The Laplace Transform ${ }^{\dagger}$

-

National Chiao Tung University
Chun-Jen Tsai 10/23/2019

[^0]
Transform of a Function

- Some operators transform a function into another function:

Differentiation: $\frac{d}{d x} x^{2}=2 x$, or $D x^{2}=2 x$
Indefinite Integration: $\int x^{2} d x=\frac{x^{3}}{3}+c$
Definite Integration: $\int_{0}^{3} x^{2} d x=9$
\rightarrow A function may have nicer property in the transformed domain!

Integral Transform

- If $f(x, y)$ is a function of two variables, then a definite integral of f w.r.t. one of the variable leads to a function of the other variable.

Example: $\quad \int_{1}^{2} 2 x y^{2} d x=3 y^{2}$

- Improper integral of a function defines how integration can be calculated over an infinite interval:

$$
\int_{0}^{\infty} K(s, t) f(t) d t \equiv \lim _{b \rightarrow \infty} \int_{0}^{b} K(s, t) f(t) d t
$$

Laplace Transform

\square Definition: Let f be a function defined for $t \geq 0$, then the integral

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

is said to be the Laplace transform of f, provided the integral converges.

The result of the Laplace transform is a function of s, usually referred to as $F(s)$.

Example: $\mathscr{L}\{1\}$

- By definition:

$$
\begin{aligned}
\mathscr{L}(1) & =\int_{0}^{\infty} e^{-s t}(1) d t=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} d t \\
& =\left.\lim _{b \rightarrow \infty} \frac{-e^{-s t}}{s}\right|_{0} ^{b}=\lim _{b \rightarrow \infty} \frac{-e^{-s b}+1}{s}=\frac{1}{s},
\end{aligned}
$$

provided $s>0$. The integral diverges for $s<0$.

Example: $\mathscr{L}\{t\}$

- By definition:

$$
\mathscr{L}(t)=\int_{0}^{\infty} e^{-s t} t d t
$$

Using integration by parts and apply l'Hospital's rule to get $\lim _{t \rightarrow \infty} t e^{-s t}=0, s>0$, we have:

$$
\begin{aligned}
\mathscr{L}\{t\} & =\left.\frac{-t e^{-s t}}{s}\right|_{0} ^{\infty}+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t \\
& =\frac{1}{s} \mathscr{L}\{1\}=\frac{1}{s}\left(\frac{1}{s}\right)=\frac{1}{s^{2}}
\end{aligned}
$$

Example: $\mathscr{L}\left\{e^{a t}\right\}$

- By definition:

$$
\begin{aligned}
\mathscr{L}\left\{e^{a t}\right\} & =\int_{0}^{\infty} e^{-s t} e^{a t} d t=\int_{0}^{\infty} e^{-(s-a) t} d t \\
& =\left.\frac{-e^{-(s-a) t}}{s-a}\right|_{0} ^{\infty} \\
& =\frac{1}{s-a}, s>a
\end{aligned}
$$

Example: $\mathscr{L}\left\{t^{n}\right\}, n \in N$

- Similarly, let $u=t^{n}, d v=e^{-s t} d t$,

$$
\begin{aligned}
\mathscr{L}\left\{t^{n}\right\} & =\int_{o}^{\infty} e^{-s t} t^{n} d t=-\left.\frac{t^{n}}{s} e^{-s t}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{n}{s} e^{-s t} t^{n-1} d t \\
& =\frac{n}{s} \mathscr{L}\left\{t^{n-1}\right\}=\frac{n(n-1)}{s^{2}} \mathscr{L}\left\{t^{n-2}\right\}=\ldots=\frac{n(n-1) \cdots 2}{s^{n-1}} \mathscr{L}\{t\} \\
& =\frac{n!}{s^{n+1}}, s>0
\end{aligned}
$$

Example: $\mathscr{L}\{\sin 2 t\}$

- By definition:

$$
\begin{aligned}
\mathscr{L}\{\sin 2 t\} & =\int_{0}^{\infty} e^{-s t} \sin 2 t d t=\left.\frac{-e^{-s t} \sin 2 t}{s}\right|_{0} ^{\infty}+\frac{2}{s} \int_{0}^{\infty} e^{-s t} \cos 2 t d t \\
& =\frac{2}{s} \int_{0}^{\infty} e^{-s t} \cos 2 t d t, s>0 \\
& =\frac{2}{s}\left[\left.\frac{-e^{-s t} \cos 2 t}{s}\right|_{0} ^{\infty}-\frac{2}{s} \int_{0}^{\infty} e^{-s t} \sin 2 t d t\right] \\
& =\frac{2}{s^{2}}-\frac{4}{s^{2}} \mathscr{L}\{\sin 2 t\} \rightarrow \mathscr{L}\{\sin 2 t\}=\frac{2}{s^{2}+4}, s>0
\end{aligned}
$$

Linearity of $\mathscr{L}\}$

- For a sum of functions, we can write

$$
\int_{0}^{\infty} e^{-s t}[\alpha f(t)+\beta g(t)] d t=\alpha \int_{0}^{\infty} e^{-s t} f(t) d t+\beta \int_{0}^{\infty} e^{-s t} g(t) d t
$$

whenever both integrals converge for $s>c$, where c is some constant.

Hence,

$$
\begin{aligned}
& \mathscr{L}\{\alpha f(t)+\beta g(t)\} \\
& =\alpha \mathscr{L}\{f(t)\}+\beta \mathscr{L}\{g(t)\} \\
& =\alpha F(s)+\beta G(s)
\end{aligned}
$$

Example: $\mathscr{L}\left\{3 e^{2 t}+2 \sin ^{2} 3 t\right\}$

- $\mathscr{L}\left\{3 e^{2 t}+2 \sin ^{2} 3 t\right\}=3 \mathscr{L}\left\{e^{2 t}\right\}+\mathscr{L}\left\{2 \sin ^{2} 3 t\right\}$

$$
\begin{aligned}
& =3 /(s-2)+\mathscr{L}\{1-\cos 6 t\} \\
& =3 /(s-2)+\left[1 / s-s /\left(s^{2}+36\right)\right], s>2 .
\end{aligned}
$$

Transform of Basic Functions

- $\mathscr{L}\{1\}=\frac{1}{s}$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, n=1,2,3, \cdots$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}$
- $\mathscr{L}\{\sinh k t\}=\frac{k}{s^{2}-k^{2}}$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}$
- $\mathscr{L}\{\cosh k t\}=\frac{s}{s^{2}-k^{2}}$

Existence of $\mathscr{L}\{f(t)\}$

- Theorem: If f is piecewise continuous on $[0, \infty)$, and that f is of exponential order for $t>T$, where T is a constant, then $\mathscr{L}\{f(t)\}$ converges.

