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Transform of a Function

 Some operators transform a function into another 
function:

Differentiation:                   , or  Dx2 = 2x

Indefinite Integration:

Definite Integration:

 A function may have nicer property in the
transformed domain!
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Integral Transform

 If f(x, y) is a function of two variables, then a definite 
integral of f w.r.t. one of the variable leads to a function 
of the other variable.

Example:

 Improper integral of a function defines how integration 
can be calculated over an infinite interval:
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Laplace Transform

 Definition: Let f be a function defined for t  0, then the 
integral

is said to be the Laplace transform of f, provided the 
integral converges.

The result of the Laplace transform is a function of s, 
usually referred to as F(s).
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Example: {1}

 By definition:

provided s > 0.  The integral diverges for s < 0.

,
11

limlim

lim)1()1(

0

00

ss

e

s

e

dtedte

sb

b

bst

b

b st

b

st























  

5



/69

Example: {t}

 By definition:

Using integration by parts and apply l’Hospital’s rule to 
get limt→∞te–st = 0, s > 0, we have:


 
0

)( tdtet st

2

0
0

111
}1{

1

1
}{

ssss

dte
ss

te
t st

st












 
 



6



/69

Example: {eat}

 By definition:
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Example: {tn}, n  N

 Similarly, let u = tn, dv = e–stdt,
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Example: {sin 2t}

 By definition:
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Linearity of {}

 For a sum of functions, we can write

whenever both integrals converge for s > c, where c is 
some constant.

Hence,
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Example: {3e2t + 2sin23t}

 {3e2t + 2sin23t} = 3 {e2t} + {2sin23t}
= 3/(s – 2) + {1 – cos 6t}
= 3/(s – 2) + [1/s – s/(s2 + 36)], s > 2.
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Transform of Basic Functions
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Existence of {f(t)}

 Theorem: If f is piecewise continuous on [0, ), and 
that f is of exponential order for t > T, where T is a 
constant, then {f(t)} converges.

 Definition: A function f is said to be of exponential 
order c if there exists constants c, M > 0, and T > 0
such that |f(t)|  Mect for all t > T.

f(t)

a t1 t2 t3 b
t
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Examples: Exponential Order

 The functions f(t) = t, f(t) = e–t, and f(t) = 2 cos t are all of 
exponential order c = 1 for t > 0, since we have

| t |  et, | e–t |  et, | 2 cos t |  2et.

t

f(t)

T

f(t)

Mect, c > 0
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Proof of Existence of {f(t)}

 By the additive interval property of definite integrals,

The integral I1 exists (finite interval, f piecewise 
continuous).  Now,

 I2 exists as well  {f(t)} converges.
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Example: Transform of Piecewise f(t)

 Evaluate {f(t)} for

Solution:
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Behavior of F(s) as s  

 If f is piecewise continuous on [0, ) and of exponential 
order for t > T, then lims {f(t)} = 0.
Proof:
Since f(t) is piecewise continuous on 0 ≤ t ≤ T, it is 
necessarily bounded on the interval.  That is
| f(t)| ≤ M1e0t.  Also, | f(t)| ≤ M2et for t > T.  If M denotes 
the maximum of {M1, M2} and c denotes the maximum 
of {0, }, then for s > c:
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Inverse Laplace Transform

 If F(s) is the Laplace transform of a function f(t), namely, 
{f(t)} = F(s), then we say that f(t) is the inverse 

Laplace transform of F(s), that is,

f(t) = –1{F(s)}.

 Example:

1 = –1{1/s}, t = –1{1/s2}, and e–3t = –1{1/(s + 3)}.
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Examples: Inverse Transforms

 Evaluate –1{1/s5}
Solution:

 Evaluate –1{1/(s2 + 7)}
Solution:
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Linearity of –1{}

 The inverse Laplace transform is also a linear 
transform; that is, for constant  and ,

 Example: Evaluate –1{(–2s + 6) / (s2 + 4)} 
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Example: Partial Fractions (1/2)

 Evaluate

Solution:
There exists unique constants A, B, C such that:

By comparing terms, we have
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Example: Partial Fractions (2/2)

Partial fractions:

Therefore
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Partial Fraction Decompositions

 Inverse Laplace transform usually involves partial 
fractions decomposition, let P(s) be a polynomial 
function with degree less than n:
 Linear factor decomposition:

where A1, A2, …, An are constants.

 Quadratic factor decomposition

where A1, …, An and B1, …, Bn are constants.
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Transforming a Derivative

 What is the Laplace transform of f '(t)?

