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Power Series

Q A power series in (x — a) is a series of the form

Z::Ocn(x—a)" =C, +cl(x—a)+c2(x—a)2 Feen

Such a series is said to be a power series centered at a.

Q A power series is convergent at a value x € I if the limit
of partial sums exists, i.e.

f(x)=lim,_, > " ¢ (x—a)

The interval of convergence, I, of a power series is the
set of all numbers where the series converges.
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Ratio Test

A Convergence of a power series can often be checked
by the ratio test: suppose ¢, = 0 for all # in

Z:;O c (x—a)",
and that

1
Cn+1 (‘x B a)n+ Cn+1

C

n

lim = L.

n—0

lim -
n—ol ¢ (X—a)

=‘x—a

If L <1, the series converges absolutely; if L > 1 the
series diverges; and if L =1 the test is inconclusive.
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Radius of Convergence (1/2)

Q A power series f(x) = )., —o cn(x — a)* has a radius of
convergence p, such that f{x) converges for |x —a| < p
and diverges for |x — a| > p.

a If p>0, fix) converges for |x — a| < p, and diverges for
x —a| > p. If x) converges only at its center a, then p=
0. Ifit converges for all x, p= .

Q The ratio test is inconclusive at an end point a = p.
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Radius of Convergence (2/2)

Q Given the power series g(x) = )., o cpx”, if the limit

C

n

o =lim

n—»0

Cn+1

exists, then
m If p=0, then g(x) diverges for all x = 0.
m |[f0<p<oo, g(x) converges if x| < p, and diverges if [x| > p.
m |f p=o0, then g(x) converges for all x.
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Power Series of a Function f{x)

A The Taylor series of a function f(x) is defined as
(n)
y:Z:zof (a) (x—a)".

n!

If y converges to f(x) for all x in some open interval
containing a, then we say that the function f(x) is
analytic at x = a.
m Polynomials are analytic; a rational function is analytic
wherever the denominator is not zero.
Q Arithmetic of power series

m The operations of addition, multiplication, and division can be
applied to power series as in polynomials.

m If fand g are analytic at a, so are f+g, f-g, and flg (if g(a) # 0).
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Examples of Power Series

Q By Taylor (V a) or Maclaurin (a = 0) series expansions,
common functions can be written in power series forms:

. 00 (_l)nx2n+1 x3 xS
sin x = =X——+—-—
— (Op+1)! 3 s

In(1+x) = i(_l

n+l _.n 2 3
) x° X

X
:x___|___...
n! 2 3

1 o0
—— =Y X" =l+x+x"+x0 4
1—x n=0
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Example: Adding Two Power Series

Q Write X2 ,n(n — 1)c,x" 2 + Yo, c,,x™*1 as one power
series.

Solution:

Zn(n De, x" i =2-1-¢c,x +Zn(n De, x" Z.O:cnx”+1
n=0 n=0

n=3

=2c, + Z (k+2)(k+1)c,,x" +) ¢ x*
k=1 k=1

=2¢, + ) _[(k+2)(k+1)c,,, + ¢, Ix*
k=1
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Power Series Method

Q The power series method for solving a DE consists of
substituting the power series

y= icnx”
n=0
in the DE and determining the coefficients c,, ¢, ... sO
that the equation satisfies.

QIf f(x) = X0, x™, then f'(x) = Yoo ne,x™ L.

— A If Y ga,x™ = Xn-obyx™, for all x in the interval of
convergence, then a, = b, for all n > 0.
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Example: y'+ 2y =0

Q Since y = XiLocux™, and y' = Y nepx™ T,

we have ) )
Z ne x" + 22 c,x" =0.
n=l1 n=0

Perform change of index » to align x”,

o0

Z (n+1c,, x" + Zi cx"=0 — i [(n+1)c,, +2¢,x" =0.
n=0 n=0

n=0

We have a recurrence relation ¢, , =—2¢, /(nt+1), n 2 0.