- Definition: A function f is said to be of exponential order c if there exists constants $c, M>0$, and $T>0$ such that $|f(t)| \leq M e^{c t}$ for all $t>T$.

Examples: Exponential Order

- The functions $f(t)=t, f(t)=e^{-t}$, and $f(t)=2 \cos t$ are all of exponential order $c=1$ for $t>0$, since we have $|t| \leq e^{t},\left|e^{-t}\right| \leq e^{t},|2 \cos t| \leq 2 e^{t}$.

Proof of Existence of $\mathscr{L}\{f(t)\}$

- By the additive interval property of definite integrals,

$$
\mathscr{L}\{f(t)\}=\int_{0}^{T} e^{-s t} f(t) d t+\int_{T}^{\infty} e^{-s t} f(t) d t=I_{1}+I_{2}
$$

The integral I_{1} exists (finite interval, f piecewise continuous). Now,

$$
\begin{aligned}
\left|I_{2}\right| & \leq \int_{T}^{\infty}\left|e^{-s t} f(t)\right| d t \leq M \int_{T}^{\infty} e^{-s t} e^{c t} d t \\
& =M \int_{T}^{\infty} e^{-(s-c) t} d t=-\left.M \frac{\left.e^{-(s-c) t}\right|^{\infty}}{s-c}\right|_{T}=M \frac{e^{-(s-c) T}}{s-c}, \quad s>c .
\end{aligned}
$$

$\rightarrow I_{2}$ exists as well $\rightarrow \mathscr{L}\{f(t)\}$ converges.

Example: Transform of Piecewise $f(t)$

- Evaluate $\mathscr{L}\{f(t)\}$ for

$$
f(t)= \begin{cases}0, & 0 \leq t<3 \\ 2, & t \geq 3\end{cases}
$$

Solution:

$$
\begin{aligned}
\mathscr{L}\{f(t)\} & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{3}\left(e^{-s t} \cdot 0\right) d t+\int_{3}^{\infty} 2 e^{-s t} d t \\
& =-\left.\frac{2 e^{-s t}}{s}\right|_{3} ^{\infty}=\frac{2 e^{-3 s}}{s}, \quad s>0
\end{aligned}
$$

Behavior of $F(s)$ as $s \rightarrow \infty$

- If f is piecewise continuous on $[0, \infty)$ and of exponential order for $t>T$, then $\lim _{s \rightarrow \infty} \mathscr{L}\{f(t)\}=0$.
Proof:
Since $f(t)$ is piecewise continuous on $0 \leq t \leq T$, it is necessarily bounded on the interval. That is $|f(t)| \leq M_{1} e^{0 t}$. Also, $|f(t)| \leq M_{2} e^{\lambda^{t}}$ for $t>T$. If M denotes the maximum of $\left\{M_{1}, M_{2}\right\}$ and c denotes the maximum of $\{0, \gamma\}$, then for $s>c$:

$$
\begin{aligned}
\mathscr{L}\{f(t)\} & \leq \int_{0}^{\infty} e^{-s t}|f(t)| d t \leq M \int_{0}^{\infty} e^{-s t} \cdot e^{c t} d t \\
& =-\left.M \frac{e^{-(s-c) t}}{s-c}\right|_{0} ^{\infty}=\frac{M}{s-c} \rightarrow 0 \text { as } s \rightarrow \infty .
\end{aligned}
$$

Inverse Laplace Transform

- If $F(s)$ is the Laplace transform of a function $f(t)$, namely, $\mathscr{L}\{f(t)\}=F(s)$, then we say that $f(t)$ is the inverse Laplace transform of $F(s)$, that is,

$$
f(t)=\mathscr{L}^{1}\{F(s)\} .
$$

- Example:

$$
1=\mathscr{L}^{1}\{1 / s\}, t=\mathscr{L}^{1}\left\{1 / s^{2}\right\}, \text { and } e^{-3 t}=\mathscr{L}^{1}\{1 /(s+3)\} .
$$

Examples: Inverse Transforms

- Evaluate $\mathscr{L}^{1}\left\{1 / s^{5}\right\}$ Solution:

$$
\mathscr{L}^{-1}\left\{\frac{1}{s^{5}}\right\}=\frac{1}{4!} \mathscr{L}^{-1}\left\{\frac{4!}{s^{5}}\right\}=\frac{1}{24} t^{4}
$$

- Evaluate $\mathscr{L}^{1}\left\{1 /\left(s^{2}+7\right)\right\}$ Solution:

$$
\mathscr{L}^{1}\left\{\frac{1}{s^{2}+7}\right\}=\frac{1}{\sqrt{7}} \mathscr{L}^{-1}\left\{\frac{\sqrt{7}}{s^{2}+7}\right\}=\frac{1}{\sqrt{7}} \sin \sqrt{7} t
$$

Linearity of $\mathscr{L}^{1}\{ \}$

- The inverse Laplace transform is also a linear transform; that is, for constant α and β,

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha \mathscr{L}^{-1}\{F(s)\}+\beta \mathscr{L}^{-1}\{G(s)\}
$$

- Example: Evaluate $\mathscr{L}^{1}\left\{(-2 s+6) /\left(s^{2}+4\right)\right\}$

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{-2 s+6}{s^{2}+4}\right\} & =\mathscr{L}^{-1}\left\{\frac{-2 s}{s^{2}+4}+\frac{6}{s^{2}+4}\right\} \\
& =-2 \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\}+\frac{6}{2} \mathscr{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\} \\
& =-2 \cos 2 t+3 \sin 2 t
\end{aligned}
$$