Therefore

 Note that this derivation only works if f (t) is a
continuous function
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Derivative Transform Theorem

 Theorem: If the function f(t) is continuous and 
piecewise smooth for t  0 and is of exponential order 
as t  +, so that there exist nonnegative constants M, 
c, and T such that

|f(t)|  Mect for t  T.

Then {f (t)} exists for s > c, and

Proof:
Perform (finite) piece-by-piece
integration of
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General Derivative Transform

 Theorem: If f, f ', …, f (n–1) are continuous on [0, ) and 
are of exponential order and if f (n)(t) is piecewise 
continuous on [0, ), then

where F(s) = {f(t)}.
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Solving Linear IVPs (1/2)

 The Laplace transform of a linear DE with constant 
coefficients becomes an algebraic equation in X(s).
That is,

becomes

or

an[snX(s) – sn–1x(0) – sn–2x(0) – … – x(n–1)(0)]
+ an–1[sn–1X(s) – sn–2x(0) – … – x(n–2)(0)]+…+ a0X(s) = F(s)
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Solving Linear IVPs (2/2)

 Given initial conditions x(0) = x0, x'(0) = x1, …, x(n–1)(0) = xn–1,

we have Z(s)X(s) = I(s) + F(s), or

where Z(s) = ansn + an–1sn–1 + … + a0 and
I(s) = (ansn–1 + an–1sn–2+ … + a1)x(0)

+(ansn–2 + an–1sn–3+ … + a2)x'(0)
+ … + anx(n–1)(0).

steady state behaviortransient behavior
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Example:                                    (1/2) 

 Since 

{dy/dt} = sY(s) － y(0) = sY(s)－6, and  
{sin2t} = 2/(s2 + 4), we have

or
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Example:                                    (2/2)

Assume that

we have A = 8, B = –2, C = 6.  Therefore
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Example:

 Solution:
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s-axis Translation Theorem

 Theorem: If {f(t)} = F(s) and a is any real number, 
then

{eatf(t)} = F(s – a).
Proof:
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Example: {e5tt3} and {e–2tcos 4t}

 Solution:
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Inverse of s-axis Translation

 The inverse Laplace transform of F(s – a), can be 
computed multiplying f(t) = –1{F(s)} by eat:

 Example: Compute –1{(2s+5)/(s–3)2}.

Since
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Example: y" – 6y' + 9y = t2e3t

 Solve the DE with initial conditions y(0) = 2, y'(0) = 17.
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Unit Step Function

 The unit step function u(t – a) is defined to be

u(t – a) is often denoted as ua(t). Note that ua(t) is only 
defined on the non-negative axis since the Laplace 
transform is only defined on this domain.
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Rewrite of a Piecewise Function

 A piecewise defined function can be rewritten in a 
compact form using u(t – a).

For example,

is the same as f(t) = g(t) – g(t)u(t – a) + h(t)u(t – a).
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Laplace Transform of u(t – a), a > 0

 By definition,

Therefore,
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t-axis Translation Theorem

 Theorem: If F(s) = {f(t)} and a > 0, then
{f(t – a)u(t – a)} = e–asF(s).

Proof:

Let v = t – a, dv = dt,
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Inverse of t-axis Translation

 If f(t) = –1{F(s)} and a > 0, the inverse form of the t-
axis translation theorem is: 

 Example:
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Alternative Form of t-axis Translation

 For g(t)u(t – a), we can derive an alternative form:

 Example: Since g(t＋) = cos (t＋) = –cos t,

)}.({)}()({

)}({)(

)()()}()({

0

0

)(

atgeatutg

atgedvavgee

dvavgedttgeatutg

as

assvsa

avs

a

st









 

  





.
1

}cos{)}({cos
2

ss e
s

s
tetut  




41



/69

Example:

 Note that f(t) = 3cos t u(t – ), we have
{y'} + {y} = 3 {cos t u(t – )},
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Derivatives of Transforms

 Theorem: If f(t) is piecewise continuous and f(t) is of 
exponential order, then

Proof:

Note:
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nth-Order Derivatives of Transforms

 Theorem: If F(s) = {f(t)} and n = 1,2,3…, then

Proof:
The proof can be done by mathematical induction. 
Here, we only check the 2nd-order case.

 Example: Compute {t sin kt}.
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Convolution of Two Functions

 If f and g are piecewise continuous on [0, ), then a 
special product, denoted by f  g, is defined by the 
integral

and is called the convolution of f and g.  The 
convolution is a function of t.  Note that f  g = g  f.