—>c,=(2)cy/nl,n=21 = yx)= i (_2)' oy,
n=0 n.
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Power Series Solutions

Q0 Suppose the linear 2nd-order DE
a, (X" + a, ()’ + ag(x)y =0
is put into the standard form

y"'+ Px)y'+ Qx)y =0,
then:

A point x = x, is said to be an ordinary point of the DE if
both P(x) and Q(x) are analytic at x,. A point that is not
an ordinary point is said to be a singular point of the
equation.
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Example: Ordinary, Singular Points

Q Every finite value of x is an ordinary point of
y'+(e)y'+(sinx)y=0.
Q x =0 is a singular point of the DE

y'+(e)y'+(Inx)y=0.
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Polynomial-Coefficient DEs

a Recall that a polynomial is analytic at any value x, and
a rational function is analytic except at points where its
denominator is zero. Thus, a 2"9-order polynomial-
coefficient DE has singular points when a,(x) =0,

since
P(X) — al(x) , Q(X) — Clo(.X)

a,(x) a,(x) |

aQ Examples

m The Euler equation ax?y” + bxy' + cy = 0 has a singular point
atx=0.

m The equation (x* + 1)y + xy' —y =0 has singular points
at x = .
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Solutions Near an Ordinary Point

Q Theorem: If x = x, is an ordinary point of

ay(x)y" + a;(x)y" + an(x)y =0,

we can always find two linearly independent solutions
in the form of a power series centered at x,,, that is,

Y= ijocn(x—xo)”.

A series solution converges at least on some interval

defined by | x — x, | < p, where p s the distance from x,
to the nearest singular point.

a Note that for | x —x, | = p, y(x) may or may not converge.
Further investigations are required.

14/59




Ex: (x* —4)y" +3xy'+ y =0, (0) =4, y'(0) =1

Q Note that the singular points are £2, there should be a

solution with radius of convergence at least 2.
Since ) . )
y - anO C"xn ? y’ - anl nc”xn_l’ and y” - anZ n(l’l B 1)Cn'xn_2

Therefore,
Z n(n—1)c x" — 42 n(n—1)c x"> + 32 ne, x" + Z c x" =0.
n=2 n=2 n=1 n=0

add dummy terms for n =0, 1 change of index 7 add dummy term n =0

o0 o0 OO\ o0
k‘ Z n(n—1)c, x" — 42 (n+2)(n+1)c, ,x"+ 32 nc,x" + chx” =0.
n=0 n=0 n=0 n=0

__ (n+1)cy

Combining the terms, we have c¢,,,, = st " > 0.
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Ex: (x?—4)y" +3xy'+y=0 (2/2)

Q Whenn=0,2,4, ..., we have

C, 3¢, 3-5¢, 1-3-5---(2n— 1)
—, C4= > R C6= 3 ,"'—)Czn p 0'
4.2 4-.2-4 4°.2-4-6 4".2-4..-(2n)
Whenn=1,3,5, ..., we have

2¢, 2-4c, 2-4-6c, 2-4-6---(2n)
C3 = » €5 =773 » 67 =73 T2 G T
4.3 4--3.5 4°.3-5-7 4" -1-3-- (2n+1)

¢, =

Therefore, the solution is
1-3-5---(2n—-1) 2 n! 2n+1
r) = CO(HZ 2l Jm(ﬁzzn [3-Q2n+l) ]

and y(0)=c,=4,)'(0)=c, =1.
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Translated Series Solutions

a If the initial condition is given at x, other than zero, we
have to assume the general solution form

Y =D, (55"

This way, we can obtain the IVP solution with y(x,) = ¢,
and y'(x,) = ¢, easily.

a As an alternative, we can translate the equation by
letting # = x — x, and assume the solution form:

o0
y=e
n=0
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EX: (£2t3)"+3(t=1)y'+y=0, (1) =4,'(1) =-1

Q Perform a change of variable to the DE by x =¢—1:
r—-2t-3=x+12-2(x+1)-3=x>-4,

and
d (dyj dx_dzy
dt dedt dx df* |de\dx)|dt dx*

dy dydx dy dzy:
Hence, the DE becomes (x*>—4)d?y/dx?* + 3x(dy/dx) + y = 0.
— Same DE as the previous one.