Example: Partial Fractions (1/2)

- Evaluate

$$
\mathscr{L}^{-1}\left\{\frac{s^{2}+6 s+9}{(s-1)(s-2)(s+4)}\right\}
$$

Solution:
There exists unique constants A, B, C such that:

$$
\begin{aligned}
& \frac{s^{2}+6 s+9}{(s-1)(s-2)(s+4)}=\frac{A}{(s-1)}+\frac{B}{(s-2)}+\frac{C}{(s+4)} \\
& =\frac{A(s-2)(s+4)+B(s-1)(s+4)+C(s-1)(s-2)}{(s-1)(s-2)(s+4)}
\end{aligned}
$$

By comparing terms, we have

Example: Partial Fractions (2/2)

Partial fractions:

$$
\frac{s^{2}+6 s+9}{(s-1)(s-2)(s+4)}=\frac{\frac{16}{5}}{(s-1)}+\frac{\frac{25}{6}}{(s-2)}+\frac{\frac{1}{30}}{(s+4)}
$$

Therefore

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{s^{2}+6 s+9}{(s-1)(s-2)(s+4)}\right\} \\
& =-\frac{16}{5} \mathscr{L}^{-1}\left\{\frac{1}{s-1}\right\}+\frac{25}{6} \mathscr{L}^{-1}\left\{\frac{1}{s-2}\right\}+\frac{1}{30} \mathscr{L}^{-1}\left\{\frac{1}{s+4}\right\} \\
& =-\frac{16}{5} e^{t}+\frac{25}{6} e^{2 t}+\frac{1}{30} e^{-4 t}
\end{aligned}
$$

Partial Fraction Decompositions

- Inverse Laplace transform usually involves partial fractions decomposition, let $P(s)$ be a polynomial function with degree less than n :
- Linear factor decomposition:

$$
\frac{P(s)}{(s-a)^{n}}=\frac{A_{1}}{s-a}+\frac{A_{2}}{(s-a)^{2}}+\ldots+\frac{A_{n}}{(s-a)^{n}},
$$

where $A_{1}, A_{2}, \ldots, A_{n}$ are constants.

- Quadratic factor decomposition

$$
\frac{P(s)}{\left[(s-a)^{2}+b^{2}\right]^{n}}=\frac{A_{1} s+B_{1}}{(s-a)^{2}+b^{2}}+\frac{A_{2} s+B_{2}}{\left[(s-a)^{2}+b^{2}\right]^{2}}+\ldots+\frac{A_{n} s+B_{n}}{\left[(s-a)^{2}+b^{2}\right]^{n}},
$$

where A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} are constants.

Transforming a Derivative

- What is the Laplace transform of $f^{\prime}(t)$?

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime}(t)\right\} & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t=\left.e^{-s t} f(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& =-f(0)+s \mathscr{L}\{f(t)\}
\end{aligned}
$$

Therefore

$$
\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
$$

\rightarrow Note that this derivation only works if $f^{\prime}(t)$ is a continuous function

Derivative Transform Theorem

- Theorem: If the function $f(t)$ is continuous and piecewise smooth for $t \geq 0$ and is of exponential order as $t \rightarrow+\infty$, so that there exist nonnegative constants M, c, and T such that

$$
|f(t)| \leq M e^{c t} \quad \text { for } t \geq T .
$$

Then $\mathscr{L}\left\{f^{\prime}(t)\right\}$ exists for $s>c$, and

$$
\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0) .
$$

Proof:

Perform (finite) piece-by-piece integration of

$$
\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t
$$

General Derivative Transform

- Theorem: If $f, f^{\prime}, \ldots, f^{(n-1)}$ are continuous on $[0, \infty)$ and are of exponential order and if $f^{(n)}(t)$ is piecewise continuous on $[0, \infty)$, then

$$
\mathscr{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0),
$$

where $F(s)=\mathscr{L}\{f(t)\}$.

Solving Linear IVPs (1/2)

- The Laplace transform of a linear DE with constant coefficients becomes an algebraic equation in $X(s)$. That is,

$$
\mathscr{L}\left\{a_{n} \frac{d^{n} x}{d t^{n}}+a_{n-1} \frac{d^{n-1} x}{d t^{n-1}}+\cdots+a_{0} x\right\}=\mathscr{L}\{f(t)\}
$$

becomes

$$
a_{n} \mathscr{L}\left\{\frac{d^{n} x}{d t^{n}}\right\}+a_{n-1} \mathscr{L}\left\{\frac{d^{n-1} x}{d t^{n-1}}\right\}+\cdots+a_{0} \mathscr{L}\{x\}=\mathscr{L}\{f(t)\}
$$

or

$$
\begin{aligned}
& a_{n}\left[s^{n} X(s)-s^{n-1} x(0)-s^{n-2} x^{\prime}(0)-\ldots-x^{(n-1)}(0)\right] \\
& +a_{n-1}\left[s^{n-1} X(s)-s^{n-2} x(0)-\ldots-x^{(n-2)}(0)\right]+\ldots+a_{0} X(s)=F(s)
\end{aligned}
$$

Solving Linear IVPs (2/2)

\square Given initial conditions $x(0)=x_{0}, x^{\prime}(0)=x_{1}, \ldots, x^{(n-1)}(0)=x_{n-1}$, we have $Z(s) X(s)=I(s)+F(s)$, or

$$
X(s)=\frac{I(s)}{Z(s)}+\underbrace{\frac{F(s)}{Z(s)}}
$$

where $Z(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}$ and

$$
\begin{aligned}
I(s)= & \left(a_{n} s^{n-1}+a_{n-1} s^{n-2}+\ldots+a_{1}\right) x(0) \\
& +\left(a_{n} s^{n-2}+a_{n-1} s^{n-3}+\ldots+a_{2}\right) x^{\prime}(0) \\
& +\ldots+a_{n} x^{(n-1)}(0)
\end{aligned}
$$

