x^{n}$, if $P(x)$ is not analytic at 0 , its power series form $\Sigma b_{k} x^{k}$ will not converge to $P(0)$ at 0 given any b_{k}. However, it is possible that

$$
\left(\Sigma b_{k} x^{k}\right)\left(\sum n c_{n} x^{n-1}\right)
$$

may still converge to $P(x) y^{\prime}(x)$.
In short, even if $x=0$ is a singular point, the power series expression of

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y
$$

may still converge to zero.

Regular Singular Points

- Assume that a DE in the standard form
$y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ has a singular point at x_{0}.
If there are two functions $p(x)$ and $q(x)$, both are analytic at x_{0}, such that $p(x)=\left(x-x_{0}\right) P(x)$ and $q(x)=\left(x-x_{0}\right)^{2} Q(x)$, the original DE can be rewritten as:

$$
y^{\prime \prime}+\frac{p(x)}{\left(x-x_{0}\right)} y^{\prime}+\frac{q(x)}{\left(x-x_{0}\right)^{2}} y=0,
$$

then, we call $x=x_{0}$ a regular singular point of the $D E$.
Otherwise, $x=x_{0}$ is a irregular singular point.

Remarks on Singularity of P and Q

- If $x=0$ is a singular point, the power series expansion of $P(x)$ at 0 approaches ∞.
- However, if $P(x)$ grows slower than $1 / x$ when $x \rightarrow 0$, then $x P(x)$ is convergent. That is, $p(x)=x P(x)$ is analytic at 0 . Similarly, $q(x)$ is analytic at 0 if $Q(x)$ grows slower than $1 / x^{2}$.
- Note that, for the DE $y^{\prime \prime}+\frac{p(x)}{x} y^{\prime}+\frac{q(x)}{x^{2}} y=0$,
$x=0$ is a regular singular point if $p(x)$ and $q(x)$ are polynomials.

Example: Singular Points

- For $\left(x^{2}-4\right)^{2} y^{\prime \prime}+3(x-2) y^{\prime}+5 y=0, x=2$ and $x=-2$ are singular points. We have

$$
P(x)=\frac{3}{(x-2)(x+2)^{2}} \quad \text { and } \quad Q(x)=\frac{5}{(x-2)^{2}(x+2)^{2}} .
$$

- Obviously $x=2$ is a regular singular point, and $x=-2$ is an irregular singular point.

Example: Non-polynomial $p(x), q(x)$

- The DE $x^{4} y^{\prime \prime}+\left(x^{2} \sin x\right) y^{\prime}+(1-\cos x) y=0$ can be expressed as

$$
y^{\prime \prime}+\frac{\sin x / x}{x} y^{\prime}+\frac{(1-\cos x) / x^{2}}{x^{2}} y=0 .
$$

Since $x=0$ is not an ordinary point and

$$
\begin{aligned}
& p(x)=\frac{\sin x}{x}=\frac{1}{x}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots, \\
& q(x)=\frac{1-\cos x}{x^{2}}=\frac{1}{x^{2}}\left[1-\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right)\right]=\frac{1}{2!}-\frac{x^{2}}{4!}+\frac{x^{4}}{6!} \cdots,
\end{aligned}
$$

are both analytic (convergent) at 0 , thus $x=0$ is a regular singular point.

Solution near Singular Points

- For a constant-coefficient Cauchy-Euler equation

$$
x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0
$$

where p_{0} and q_{0} are constants, we can assume that $y(x)=x^{r}$ is a solution $\rightarrow r$ is a root of the equation:

$$
r(r-1)+p_{0} r+q_{0}=0 .
$$

If we have coefficient functions $p(x)$ and $q(x)$ instead, is it possible that

$$
y(x)=x^{r} \sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} c_{n} n^{n+r}
$$

is a solution?

Method of Frobenius

- If $x=x_{0}$ is a regular singular point of the differential equation $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$, then there exists at least one solution of the form

$$
y=\left(x-x_{0}\right)^{r} \sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r},
$$

where the number r is a constant to be determined. The series will converge on some interval of $0<x-x_{0}<R$.