Substituting x = -1 into the previous solution, we get
1 1 3
=4+(-D)+—(-D*+=(-1)*+—(@¢-D*+---
y(t) =4+t )+2(f )+6(f )+32(f )+

which converges if -1 <¢<3.
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Example: y" + (cos x) y=0 (1/2)

a Since
y"+(cos x)y

2 4

o0 x o0
= n(n-Dex"*+|1- c.x"
;2< ), [ ST jz

2
X

=2c, +6c,x+12¢,x" +- +(1—2'+4'+ j( +ex+c,x” +- )

=2c, + ¢, +(6c; +cl)x+(12c4 +c, —%cosz +--=0
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Example: y" + (cos x) y=0 (2/2)

We have:
2¢, +¢, =0, 6¢,+¢ =0, 1204—|—c2—%c02()’

Therefore:
1 1 1 1

X)=l-—x"+—x*—---, X)=X——X +—X —---
P =1 x4t () =x

with region of convergence | x | < .

yl yz
3.y . . . . : 3
: AN W
I \/ V V:
1z ] c Z
N A Ap
. N,V V] 3t -
2 0 2 4 6 8 10 2 0 2 4 6 8 10
(a) Plotof y (x) vs. x (b) Plot of y (x) vs. x
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Solutions about Singular Points

a Let y(x) = Zc x", if P(x) is not analytic at 0, its power
series form b x* will not converge to P(0) at 0 given
any b,. However, it is possible that

(Zbyx*) (Znc,x")
may still converge to P(x)y'(x).

In short, even if x =0 is a singular point, the power
series expression of

V' Py + Ox)y
may still converge to zero.
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Regular Singular Points

O Assume that a DE in the standard form
y" + P(x)y’ + O(x)y = 0 has a singular point at x,.

If there are two functions p(x) and g(x), both are

analytic at x,,, such that p(x) = (x — x,)P(x) and

g(x) = (x — x)*’Q(x), the original DE can be rewritten as:
. P, ()

Y e -xy)

>V =0,
then, we call x = x,, a regular singular point of the DE.

Otherwise, x = x, is a irregular singular point.
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Remarks on Singularity of P and QO

Q If x=0 is a singular point, the power series expansion
of P(x) at 0 approaches .

Q However, if P(x) grows slower than 1/x when x — 0,
then xP(x) is convergent. That is, p(x) = xP(x) is analytic
at 0. Similarly, g(x) is analytic at 0 if O(x) grows slower
than 1/x2.

xX) , X
p( )y +q(2 y=0,
X X

0 Note that, forthe DE y"+

x =0 is a regular singular point if p(x) and g(x) are
polynomials.

23/59




Example: Singular Points

Q For (x> -4)%"+3(x-2)' +5y=0,x=2and x=-2 are
singular points. We have

3 5
P = (x—2)(x+2)y and Ox) = (x=2)*(x+2)*

Q Obviously x =2 is a regular singular point,
and x =-2 iIs an irregular singular point.
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Example: Non-polynomial p(x), g(x)

Q The DE x*" + (x? sin x)y’ + (1 — cos x)y = 0 can be

expressed as

. sinx/x , (1-cosx)/x’
y + . y -+ x2 y:O

Since x =0 is not an ordinary point and

. 1 3 5 2 4
p(x)zsmxz(x_x+x_...]:1_x+x_...,

X X

( )_I—COSX_ 1 1_ l_x_2_|_x_4_... —l_x_2_|_x_4...
=7 = 04 T

are both analytic (convergent) at 0, thus x=0is a
regular singular point.