Example: $\frac{d y}{d t}+3 y=13 \sin 2 t, y(0)=6(1 / 2)$

- Since

$$
\mathscr{L}\left\{\frac{d y}{d t}\right\}+3 \mathscr{L}\{y\}=13 \mathscr{L}\{\sin 2 t\}
$$

$\mathscr{L}\{d y / d t\}=s Y(s)-y(0)=s Y(s)-6$, and
$\mathscr{L}\{\sin 2 t\}=2 /\left(s^{2}+4\right)$, we have

$$
s Y(s)-6+3 Y(s)=\frac{26}{s^{2}+4}
$$

or

$$
\begin{aligned}
& (s+3) Y(s)=6+\frac{26}{s^{2}+4} \\
\rightarrow & Y(s)=\frac{6}{(s+3)}+\frac{26}{(s+3)\left(s^{2}+4\right)}=\frac{6 s^{2}+50}{(s+3)\left(s^{2}+4\right)}
\end{aligned}
$$

Example: $\frac{d y}{d t}+3 y=13 \sin 2 t, y(0)=6(2 / 2)$

Assume that

$$
\frac{6 s^{2}+50}{(s+3)\left(s^{2}+4\right)}=\frac{A}{s+3}+\frac{B s+C}{s^{2}+4},
$$

we have $A=8, B=-2, C=6$. Therefore

$$
\begin{aligned}
& y(t)=8 \mathscr{L}^{-1}\left\{\frac{1}{s+3}\right\}-2 \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\}+3 \mathscr{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\} \\
& \rightarrow y(t)=8 e^{-3 t}-2 \cos 2 t+3 \sin 2 t
\end{aligned}
$$

Example: $y^{\prime \prime}-3 y^{\prime}+2 y=e^{-4 t}, y(0)=1, y^{\prime}(0)=5$

- Solution:

$$
\begin{aligned}
& \mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\}-3 \mathscr{L}\left\{\frac{d y}{d t}\right\}+2 \mathscr{L}\{y\}=\mathscr{L}\left\{e^{-4 t}\right\} \\
& s^{2} Y(s)-s y(0)-y^{\prime}(0)-3[s Y(s)-y(0)]+2 Y(s)=\frac{1}{s+4} \\
& Y(s)=\frac{s+2}{s^{2}-3 s+2}+\frac{1}{\left(s^{2}-3 s+2\right)(s+4)} \\
& \quad=\frac{s^{2}+6 s+9}{(s-1)(s-2)(s+4)} \\
& \rightarrow y(t)=\mathscr{L}^{-1}\{Y(s)\}=-\frac{16}{5} e^{t}+\frac{25}{6} e^{2 t}+\frac{1}{30} e^{-4 t}
\end{aligned}
$$

s-axis Translation Theorem

- Theorem: If $\mathscr{L}\{f(t)\}=F(s)$ and a is any real number, then

$$
\mathscr{L}\left\{e^{a t f} f(t)\right\}=F(s-a) .
$$

Proof:

$$
\begin{aligned}
\mathscr{L}\left\{e^{a t} f(t)\right\} & =\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t \\
& =\int_{0}^{\infty} e^{-(s-a) t} f(t) d t, s>a \\
& =F(s-a), s>a .
\end{aligned}
$$

Example: $\mathscr{L}\left\{e^{5 t} t^{3}\right\}$ and $\mathscr{L}\left\{e^{-2 t} \cos 4 t\right\}$

- Solution:

$$
\begin{aligned}
& \mathscr{L}\left\{e^{5 t} t^{3}\right\}=\mathscr{L}\left\{t^{3}\right\}_{s \rightarrow s-5}=\left.\frac{3!}{s^{4}}\right|_{s \rightarrow s-5}=\frac{6}{(s-5)^{4}} \\
& \begin{aligned}
\mathscr{L}\left\{e^{-2 t} \cos 4 t\right\} & =\mathscr{L}\{\cos 4 t\}_{s \rightarrow s-(-2)} \\
& =\left.\frac{s}{s^{2}+16}\right|_{s \rightarrow s+2}=\frac{s+2}{(s+2)^{2}+16}
\end{aligned}
\end{aligned}
$$

Inverse of s-axis Translation

- The inverse Laplace transform of $F(s-a)$, can be computed multiplying $f(t)=\mathscr{L}^{1}\{F(s)\}$ by $e^{a t}$:

$$
\mathscr{L}^{-1}\{F(s-a)\}=\mathscr{L}^{-1}\left\{\left.F(s)\right|_{s \rightarrow s-a}\right\}=e^{a t} f(t)
$$

- Example: Compute $\mathscr{L}^{1}\left\{(2 s+5) /(s-3)^{2}\right\}$.

Since $\quad \frac{2 s+5}{(s-3)^{2}}=\left.\frac{2 s+11}{s^{2}}\right|_{s \rightarrow s-3}$,

$$
\begin{aligned}
\rightarrow \mathscr{L}^{-1}\left\{\left.\frac{2 s+11}{s^{2}}\right|_{s \rightarrow s-3}\right\} & =2 \mathscr{L}^{-1}\left\{\left.\frac{1}{s}\right|_{s \rightarrow s-3}\right\}+11 \mathscr{L}^{-1}\left\{\left.\frac{1}{s^{2}}\right|_{s \rightarrow s-3}\right\} \\
& =2 e^{3 t}+11 e^{3 t} t .
\end{aligned}
$$

Example: $y^{\prime \prime}-6 y^{\prime}+9 y=t^{2} e^{3 t}$

- Solve the DE with initial conditions $y(0)=2, y^{\prime}(0)=17$.