Example: $3 x y^{\prime \prime}+y^{\prime}-y=0$

- Solution: let $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$, we have

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) c_{n} x^{n+r-1} \text { and } y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) c_{n} x^{n+r-2} .
$$

Therefore,

$$
3 x y^{\prime \prime}+y^{\prime}-y
$$

$=x^{r}\left[r(3 r-2) c_{0} x^{-1}+\sum_{k=0}^{\infty}\left[(k+r+1)(3 k+3 r+1) c_{k+1}-c_{k}\right] x^{k}\right]=0$
We have: $\left\{\begin{array}{l}r(3 r-2) c_{0}=0 \\ (k+r+1)(3 k+3 r+1) c_{k+1}-c_{k}=0, k=0,1,2, \cdots\end{array}\right.$

Example: $3 x y^{\prime \prime}+y^{\prime}-y=0$

- Hence,
$\rightarrow\left\{\begin{aligned} r & =0,2 / 3 \\ c_{k+1} & =\frac{c_{k}}{(k+r+1)(3 k+3 r+1)}, k=0,1,2, \cdots\end{aligned}\right.$
Substituting $r=0$ and $r=2 / 3$ into the recurrence eq.,
$\rightarrow\left\{\begin{array}{l}r=2 / 3, \quad c_{k+1}=\frac{c_{k}}{(3(k+1)+2)(k+1)} \rightarrow c_{n}=\frac{c_{0}}{n!5 \cdot 8 \cdot 11 \cdots(3 n+2)} \\ r=0, \quad c_{k+1}=\frac{c_{k}}{(k+1)(3(k+1)-2)} \rightarrow c_{n}=\frac{c_{0}}{n!1 \cdot 4 \cdot 7 \cdots(3 n-2)}\end{array}\right.$

Example: $3 x y^{\prime \prime}+y^{\prime}-y=0$

- Let $c_{0}=1$, we have two series solutions

$$
\left\{\begin{array}{l}
y_{1}(x)=x^{2 / 3}\left[1+\sum_{n=1}^{\infty} \frac{1}{n!5 \cdot 8 \cdot 11 \cdots(3 n+2)} x^{n}\right] \\
y_{2}(x)=x^{0}\left[1+\sum_{n=1}^{\infty} \frac{1}{n!1 \cdot 4 \cdot 7 \cdots(3 n-2)} x^{n}\right]
\end{array}\right.
$$

Since $y_{1}(x)$ and $y_{2}(x)$ are linearly independent on the entire axis, $y(x)=k_{1} y_{1}(x)+k_{2} y_{2}(x)$ is the general solution of the DE on any interval not containing the origin (note that 0^{0} is undefined).

Indicial Equation

- The equation derived from the coefficient of the smallest degree of x in the Frobenius method is the indicial equation.
- The solutions of the indicial equation with respect to r are called the indicial roots.

Frobenius Series Solutions

- Theorem: If $x=0$ is a regular singular point of

$$
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0 .
$$

Let $\rho>0$ denote the minimum of the radii of convergence of the power series

$$
p(x)=\sum_{n=0}^{\infty} p_{n} x^{n} \text { and } q(x)=\sum_{n=0}^{\infty} q_{n} x^{n} .
$$

Let r_{1} and r_{2} be the (real) roots, with $r_{1} \geq r_{2}$, of the indicial equation

$$
r(r-1)+p_{0} r+q_{0}=0 .
$$

Then, we have the following properties:

Frobenius Series Solutions

1. For $x>0$, there exists a solution of the form

$$
y_{1}(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n} \quad\left(a_{0} \neq 0\right)
$$

corresponding to the larger root r_{1}.
2. If $r_{1} \neq r_{2}$ and $r_{1}-r_{2} \notin \mathbf{Z}^{+}$, then there exists a $2^{\text {nd }}$ linearly independent solution for $x>0$ of the form

$$
y_{2}(x)=x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n} \quad\left(b_{0} \neq 0\right)
$$

corresponding to the smaller root r_{2}.
3. The radii of convergence of the solutions are at least ρ, the nearest distance to the nearby singular point.

Example: $2 x y^{\prime \prime}+(1+x) y^{\prime}+y=0$

- Since $x^{2} y^{\prime \prime}+1 / 2 \cdot x(1+x) y^{\prime}+1 / 2 x y=0, p(x)=(1+x) / 2$ and $q(x)=x / 2 \rightarrow p_{0}=1 / 2$ and $q_{0}=0 \rightarrow r^{2}-r / 2=0, \rightarrow r=0,1 / 2$.