25/59




Solution near Singular Points

Q For a constant-coefficient Cauchy-Euler equation
xX2y" + pexy' + gy =0,
where p, and ¢, are constants, we can assume that

y(x)=x"1s a solution — r is a root of the equation:
r(r—1)+py+q,=0.

If we have coefficient functions p(x) and ¢g(x) instead, is
it possible that

o0 o0
o n _ n+r
y(x)=x E c,x" = E c X
n=0 n=0

IS a solution?
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Method of Frobenius

Q If x =x, is a regular singular point of the differential
equation a,(x)y" + a,(x)y' + a,(x)y = 0, then there exists
at least one solution of the form

y=(x-x)" D c,(x=x)" =D ¢,(x=x)"",
n=0 n=0

where the number r Is a constant to be determined.
The series will converge on some interval of
0<x—-—x,<R.
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Example: 3xy" +y' —y=0 (1/3)

Q Solution: lety = Y, ¢, x™*", we have
y' = Z (n+r)c,x""" and y" = Z (n+r)(n+r-1c,x"".
n=0 n=0

Therefore,
3xy” _|_ y! _ y

=x {r(3r —2)c,x ' + Z [(k+7r+1)Bk+3r+1)c,,, —c, ]xk} =0
k=0
~2)c, =0
We have: r3r=2)6
(k+r+1)Q@Bk+3r+1)c,,—c, =0, k=0,1,2,---
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Example: 3xy" +y' —y=0 (2/3)

a Hence,
r=0,2/3
) Cpoy = Sk L k=0,1,2,--
| (k+r+1)Q3k+3r+1)

Substituting » =0 and » = 2/3 into the recurrence eq.,

Cr Co
r=2/3, ¢, = —>c, =
N Bk+1)+2)k+1) n'5-8-11---(3n+2)
Cy Co
r=0, ¢,,= —>c, =
(k+D(3(k+1)-2) nl-4.7---3n-2)
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Example: 3xy" +y' —y =0 (3/3)

a Let¢,=1, we have two series solutions

Jﬁ(x):xz
< —

yr(x)=x’

xl’l
n5-8-11- (3n+2) }

Z‘ n'l-4.7-- (3n 2) }
Since y,(x) and y,(x) are linearly independent on the
entire axis, y(x) = k,y,(x) + kyy,(x) is the general solution

of the DE on any interval not containing the origin (note
that 0° is undefined).
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Indicial Equation

Q The equation derived from the coefficient of the
smallest degree of x in the Frobenius method is the
iIndicial equation.

Q The solutions of the indicial equation with respect to r
are called the indicial roots.
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Frobenius Series Solutions (1/2)

Q Theorem: If x =0 is a regular singular point of

x2y" +xp(x)y’ + q(x)y = 0.
Let p> 0 denote the minimum of the radii of
convergence of the power series

p)=>" px" and g(x)=> " qx".

Let », and r, be the (real) roots, with », > r,, of the
iIndicial equation
r(r—1)+py+q,=0.

Then, we have the following properties:

32/59




Frobenius Series Solutions (2/2)

1.

For x > 0, there exists a solution of the form
»(x)=x" Zanxn (a, #0)
n=0

corresponding to the larger root r,.

If r, #r,and r, —r, ¢Z*, then there exists a 2" linearly
independent solution for x > 0 of the form

y,(x) = x" anx” (b, # 0)
n=0

corresponding to the smaller root r,.

The radii of convergence of the solutions are at least p,
the nearest distance to the nearby singular point.
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Example: 2x)" + (1 +x)y' +y=0

a Since x»" + Y% x(1+x) y' + Yo xy =0, p(x) = (1+x)/2 and
gx)=x/2 > p,= 2and g, =0—>r*—r2=0, > r=0, %.