$$
\begin{aligned}
s^{2} Y(s) & -s y(0)-y^{\prime}(0)-6(s Y(s)-y(0))+9 Y(s)=\frac{2!}{(s-3)^{3}} \\
Y(s) & =\frac{2 s+5}{(s-3)^{2}}+\frac{2}{(s-3)^{5}} \\
& =\left.\frac{2 s+11}{s^{2}}\right|_{s \rightarrow s-3}+\left.\frac{2}{s^{5}}\right|_{s \rightarrow s-3} \\
y(t) & =2 \mathscr{L}^{-1}\left\{\left.\frac{1}{s}\right|_{s \rightarrow s-3}\right\}+11 \mathscr{L}^{-1}\left\{\left.\frac{1}{s^{2}}\right|_{s \rightarrow s-3}\right\}+\frac{2}{4!} \mathscr{L}^{-1}\left\{\left.\frac{4!}{s^{5}}\right|_{s \rightarrow s-3}\right\} \\
& =2 e^{3 t}+11 t e^{3 t}+\frac{1}{12} t^{4} e^{3 t} .
\end{aligned}
$$

Unit Step Function

- The unit step function $u(t-a)$ is defined to be

$$
u(t-a)=\left\{\begin{array}{lr}
0, & 0 \leq t<a \\
1, & t \geq a
\end{array} .\right.
$$

$u(t-a)$ is often denoted as $u_{a}(t)$. Note that $u_{a}(t)$ is only defined on the non-negative axis since the Laplace transform is only defined on this domain.

Rewrite of a Piecewise Function

\square A piecewise defined function can be rewritten in a compact form using $u(t-a)$.

For example,

$$
f(t)=\left\{\begin{array}{lr}
g(t), & 0 \leq t<a \\
h(t), & t \geq a
\end{array}\right.
$$

is the same as $f(t)=g(t)-g(t) u(t-a)+h(t) u(t-a)$.

Laplace Transform of $u(t-a), a>0$

- By definition,

$$
\begin{aligned}
\mathscr{L}\{u(t-a)\} & =\int_{0}^{\infty} e^{-s t} u(t-a) d t=\int_{a}^{\infty} e^{-s t} d t \\
= & \lim _{b \rightarrow \infty}\left[-\frac{e^{-s t}}{s}\right]_{t=a}^{b} .
\end{aligned}
$$

Therefore,

$$
\mathscr{L}\{u(t-a)\}=\frac{e^{-a s}}{s}(s>0, a>0)
$$

t-axis Translation Theorem

- Theorem: If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) u(t-a)\}=e^{-a s} F(s)
$$

Proof:

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s t} f(t-a) u(t-a) d t \\
& =\int_{0}^{a} e^{-s t} f(t-a) u(t-a) d t+\int_{a}^{\infty} e^{-s t} f(t-a) u(t-a) d t \\
& =\int_{a}^{\infty} e^{-s t} f(t-a) d t
\end{aligned}
$$

Let $v=t-a, d v=d t$,

$$
\mathscr{L}\{f(t-a) u(t-a)\}=\int_{0}^{\infty} e^{-s(v+a)} f(v) d v=e^{-a s} \mathscr{L}\{f(t)\}
$$

Inverse of t-axis Translation

- If $f(t)=\mathscr{L}^{-1}\{F(s)\}$ and $a>0$, the inverse form of the t axis translation theorem is:

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a)
$$

- Example:

$$
\mathscr{L}^{-1}\left\{\frac{e^{-a s}}{s^{3}}\right\}=u(t-a) \frac{1}{2}(t-a)^{2}=\left\{\begin{array}{cl}
0, & \text { if } t<a \\
\frac{1}{2}(t-a)^{2}, & \text { if } t \geq a
\end{array}\right.
$$

Alternative Form of t-axis Translation

- For $g(t) u(t-a)$, we can derive an alternative form:

$$
\begin{aligned}
& \mathscr{L}\{g(t) u(t-a)\}=\int_{a}^{\infty} e^{-s t} g(t) d t=\int_{0}^{\infty} e^{-s(v+a)} g(v+a) d v \\
& =e^{-s a} \int_{0}^{\infty} e^{-s v} g(v+a) d v=e^{-a s} \mathscr{L}\{g(t+a)\} \\
& \rightarrow \mathscr{L}\{g(t) u(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}
\end{aligned}
$$

- Example: Since $g(t+\pi)=\cos (t+\pi)=-\cos t$,

$$
\mathscr{L}\{\cos t u(t-\pi)\}=e^{-\pi x} \mathscr{L}\{-\cos t\}=-\frac{s}{s^{2}+1} e^{-\pi x} .
$$

$$
\text { Example: } y^{\prime}+y=f(t), y(0)=5, f(t)= \begin{cases}0, & 0 \leq t<\pi \\ 3 \cos t, & t \geq \pi\end{cases}
$$

- Note that $f(t)=3 \cos t u(t-\pi)$, we have

$$
\begin{aligned}
\mathscr{L}\left\{y^{\prime}\right\} & +\mathscr{L}\{y\}=3 \mathscr{L}\{\cos t u(t-\pi)\} \\
Y(s) & =\frac{5}{s+1}-\frac{3}{2}\left[-\frac{1}{s+1} e^{-\pi s}+\frac{1}{s^{2}+1} e^{-\pi s}+\frac{s}{s^{2}+1} e^{-\pi s}\right] \\
y(t) & =5 e^{-t}+\left[\frac{3}{2} e^{-(t-\pi)}-\frac{3}{2} \sin (t-\pi)-\frac{3}{2} \cos (t-\pi)\right] u(t-\pi) \\
& =5 e^{-t}+\left[\frac{3}{2} e^{-(t-\pi)}+\frac{3}{2} \sin (t)+\frac{3}{2} \cos (t)\right] u(t-\pi)
\end{aligned}
$$

Derivatives of Transforms

- Theorem: If $f(t)$ is piecewise continuous and $f(t)$ is of exponential order, then

$$
\mathscr{L}\{-t f(t)\}=\frac{d}{d s} \mathscr{L}\{f(t)\}=F^{\prime}(s) .
$$

Proof:

$$
\begin{aligned}
\frac{d}{d s} F(s) & =\frac{d}{d s} \int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{\infty} \frac{\partial}{\partial s}\left[e^{-s t} f(t)\right] d t \\
& =\int_{0}^{\infty}-e^{-s t} t f(t) d t=\mathscr{L}\{-t f(t)\}
\end{aligned}
$$