For $r_{1}=1 / 2$, let $y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$, then $a_{n}=\frac{(-1)^{n} a_{0}}{2^{n} n!}$.
For $r_{2}=0$, let $y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}$, we have

$$
b_{n}=\frac{(-1)^{n} b_{0}}{1 \cdot 3 \cdot 5 \cdot 7 \cdots(2 n-1)} .
$$

The general solution is $y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$.

Example: $x y^{\prime \prime}+2 y^{\prime}+x y=0$

When $r_{1}-r_{2}$ is a positive integer, the Frobenius solution is only guaranteed for r_{1}. However, in this example, we still have two solutions even if $r_{1}-r_{2}=1$.

The DE can be written as $y^{\prime \prime}+\frac{2}{x} y^{\prime}+\frac{x^{2}}{x^{2}} y=0$.
The indicial equation $r(r-1)+2 r=0$ has roots $0,-1$. Start with $r_{2}=-1$, we have

$$
y(x)=x^{-1} \sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} c_{n} x^{n-1} .
$$

Hence,

$$
\sum_{n=0}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} c_{n} x^{n}=0 . \rightarrow \text { Check the coefficients of } x^{-2} \text { and } x^{-1!}
$$

Example: $x y^{\prime \prime}+2 y^{\prime}+x y=0$

The first two terms gives us $0 \cdot c_{0}=0$ and $0 \cdot c_{1}=0$, which means c_{0} and c_{1} can be arbitrary constants.
Thus, the recurrence relation $c_{n}=-c_{n-2} / n(n-1), n \geq 2$ can be divided into two groups of coefficients:

$$
c_{2 n}=\frac{(-1)^{n} c_{0}}{(2 n)!} \quad \text { and } \quad c_{2 n+1}=\frac{(-1)^{n} c_{1}}{(2 n+1)!} \text {, for } n \geq 1
$$

Therefore, a general solution is

$$
\begin{aligned}
y(x) & =x^{-1} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =\frac{c_{0}}{x} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}+\frac{c_{1}}{x} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} .
\end{aligned}
$$

Example: $x y^{\prime \prime}+2 y^{\prime}+x y=0$

- Now, if you pay attention, you will recognize that the solution is simply

$$
y(x)=x^{-1}\left(c_{0} \cos x+c_{1} \sin x\right)
$$

The graph of the solution is:

$2^{\text {nd }}$ Solution by Reduction of Order

- If there is only one solution in Frobenius form for

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

we can find the $2^{\text {nd }}$ solution by reduction of order.
Recall that the reduction of order formula tells us

$$
y_{2}(x)=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}(x)} d x
$$

Summary of Indicial Roots (1/2)

\square Case I: r_{1} and r_{2} are distinct, $r_{1}-r_{2} \neq N$, for some integer $N \rightarrow$ exists two linearly independent solutions of the form

$$
y_{1}(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r_{1}} \text { and } y_{2}(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r_{2}} .
$$

- Case II: $r_{1}-r_{2}=N$, for some integer $N \rightarrow$ exist two linearly independent solutions of the form

$$
\left\{\begin{array}{l}
y_{1}(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r_{1}}, \quad c_{0} \neq 0 \\
y_{2}(x)=C y_{1}(x) \ln x+\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}, \quad b_{0} \neq 0
\end{array}\right.
$$

Note that C could be zero.

Summary of Indicial Roots (2/2)

- Case III: If $r_{1}=r_{2}$, there exists two linearly independent solutions of the form

$$
\left\{\begin{array}{l}
y_{1}(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r_{1}}, \quad c_{0} \neq 0 \\
y_{2}(x)=y_{1}(x) \ln x+\sum_{n=1}^{\infty} b_{n} x^{n+r_{1}} .
\end{array}\right.
$$

Bessel's Equations

- Bessel's equation of order $v \geq 0$ is defined as

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0
$$

The solutions are called Bessel functions of order v.

- Bessel's functions first appear in 1764 when Euler was studying the vibration of drum membrane. Later, the functions appears in many physics problems, from fluid equations to planet motions.

Gamma Function $\Gamma(x)$

- The gamma function (or generalized factorial function) is defined as

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t .
$$

For $x>0$, we have $\Gamma(x+1)=x \Gamma(x)$.