Forr =%, let y;(x) = Yo anx™*, then a, = (_zlzn'ao.

Forr,=0,let y,(x) = Yoo by,x™ "2, we have

" 1.3.5.7--(2n—1)

The general solution is y = ¢,y,(x) + ¢,1,(x).
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Example: xy" +2y' +xy =0 (1/3)

a When r, — r, Is a positive integer, the Frobenius solution
Is only guaranteed for ;. However, in this example, we
still have two solutions even if r, —r, = 1.

2
X

: " 2 !/
The DE can be writtenas y"+—y +—y=0.
X X

The indicial equation (» — 1) + 2r =0 has roots 0, —1.
Start with », =—1, we have

-1
y(x)=x" Zn X —Zn [CX

Hence,

(e ) (e )
Z n(n— l)cnx”_z + Z Cnx” = (). — Check the coefficients of x 2 and x!!
n=0
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Example: xy" +2y' +xy =0 (2/3)

The first two terms gives us 0-¢,= 0 and 0-¢,= 0, which
means ¢, and ¢, can be arbitrary constants.

Thus, the recurrence relation ¢, =—, ,/n(n—1),n>2
can be divided into two groups of coefficients:

D'y . D
(2n)! M 2n+)!

Cy, , for n>l.

Therefore, a general solution is

y(x)=x" Zcx

Co ( l)nx2n Cl ( l)n 2n+l1
,; (2n)! Z Qn+1!
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Example: xy” + 2y +xy =0 (3/3)

a Now, if you pay attention, you will recognize that the

solution is simply

y(x) =x"'(c, cos x + ¢, sin x).

The graph of the solution is:
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2"d Solution by Reduction of Order

Q If there is only one solution in Frobenius form for

y'+ Py + Ox)y =0,
we can find the 2"d solution by reduction of order.

Recall that the reduction of order formula tells us

e—jP(x)dx

¥, () =30 s
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Summary of Indicial Roots (1/2)

a Case I: r, and r, are distinct, », — r, # N, for some
integer N — exists two linearly independent solutions of
the form

y,(x) = Z::O c.x""and y,(x)= ZZO c,x"".

a Case ll: r, —r, =N, for some integer N — exist two
linearly independent solutions of the form

nx) =" ex"™, ¢ #0
P () =Cy(D)Inx+Y." bx"", b #0

Note that C could be zero.
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Summary of Indicial Roots (2/2)

a Case lll: If r, =r,, there exists two linearly independent
solutions of the form

yl(x) Zno n n+7”1, CO¢O
() =y (@)nx+ Y b "
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Bessel's Equations

Q Bessel's equation of order v > 0 is defined as
xy" +xy' + (x? =)y =0.
The solutions are called Bessel functions of order v.

Q Bessel's functions first appear in 1764 when Euler was
studying the vibration of drum membrane. Later, the
functions appears in many physics problems, from fluid

equations to planet motions.
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Gamma Function I'(x)

Q The gamma function (or generalized factorial function)
is defined as

I(x)= j:zx—le—fdr.

For x>0, we have I'(x+1) =x I'(x).

—_——— = — —
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Solution of Bessel's Equation (1/2)

0 Let the solution be y = Yo, ¢, x™*", we have
)czy”+xy'+(x2 —vz)y =

c,(¥r* —v)x" +x" Z c, [(n +7) =V’ ]x” +x" Z c x"?.
n=1 n=0

The indicial equation is > —v* =0, pick r=v

o0
v ®© n v n+2
X anlcnn(n+2v)x +X chx

n=0

= x{(l +2v)c,x + Z [(k +2)(k+2+2v)c,, +c, ]x’”z }z 0.
k=0
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Solution of Bessel's Equation (2/2)

Therefore, we have

[ (1+2v)c, =0

| Ca = S , k=0,1,2,..