Note:
\#

$$
\mathscr{L}\{t f(t)\}=-\frac{d}{d s} \mathscr{L}\{f(t)\} \rightarrow f(t)=-\frac{1}{t} \mathscr{L}^{-1}\left\{F^{\prime}(s)\right\}
$$

n th-Order Derivatives of Transforms

- Theorem: If $F(s)=\mathscr{L}\{f(t)\}$ and $n=1,2,3 \ldots$, then

$$
\mathscr{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)
$$

Proof:

The proof can be done by mathematical induction.
Here, we only check the $2^{\text {nd }}-$ order case.

$$
\mathscr{L}\left\{t^{2} f(t)\right\}=\mathscr{L}\{t \cdot t f(t)\}=-\frac{d}{d s} \mathscr{L}\{t f(t)\}=\frac{d^{2}}{d s^{2}} \mathscr{L}\{f(t)\}
$$

- Example: Compute $\mathscr{L}\{t \sin k t\}$.

$$
\mathscr{L}\{t \sin k t\}=-\frac{d}{d s} \mathscr{L}\{\sin k t\}=-\frac{d}{d s}\left(\frac{k}{s^{2}+k^{2}}\right)=\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}}
$$

Convolution of Two Functions

- If f and g are piecewise continuous on $[0, \infty)$, then a special product, denoted by $f * g$, is defined by the integral

$$
f * g=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

and is called the convolution of f and g. The convolution is a function of t. Note that $f * g=g * f$.

- Example:

$$
e^{t} * \sin t=\int_{0}^{t} e^{\tau} \sin (t-\tau) d \tau=\frac{1}{2}\left(-\sin t-\cos t+e^{t}\right)
$$

Convolution Theorem

- Theorem: If $f(t)$ and $g(t)$ are piecewise continuous on $[0, \infty)$ and of exponential order, then

$$
\mathscr{L}\{f * g\}=\mathscr{L}\{f(t)\} \mathscr{L}\{g(t)\}=F(s) G(s)
$$

Proof:

$$
\begin{aligned}
F(s) G(s) & =\left(\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau\right)\left(\int_{0}^{\infty} e^{-s \beta} g(\beta) d \beta\right) \\
& =\int_{0}^{\infty} f(\tau)\left(\int_{0}^{\infty} e^{-s(\tau+\beta)} g(\beta) d \beta\right) d \tau
\end{aligned}
$$

Let $t=\tau+\beta, d t=d \beta$, so that

$$
F(s) G(s)=\int_{0}^{\infty} e^{-s t}\left(\int_{0}^{\infty} f(\tau) g(t-\tau) d \tau\right) d t=\mathscr{L}\{f * g\}
$$

Example: Compute $\mathscr{L}\left\{\int_{0} e^{t} \sin (t-\tau) d \tau\right\}$

- Solution:

$$
\begin{aligned}
\mathscr{L}\left\{\int_{0}^{t} e^{\tau} \sin (t-\tau) d \tau\right\} & =\mathscr{L}\left\{e^{t}\right\} \cdot \mathscr{L}\{\sin t\} \\
& =\frac{1}{s-1} \cdot \frac{1}{s^{2}+1}=\frac{1}{(s-1)\left(s^{2}+1\right)}
\end{aligned}
$$

Inverse Form of Convolution

- Theorem:

$$
\mathscr{L}^{-1}\{F(s) G(s)\}=f * g .
$$

- Example: $\mathscr{L}^{-1}\left\{\frac{1}{\left(s^{2}+k^{2}\right)^{2}}\right\}$

Let $F(s)=G(s)=1 /\left(s^{2}+k^{2}\right)$,

$$
\begin{aligned}
& \mathscr{L}^{1}\left\{\frac{1}{\left(s^{2}+k^{2}\right)^{2}}\right\}=\frac{1}{k^{2}} \int_{0}^{t} \sin k \tau \sin k(t-\tau) d \tau, \\
& \quad=\frac{1}{2 k^{2}} \int_{0}^{t}[\cos k(2 \tau-t)-\cos k t] d \tau=\frac{\sin k t-k t \cos k t}{2 k^{3}} .
\end{aligned}
$$

$$
\dagger \sin A \sin B=[\cos (A-B)-\cos (A+B)] / 2
$$

Transforms of Integrals

- Theorem: The Laplace transform of the integral of a piecewise continuous function $f(t)$ of exponential order is

$$
\mathscr{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{F(s)}{s} .
$$

The inverse form is:

$$
\int_{0}^{t} f(\tau) d \tau=\mathscr{L}^{-1}\left\{\frac{F(s)}{s}\right\} .
$$

(Recall that: $\left.\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)\right)$.

Proof of Transform of Integrals

- Since $f(t)$ is piecewise continuous, by fundamental theorem of calculus, if $g(t)=\int_{0}^{t} f(\tau) d \tau, g(t)$ is continuous and $g^{\prime}(t)=f(t)$ where $f(t)$ is continuous. Because $f(t)$ is of exponential order, there exists constants M and c such that

$$
|g(t)| \leq \int_{0}^{t}|f(\tau)| d \tau \leq M \int_{0}^{t} e^{c \tau} d \tau=\frac{M}{c}\left(e^{c t}-1\right)<\frac{M}{c} e^{c t} .
$$

$\rightarrow g(t)$ is of exponential order as $t \rightarrow+\infty$.
Thus, $\mathscr{L}\{f(t)\}=\mathscr{L}\left\{g^{\prime}(t)\right\}=s \mathscr{L}\{g(t)\}-g(0)$.
But $g(0)=0$, therefore,

$$
\mathscr{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\mathscr{L}\{g(t)\}=\frac{F(s)}{s} .
$$

Example: Inverse by Integration

- Starting with $f(t)=\sin t, F(s)=1 /\left(s^{2}+1\right)$ we have:

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{1}{s\left(s^{2}+1\right)}\right\}=\int_{0}^{t} \sin \tau d \tau=1-\cos t, \\
& \mathscr{L}^{-1}\left\{\frac{1}{s^{2}\left(s^{2}+1\right)}\right\}=\int_{0}^{t}(1-\cos \tau) d \tau=t-\sin t, \\
& \mathscr{L}^{-1}\left\{\frac{1}{s^{3}\left(s^{2}+1\right)}\right\}=\int_{0}^{t}(\tau-\sin \tau) d \tau=\frac{1}{2} t^{2}-1+\cos t .
\end{aligned}
$$

Integral Equations

- We can use convolution theorem to solve differential equations as well as "integral equations".