Solution of Bessel's Equation

- Let the solution be $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$, we have

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y= \\
& \quad c_{0}\left(r^{2}-v^{2}\right) x^{r}+x^{r} \sum_{n=1}^{\infty} c_{n}\left[(n+r)^{2}-v^{2}\right] x^{n}+x^{r} \sum_{n=0}^{\infty} c_{n} x^{n+2} .
\end{aligned}
$$

The indicial equation is $r^{2}-v^{2}=0$, pick $r=v$

$$
\begin{aligned}
& x^{v} \sum_{n=1}^{\infty} c_{n} n(n+2 v) x^{n}+x^{v} \sum_{n=0}^{\infty} c_{n} x^{n+2} \\
& =x^{v}\left[(1+2 v) c_{1} x+\sum_{k=0}^{\infty}\left[(k+2)(k+2+2 v) c_{k+2}+c_{k}\right] x^{k+2}\right]=0 .
\end{aligned}
$$

Solution of Bessel's Equation

Therefore, we have

$$
\begin{gathered}
\left\{\begin{array}{l}
(1+2 v) c_{1}=0 \\
c_{k+2}=\frac{-c_{k}}{(k+2)(k+2+2 v)}, k=0,1,2, \ldots
\end{array}\right. \\
\rightarrow\left\{\begin{array}{c}
c_{1}=c_{3}=c_{5}=c_{7}=\cdots=0 \\
c_{2 n}=\frac{(-1)^{n} c_{0}}{2^{2 n} n!(1+v)(2+v) \cdots(n+v)}, n=1,2,3, \ldots
\end{array}\right. \\
\quad=\frac{(-1)^{n} c_{0} \Gamma(v+1)}{2^{2 n} n!\Gamma(n+v+1)}=\frac{(-1)^{n}}{2^{2 n+v} n!\Gamma(n+v+1)}, \text { if } c_{0}=\frac{1}{2^{v} \Gamma(v+1)}
\end{gathered}
$$

Bessel Functions of the $1^{\text {st }}$ Kind (1/2)

- The solutions of Bessel's Equation can be written as

$$
J_{v}(x)=\sum_{n=0}^{\infty} c_{2 n} x^{2 n+v}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+v+n)}\left(\frac{x}{2}\right)^{2 n+v}
$$

Similarly, starting from $r=-v$, we have

$$
J_{-v}(x)=\sum_{n=0}^{\infty} c_{2 n}^{\prime} x^{2 n-v}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1-v+n)}\left(\frac{x}{2}\right)^{2 n-v} .
$$

$J_{v}(x)$ and $J_{-v}(x)$ are called Bessel's functions of the first kind of order v and $-v$.

Bessel Functions of the $1^{\text {st }}$ Kind (2/2)

- Now, we want to find the general solution of the Bessel's DE. Notice that $r_{1}-r_{2}=2 v$:

1. If $2 v \neq$ integer, then $J_{v}(x)$ and $J_{-v}(x)$ are linearly independent.
2. If $2 v=2 m+1, m$ is an integer, then $J_{m+1 / 2}(x)$ and $J_{-m-1 / 2}(x)$ are still linearly independent.
3. If $2 v=2 m, m$ is an integer, then $J_{m}(x)$ and $J_{-m}(x)$ are linear dependent solutions of Bessel's DE.
\rightarrow must find another solution!

$J_{m} \& J_{-m}$ are Linearly Dependent (1/2)

- Proof:

Assume that $v=m$ is an integer, we want to show that $J_{-m}(x)=(-1)^{m} J_{m}(x)$.

1) Perform change of index on $J_{-m}(x)$:

$$
J_{-m}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1-m+n)}\left(\frac{x}{2}\right)^{2 n-m}
$$

Let $2 k+m=2 n-m \rightarrow k=n-m$ and $n=k+m$, we have

$$
J_{-m}(x)=\sum_{k=-m}^{\infty} \frac{(-1)^{k+m}}{(k+m)!\Gamma(1+k)}\left(\frac{x}{2}\right)^{2 k+m}
$$

$J_{m} \& J_{-m}$ are Linearly Dependent (2/2)