k (k+2)(k+2+2v)

c,=C,=¢Cs=c,=--=0
p—— DA . n=1,2,3,.
—> 4 27l (1+v)2+v)---(n+V)
(=D '(v+1) (—1)" 1

2 pT(n+v+1) 22 nlT(n+v+1)’

Co ==
2'T'(v+1)
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Bessel Functions of the 15t Kind (1/2)

Q The solutions of Bessel's Equation can be written as

Jv (X) _ icznxznw _ Z.O: (_1) (gj

o nI'(1+v+n)

Similarly, starting from » =—v, we have

. - r 2n—v __ - (_l)n X o
J"(x)_;cz”x _Zn!F(l—v+n)(§j '

n=0

J (x) and J_(x) are called Bessel's functions of the first
kind of order v and —v.
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Bessel Functions of the 18t Kind (2/2)

A Now, we want to find the general solution of the
Bessel's DE. Notice that », —r, = 2v:

1. If 2v # integer, then J (x) and J (x) are linearly independent.

2. f2v=2m+ 1, mis an integer, thenJ __,,(x) and
J . 1,(x) are still linearly independent.

3. If2v=2m, mis an integer, then J (x) andJ ,(x) are linear
dependent solutions of Bessel’s DE.
— must find another solution!
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J & J_are Linearly Dependent (1/2)

Q Proof:
Assume that v=m is an integer, we want to show that

T px) = (1) J, ().
1) Perform change of index on J_ (x):

. 1y x 2n-m
J_,(x)= ; n'I'(1—m+n) (2j

Let 2k+m = 2n—-m — k= n—m and n = k+m, we have

) ) (__1)k+m EE 2k+m
J ()= (k +m)IT(1+ k) (2j

k=—m
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J & J_are Linearly Dependent (2/2)

2) Since |I'(x)|=o, forx=0,-1,-2, ..., we have

B o ( 1)k+m ¥ 2k+m
S ) _Z(k+m)'l“(l+k)( j

3) Finally, note that
(km)'\T'(1+k) = [(k + m)(k+m—1) ... (k+2)(k+1)] k! T'(1+k)
= k! [(ktm)(ktm-1) ... (k+2)] T'(2+k)
=k T(1+m+k).
Therefore,

© ( 1) ¥ 2k+m_ o
Sn() =) Zk'r(1+m+k)( ) = (D700
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Bessel Functions of the 2" Kind

Q If vis any non-integer number, we can apply linear
combinations of J (x) and J_(x) to obtain another

solution: dof
¢ cosvred (x)—J_ (x
Yo(x) =Y, (x) = () ( )

SIN VT

For m € integer, Y, (x) =1im, Y (x) still converges.

Q For any non-integer value of v, the general solution of
Bessel’s DE can also be written as

y =/ (x) + e, X (x).
Y (x) is called the Bessel function of the 2"d kind.
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Example: The Aging Spring

Q The DE for the free undamped motion of a mass on an
aging spring is given by: mx" + ke®x = 0. The change

of variable
, 2 \/? —at/2
s=—.—e ,
a \m
turns the DE into
,d’x  dx
) —+tSs—+s x=0.
ds ds

Therefore, it's the Bessel DE with v=0. The general
solution is

x(t)y=c¢J, [2 \/ge“t/zJ + czYO[i ’l;e“”z}
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Properties of Bessel Functions

Q Form=0,1,2, ..., we have:
mJ (x)=-D"J, (x)
mJ (—~x)=-1)"] (x)
mJ (0)=0ifm>0;J (0)=1,ifm=0

- hrnx—)O+ Y, m(x) =~

1z
0.8%
0.63
0.4:
0.2%
0
0.2
-04F . . . E 3 ) . :

0 2 4 6 8 0 2 4 6 8

Bessel functions of the first kind, n =0, 1, 2, 3, 4 Bessel functions of the 2" kind, n=0, 1, 2, 3, 4
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Bessel Functions with v=10

a When v=0, we have J (x) =J_(x), the 2" solution can
be obtained by Case lll of the method of Frobenius:
»1(x) = J,(x), and