For example, the Volterra integral equation:

$$
f(t)=g(t)+\int_{0}^{t} f(\tau) h(t-\tau) d \tau
$$

where $g(t)$ and $h(t)$ are known.

Example: $f(t)=3 t^{2}-e^{-t}-\int_{0}^{t} f(\tau) e^{t-\tau} d \tau$.

- Solution: notice that $h(t)=e^{t}$. Take the Laplace transform of each term:

$$
\begin{aligned}
F(s) & =3 \cdot \frac{2}{s^{3}}-\frac{1}{s+1}-F(s) \cdot \frac{1}{s-1} \\
& =\frac{6}{s^{3}}-\frac{6}{s^{4}}+\frac{1}{s}-\frac{2}{s+1} .
\end{aligned}
$$

The inverse transform then gives:

$$
f(t)=3 t^{2}-t^{3}+1-2 e^{-t} .
$$

Series Circuits

- The current in a circuit is governed by the integrodifferential equation

$$
L \frac{d i(t)}{d t}+\operatorname{Ri}(t)+\frac{1}{C} \int_{0}^{t} i(\tau) d \tau=E(t) .
$$

Example: Single-loop LRC Circuit

- Given $L=0.1 \mathrm{~h}, R=2 \Omega, C=0.1 \mathrm{f}, i(0)=0$, and $E(t)=120 t-120 t \mathscr{U}(t-1)$, find $i(t)$.
Solution:
Since

$$
0.1 \frac{d i}{d t}+2 i+10 \int_{0}^{t} i(\tau) d \tau=120 t-120 t \mathscr{U}(t-1)
$$

and $\mathscr{L}\left\{\int_{0}^{t} i(\tau) d \tau\right\}=I(s) / s$, we have

$$
0.1 s I(s)+2 I(s)+10 \frac{I(s)}{s}=120\left[\frac{1}{s^{2}}-\frac{1}{s^{2}} e^{-s}-\frac{1}{s} e^{-s}\right] .
$$

$$
\rightarrow I(s)=1200\left[\frac{1}{s(s+10)^{2}}-\frac{1}{s(s+10)^{2}} e^{-s}-\frac{1}{(s+10)^{2}} e^{-s}\right] .
$$

Example: continued

$$
\rightarrow\left\{\begin{array}{lr}
12-12 e^{-10 t}-120 t e^{-10 t}, & 0 \leq t<1 \\
-12 e^{-10 t}+12 e^{-10(t-1)}-120 t e^{-10 t}-1080(t-1) e^{-10(t-1)}, & t \geq 1
\end{array}\right.
$$

Transform of a Periodic Function

- If a periodic function f has period $T, T>0$, then $f(t+T)=f(t)$. The Laplace transform of a periodic function can be obtained by integration over one period.
- Theorem: If $f(t)$ is piecewise continuous on $[0, \infty)$, of exponential order, and periodic with period T, then

$$
\mathscr{L}\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t .
$$

Proof of Periodic Transform Theorem

- Proof:
$\mathscr{L}\{f(t)\}=\int_{0}^{T} e^{-s t} f(t) d t+\int_{T}^{\infty} e^{-s t} f(t) d t$,
let $t=u+T$, then the $2^{\text {nd }}$ term becomes

$$
\begin{aligned}
\int_{T}^{\infty} e^{-s t} f(t) d t & =\int_{0}^{\infty} e^{-s(u+T)} f(u+T) d u \\
& =e^{-s T} \int_{0}^{\infty} e^{-s u} f(u) d u=e^{-s T} \mathscr{L}\{f(t)\}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \mathscr{L}\{f(t)\}=\int_{0}^{T} e^{-s t} f(t) d t+e^{-s T} \mathscr{L}\{f(t)\} \\
& \rightarrow \mathscr{L}\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t .
\end{aligned}
$$

Example: Square-Wave Transform

- Find the transform of a square-wave. Solution:
One period of $E(t)$ can be defined as:

$$
\begin{aligned}
& E(t)=\left\{\begin{array}{lll}
1, & 0 \leq t<1 \\
0, & 1 \leq t<2
\end{array}\right. \\
&\left.\begin{array}{rl}
\mathscr{L}\{E(t)\} & =\frac{1}{1-e^{-2 s}} \int_{0}^{2} e^{-s t} E(t) d t
\end{array}\right] \\
&=\frac{1}{1-e^{-2 s}}\left[\int_{0}^{1} e^{-s t} \cdot 1 d t+\int_{1}^{2} e^{-s t} \cdot 0 d t\right] \\
&=\frac{1}{1-e^{-2 s}} \cdot \frac{1-e^{-s}}{s}=\frac{1}{s\left(1+e^{-s}\right)} .
\end{aligned}
$$

Example: Periodic Input Voltage (1/3)

- The DE for $i(t)$ in a single-loop LR series circuit is

$$
L \frac{d i}{d t}+R i=E(t)
$$

Determine $i(t)$ when $i(0)=0$ and $E(t)$ is the square-wave as in the previous example.