2) Since $|\Gamma(x)|=\infty$, for $x=0,-1,-2, \ldots$, we have

$$
J_{-m}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k+m}}{(k+m)!\Gamma(1+k)}\left(\frac{x}{2}\right)^{2 k+m}
$$

3) Finally, note that

$$
\begin{aligned}
(k+m)!\Gamma(1+k) & =[(k+m)(k+m-1) \ldots(k+2)(k+1)] k!\Gamma(1+k) \\
& =k![(k+m)(k+m-1) \ldots(k+2)] \Gamma(2+k) \\
& =k!\Gamma(1+m+k) .
\end{aligned}
$$

Therefore,

$$
J_{-m}(x)=(-1)^{m} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(1+m+k)}\left(\frac{x}{2}\right)^{2 k+m}=(-1)^{m} J_{m}(x)
$$

Bessel Functions of the $2^{\text {nd }}$ Kind

- If v is any non-integer number, we can apply linear combinations of $J_{v}(x)$ and $J_{-v}(x)$ to obtain another solution:

$$
y_{2}(x) \stackrel{d e f}{=} Y_{v}(x)=\frac{\cos v \pi J_{v}(x)-J_{-v}(x)}{\sin v \pi} .
$$

For $m \in$ integer, $Y_{m}(x)=\lim _{v \rightarrow m} Y_{v}(x)$ still converges.

- For any non-integer value of v, the general solution of Bessel's DE can also be written as

$$
y=c_{1} J_{v}(x)+c_{2} Y_{v}(x) .
$$

$Y_{v}(x)$ is called the Bessel function of the $2^{\text {nd }}$ kind.

Example: The Aging Spring

- The DE for the free undamped motion of a mass on an aging spring is given by: $m x^{\prime \prime}+k e^{-\alpha t} x=0$. The change of variable,

$$
s=\frac{2}{\alpha} \sqrt{\frac{k}{m}} e^{-\alpha t / 2}
$$

turns the DE into

$$
s^{2} \frac{d^{2} x}{d s^{2}}+s \frac{d x}{d s}+s^{2} x=0
$$

Therefore, it's the Bessel DE with $v=0$. The general solution is

$$
x(t)=c_{1} J_{0}\left(\frac{2}{\alpha} \sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right)+c_{2} Y_{0}\left(\frac{2}{\alpha} \sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right)
$$

Properties of Bessel Functions

- For $m=0,1,2, \ldots$, we have:
- $J_{-m}(x)=(-1)^{m} J_{m}(x)$
- $J_{m}(-x)=(-1)^{m} J_{m}(x)$
- $J_{m}(0)=0$ if $m>0 ; J_{m}(0)=1$, if $m=0$
- $\lim _{x \rightarrow 0^{+}} Y_{m}(x)=-\infty$

Bessel functions of the first kind, $n=0,1,2,3,4$

Bessel functions of the $2^{\text {nd }}$ kind, $n=0,1,2,3,4$

Bessel Functions with $v=0$

- When $v=0$, we have $J_{v}(x)=J_{-v}(x)$, the $2^{\text {nd }}$ solution can be obtained by Case III of the method of Frobenius: $y_{1}(x)=J_{v}(x)$, and

$$
y_{2}(x)=\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}}\left(\frac{x}{2}\right)^{2 n}\right) \ln (x)+\sum_{n=1}^{\infty} b_{n} x^{n}
$$

Substitute $y_{2}(x)$ into the DE and solve for b_{n}, we have:

$$
y_{2}(x)=\frac{2}{\pi} J_{0}(x)\left[\gamma+\ln \frac{x}{2}\right]-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n!)^{2}}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)\left(\frac{x}{2}\right)^{2 n}
$$

$\gamma=0.57721566$ is Euler's constant.