 Example:
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Convolution Theorem

 Theorem: If f(t) and g(t) are piecewise continuous on 
[0, ) and of exponential order, then

Proof:

Let t =  + , dt = d, so that
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Example: Compute 

 Solution: 
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Inverse Form of Convolution

 Theorem:

 Example:

Let F(s) = G(s) = 1/(s2 + k2),
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Transforms of Integrals

 Theorem: The Laplace transform of the integral of a 
piecewise continuous function f(t) of exponential order 
is

The inverse form is:

(Recall that: {f'(t)} = sF(s) – f(0)).
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Proof of Transform of Integrals

 Since f(t) is piecewise continuous, by fundamental 
theorem of calculus, if g(t) = f()dt


, g(t) is continuous 

and g'(t) = f(t) where f(t) is continuous.
Because f(t) is of exponential order, there exists 
constants M and c such that

 g(t) is of exponential order as t  +.
Thus, {f(t)} = {g'(t)} = s {g(t)} – g(0).
But g(0) = 0, therefore,
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Example: Inverse by Integration

 Starting with f(t) = sin t, F(s) = 1/(s2+1) we have:
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Integral Equations

 We can use convolution theorem to solve differential 
equations as well as “integral equations”.

For example, the Volterra integral equation:

where g(t) and h(t) are known.
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Example: 

 Solution: notice that h(t) = et.  Take the Laplace 
transform of each term:

The inverse transform then gives:

f(t) = 3t2 – t3 + 1 – 2e–t.
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Series Circuits

 The current in a circuit is governed by the 
integrodifferential equation
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Example: Single-loop LRC Circuit

 Given L = 0.1h, R = 2, C = 0.1f, i(0) = 0, and 
E(t) = 120t－120t (t－1), find i(t).
Solution:
Since

and                                  , we have
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Example: continued
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Transform of a Periodic Function

 If a periodic function f has period T, T > 0, then
f(t + T) = f(t).  The Laplace transform of a periodic 
function can be obtained by integration over one period.

 Theorem: If f(t) is piecewise continuous on [0, ), of 
exponential order, and periodic with period T, then
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Proof of Periodic Transform Theorem

 Proof:

let t = u + T, then the 2nd term becomes

Therefore
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Example: Square-Wave Transform

 Find the transform of a square-wave.
Solution:
One period of E(t) can be defined as:
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Example: Periodic Input Voltage (1/3)

 The DE for i(t) in a single-loop LR series circuit is

Determine i(t) when i(0) = 0 and E(t) is the square-wave 
as in the previous example.

Solution:

Since 
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Example: Periodic Input Voltage (2/3)

Since

we have

By applying the t-axis translation theorem:

,
/

//

)/(

1

LRs

RL

s

RL

LRss 




).1(
/

111
)( 32 









  sss eee

LRssR
sI

 

 







 )2()1(
1

)3()2()1(1
1

)(

/)2(/)1(/ tuetuee
R

tututu
R

ti

LtRLtRLRt

61



/69

Example: Periodic Input Voltage (3/3)

Therefore

For example, if R = 1, L = 1, and 0 ≤ t < 4, we have
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Unit Impulse

 Quite often, the input to a physical system is a short 
period, large magnitude function.  This type of function 
can be described by

The function a(t – t0) is called unit impulse because
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Dirac Delta Function

 Define                                       The function (t – t0)

is called Dirac delta function.  (t – t0) is characterized 
by:
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Transform of (t – t0)

 Theorem: For t > 0, {(t – t0)} = e–st0.
Proof:
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Note that {(t)} = 1. (t) is not a “normal” function since {(t)}  1 as s  ∞.
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Example: Two IVPs (1/2)

 Solve y" + y = 4(t – 2), with initial conditions
(a) y(0) = 1, y'(0) = 0, and (b) y(0) = 0, y'(0) = 0.

Solution (a):
The Laplace transform is: s2Y(s) – s + Y(s) = 4e–2s,
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Example: Two IVPs (2/2)

 Solution (b)
The Laplace transform is

Therefore,
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Impulse Response

 Consider a 2nd-order linear system with unit impulse 
input at t = 0:

a2x" + a1 x' + a0x = (t),   x(0) = 0, x' (0) = 0.

Applying Laplace transform to the system:

w(t) is the zero-state response of the system to a unit 
impulse, therefore, w(t) is called the impulse response 
of the system.

).(
)(

1
)()(

)(

11
)( 1

01
2

2

tw
sZ

txsW
sZasasa

sX 











 

68



/69

Linear Dynamic Systems

 Recall that for a general linear dynamic system, we 
have

W(s) = 1/Z(s) is called the transfer function of the 
system.  Note that
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