Solution:

$$
L s I(s)+R I(s)=\frac{1}{s\left(1+e^{-s}\right)} \rightarrow I(s)=\frac{1 / L}{s(s+R / L)} \cdot \frac{1}{\left(1+e^{-s}\right)}
$$

Since

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\ldots \rightarrow \frac{1}{1+e^{-s}}=1-e^{-s}+e^{-2 s}-e^{-3 s}+\ldots
$$

Example: Periodic Input Voltage (2/3)

Since $\quad \frac{1}{s(s+R / L)}=\frac{L / R}{s}-\frac{L / R}{s+R / L}$,
we have

$$
I(s)=\frac{1}{R}\left(\frac{1}{s}-\frac{1}{s+R / L}\right)\left(1-e^{-s}+e^{-2 s}-e^{-3 s}+\cdots\right)
$$

By applying the t-axis translation theorem:

$$
\begin{aligned}
i(t)= & \frac{1}{R}(1-u(t-1)+u(t-2)-u(t-3)+\cdots) \\
& -\frac{1}{R}\left(e^{-R t / L}-e^{-R(t-1) / L} u(t-1)+e^{-R(t-2) / L} u(t-2)-\cdots\right)
\end{aligned}
$$

Example: Periodic Input Voltage (3/3)

Therefore

$$
i(t)=\frac{1}{R}\left(1-e^{-R t / L}\right)+\frac{1}{R} \sum_{n=1}^{\infty}(-1)^{n}\left(1-e^{-R(t-n) / L}\right) u(t-n) .
$$

For example, if $R=1, L=1$, and $0 \leq t<4$, we have

Unit Impulse

- Quite often, the input to a physical system is a short period, large magnitude function. This type of function can be described by

$$
\delta_{a}\left(t-t_{0}\right)= \begin{cases}0, & 0 \leq t<t_{0}-a \\ \frac{1}{2 a}, & t_{0}-a \leq t<t_{0}+a \\ 0, & t \geq t_{0}+a\end{cases}
$$

The function $\delta_{a}\left(t-t_{0}\right)$ is called unit impulse because

$$
\int_{0}^{\infty} \delta_{a}\left(t-t_{0}\right) d t=1
$$

Dirac Delta Function

\square Define $\delta\left(t-t_{0}\right)=\lim _{a \rightarrow 0} \delta_{a}\left(t-t_{0}\right)$. The function $\delta\left(t-t_{0}\right)$ is called Dirac delta function. $\delta\left(t-t_{0}\right)$ is characterized by:
(i) $\delta\left(t-t_{0}\right)=\left\{\begin{array}{ll}\infty, & t=t_{0} \\ 0, & t \neq t_{0}\end{array}\right.$,
(ii) $\int_{0}^{\infty} \delta\left(t-t_{0}\right) d t=1$.

Transform of $\delta\left(t-t_{0}\right)$

Theorem: For $t>0, \mathscr{L}\left\{\delta\left(t-t_{0}\right)\right\}=e^{-s t_{0}}$. Proof:

$$
\begin{aligned}
& \delta_{a}\left(t-t_{0}\right)=\frac{1}{2 a}\left[u\left(t-\left(t_{0}-a\right)\right)-u\left(t-\left(t_{0}+a\right)\right)\right], \\
& \mathscr{L}\left\{\delta_{a}\left(t-t_{0}\right)\right\}=\frac{1}{2 a}\left[\frac{e^{-s\left(t_{0}-a\right)}}{s}-\frac{e^{-s\left(t_{0}+a\right)}}{s}\right]=e^{-s t_{0}}\left(\frac{e^{s a}-e^{-s a}}{2 s a}\right), \\
& \mathscr{L}\left\{\delta\left(t-t_{0}\right)\right\}=\lim _{a \rightarrow 0} \mathscr{L}\left\{\delta_{a}\left(t-t_{0}\right)\right\}=e^{-s t_{0}} \lim _{a \rightarrow 0}\left(\frac{e^{s a}-e^{-s a}}{2 s a}\right)=e^{-s t_{0}} .
\end{aligned}
$$

Note that $\mathscr{L}\{\delta(t)\}=1 . \delta(t)$ is not a "normal" function since $\mathscr{L}\{\delta(t)\} \rightarrow 1$ as $s \rightarrow \infty$.

Example: Two IVPs (1/2)

- Solve $y^{\prime \prime}+y=4 \delta(t-2 \pi)$, with initial conditions (a) $y(0)=1, y^{\prime}(0)=0$, and (b) $y(0)=0, y^{\prime}(0)=0$.

Solution (a):
The Laplace transform is: $s^{2} Y(s)-s+Y(s)=4 e^{-2 \pi s}$,

$$
\begin{aligned}
& Y(s)=\frac{s}{s^{2}+1}+\frac{4 e^{-2 \pi s}}{s^{2}+1} . \\
& \rightarrow y(t)=\cos t+4 \sin (t-2 \pi) u(t-2 \pi) . \\
& \rightarrow y(t)=\left\{\begin{array}{lr}
\cos t, & 0 \leq t<2 \pi \\
\cos t+4 \sin t, & t \geq 2 \pi
\end{array}\right.
\end{aligned}
$$

Example: Two IVPs (2/2)

- Solution (b)

The Laplace transform is $Y(s)=\frac{4 e^{-2 \pi s}}{s^{2}+1}$.
Therefore,

$$
\begin{aligned}
y(t) & =4 \sin (t-2 \pi) u(t-2 \pi) \\
& = \begin{cases}0, & 0 \leq t<2 \pi \\
4 \sin t, & t \geq 2 \pi\end{cases}
\end{aligned}
$$

Impulse Response

- Consider a $2^{\text {nd }}$-order linear system with unit impulse input at $t=0$:

$$
a_{2} x^{\prime \prime}+a_{1} x^{\prime}+a_{0} x=\delta(t), \quad x(0)=0, x^{\prime}(0)=0 .
$$

Applying Laplace transform to the system:

$$
X(s)=\frac{1}{a_{2} s^{2}+a_{1} s+a_{0}}=\frac{1}{Z(s)}=W(s) \rightarrow x(t)=\mathscr{L}^{-1}\left\{\frac{1}{Z(s)}\right\}=w(t) .
$$

$w(t)$ is the zero-state response of the system to a unit impulse, therefore, $w(t)$ is called the impulse response of the system.

Linear Dynamic Systems

- Recall that for a general linear dynamic system, we have

$$
X(s)=\frac{F(s)}{Z(s)}+\frac{I(s)}{Z(s)} .
$$

$W(s)=1 / Z(s)$ is called the transfer function of the system. Note that

[^0]: † Chapter 7 in the textbook.