Differential Recurrence Relation

- Bessel functions satisfy differential recurrence relations as follows:
- $x J_{v}{ }^{\prime}(x)=v J_{v}(x)-x J_{v+1}(x)$
- $x J_{v}^{\prime}(x)=x J_{v-1}(x)-v J_{v}(x)$
- To prove the relations, first, we have to show that

$$
\frac{d}{d x}\left[x^{v} J_{v}(x)\right]=x^{v} J_{v-1}(x) \text { and } \frac{d}{d x}\left[x^{-v} J_{v}(x)\right]=-x^{-v} J_{v+1}(x) .
$$

The recurrence relations can be derived easily, e.g.,

$$
\begin{aligned}
& \frac{d}{d x}\left[x^{-v} J_{v}(x)\right]=-v x^{-v-1} J_{v}(x)+x^{-v} J_{v}^{\prime}(x)=-x^{-v} J_{v+1}(x) \\
& \rightarrow x J_{v}^{\prime}(x)=v J_{v}(x)-x J_{v+1}(x)
\end{aligned}
$$

Differentiation of $x^{v} J_{v}(x)$

- Since

$$
J_{v}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(v+k+1)}\left(\frac{x}{2}\right)^{2 k+v},
$$

then

$$
\begin{aligned}
\frac{d}{d x}\left[x^{v} J_{v}(x)\right] & =\frac{d}{d x} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+2 v}}{2^{2 k+v} k!(v+k) \Gamma(v+k)} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+2 v-1}}{2^{2 k+v-1} k!\Gamma(v+k)} \\
& =x^{v} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma((v-1)+k+1)}\left(\frac{x}{2}\right)^{2 k+(v-1)} \\
& =x^{v} J_{v-1}(x)
\end{aligned}
$$

Legendre's Equation

- Legendre's equation of order α is the $2^{\text {nd }}-$ order linear DE of the form

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0,
$$

where the real number $\alpha>-1$. The only singular points of the Legendre's equation are at +1 and -1 .

Solution of Legendre's Equation (1/2)

. Since $x=0$ is an ordinary point of the equation, substitute $y=\Sigma c_{m} x^{m}$ into the Legendre's equation, we have

$$
c_{m+2}=-\frac{(\alpha-m)(\alpha+m+1)}{(m+2)(m+1)} c_{m}, m \geq 0 .
$$

It can be shown that,
$c_{2 m}=(-1)^{m} \frac{\alpha(\alpha-2)(\alpha-4) \cdots(\alpha-2 m+2)(\alpha+1)(\alpha+3) \cdots(\alpha+2 m-1)}{(2 m)!} c_{0}$,
and

$$
c_{2 m+1}=(-1)^{m} \frac{(\alpha-1)(\alpha-3) \cdots(\alpha-2 m+1)(\alpha+2)(\alpha+4) \cdots(\alpha+2 m)}{(2 m+1)!} c_{1} .
$$

Solution of Legendre's Equation (2/2)

- If $\alpha=n$, a non-negative integer, we have

$$
\begin{aligned}
y_{1}(x)=c_{0}[& 1-\frac{n(n+1)}{2!} x^{2}+\frac{(n-2) n(n+1)(n+3)}{4!} x^{4} \\
& \left.-\frac{(n-4)(n-2) n(n+1)(n+3)(n+5)}{6!} x^{6}+\cdots\right]
\end{aligned}
$$

and

$$
\begin{aligned}
y_{2}(x)=c_{1}[& x-\frac{(n-1)(n+2)}{3!} x^{3}+\frac{(n-3)(n-1)(n+2)(n+4)}{5!} x^{5} \\
& \left.-\frac{(n-5)(n-3)(n-1)(n+2)(n+4)(n+6)}{7!} x^{7}+\cdots\right]
\end{aligned}
$$

Notice that if n is an even integer, $y_{1}(x)$ terminates. When n is an odd integer, $y_{2}(x)$ terminates.

Legendre Polynomials

- The solution polynomial of Legendre equation of order n, with special selection of c_{0} (n even) or c_{1} (n odd), are called Legendre polynomial of degree n :

$$
P_{n}(x)=\sum_{k=0}^{N} \frac{(-1)^{k}(2 n-2 k)!}{2^{n} k!(n-k)!(n-2 k)!} x^{n-2 k},
$$

where $N=\lfloor n / 2\rfloor$. For example:

$$
\begin{array}{ll}
P_{0}(x)=1, & P_{1}(x)=x, \\
P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), & P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \\
P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right), & P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right) .
\end{array}
$$

Legendre Polynomials

They are the solutions of

$$
\begin{array}{ll}
n=0: & \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}=0 \\
n=1: & \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0 \\
n=2: & \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+6 y=0 \\
n=3: & \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+12 y=0
\end{array}
$$

Legendre polynomials are orthogonal over [$-1,1]$.

Legendre Polynomials, for $n=0,1,2,3,4$