0 (_l)n X 2n 0 )
yz (X) [nO (n')z (2j ] n(X)—I_ n=1 ”x
Substitute y,(x) into the DE and solve for b,, we have:

2 x] 2& (=D 1Y xY”
y,(x) == J(x)[7/+ln2} Z(n') (1+2+ + j(z)

n=l1 n

y=0.57721566 is Euler’s constant.
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Differential Recurrence Relation

Q Bessel functions satisfy differential recurrence relations
as follows:
moxJ ) (x)=vJ (x)—xJ (%)
mxJ ) (x)=xJ, (x)—vJ (x)
Q To prove the relations, first, we have to show that
a "J (x)] =x"J _,(x) and a [x_vJv (x)] =—x"J_,(x).
dx dx
The recurrence relations can be derived easily, e.g.,

B 0] W0 =)
X

()=, (1) 3], (3).
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Differentiation of x"J (x)

a Since .
B . ( 1) ¥ +v
JV(X)_Z;k'F(v+k+l)( ) ’
then k _2k+2v
d [x 7 (x)] d (—D)"x

22"+ K(v+ k)T +k)

( l)k 2k+2v-1
_Zzz"+ TR (v + k)

) xvi (_ 1) (szlﬁt(vl)
T ERT(v-D+k+1) 2
=x'J, (%)
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Legendre’s Equation

0 Legendre’s equation of order « is the 2"9-order linear
DE of the form

(I -x*)" —=2xy" + o+ 1)y =0,

where the real number o> —1. The only singular points
of the Legendre’s equation are at +1 and 1.
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Solution of Legendre’s Equation (1/2)

Q Since x =0 is an ordinary point of the equation,
substitute y = ¢, x™ into the Legendre’s equation,

we have
__(a—m)(a+m+l)c

" m+2)(m+1) "
It can be shown that,
e, =(-1)" a(a-2)a—-4) - (a-2m+2)(a+D(a+3) - (a+2m—1) .
(2m)!
and

m > 0.

(a—1)(a—3)---(a—2m+1)(a+2)(a+4)---(a+2m)C

c, . =(=1)"
2m+1 ( ) (2m+1)' 1
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Solution of Legendre’s Equation (2/2)

Q If «=n, a non-negative integer, we have
¥, (x)=¢, {1 _@xz n (n— 2)11(114:L D)(n+3) o

_(=Hn=2n(n+ D +3)(+5) }
6!

and
) =c [x (n- 1)3('71 +2) 5, (n=3)n- 1)5('11 +2)(n+4)

~(n=5)(n=3)(n-D)(n+2)(n+4)(n+6) s }
7!

Notice that if n is an even integer, y,(x) terminates.

When #n is an odd integer, y,(x) terminates.
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Legendre Polynomials (1/2)

Q The solution polynomial of Legendre equation of order
n, with special selection of ¢, (» even) or ¢, (» odd), are
called Legendre polynomial of degree x:

N _1\k . ]
})n (.X) _ Z ( 1) (27’2 2k) xn—2k
L) (= )\ (n — 2)!
where N =|#/2]. For example:
P(x)=1, P(x)=x,

P9 =G -1, P(3) = (5% = 3x),

5

1 1

P, (x)= §(35x4 -30x*+3), PR(x)= §(63x5 —70x> +15x).
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Legendre Polynomials (2/2)

They are the solutions of
n=0: (1-x>)y"-2x)' =0
(1-x>)y"=2xy'+2y =0

n=1:
n=2: (1-x>)y"-2xy'+6y=0
n=3: (1-x>)y"-2x)'+12y=0

Legendre polynomials are
orthogonal over [-1, 1].

1 05 0 05 1
Legendre Polynomials,
forn=0,1,2,3,4

59/59




