

Linear Models: IVP

Many linear dynamic systems can be represented using a 2nd order DE with constant coefficients:

$$a_2 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y = g(t)$$

In this formulation, g(t) is the input or forcing function of the system, the output of the system is a solution y(t) of the DE that satisfies the initial conditions $y(t_0) = y_0, y'(t_0) = y_1$ on an interval containing t_0 .

Free Undamped Motion

□ Hooke's law describes the restoring force:

$$F = ks$$

□ Newton's 2nd law (F = ma) describes the motion: $m(d^2x/dt^2) = -k(s + x) + mg$ = -kx + (mg - ks) = -kx

□ DE of free undamped motion:

$$\frac{d^2x}{dt^2} + \omega^2 x = 0, \ x(0) = x_0, \ x'(0) = x_1$$

□ Solution of the motion: $x(t) = c_1 \cos \omega t + c_2 \sin \omega t.$

Aging Spring

□ In real world, the spring constant *k* usually varies as the spring gets old. Replace *k* with $k(t) = ke^{-\alpha t}$, k > 0, $\alpha > 0$, we have a more realistic system model:

$$mx'' + ke^{-\alpha t}x = 0$$

 \rightarrow Non-constant coefficient 2nd-order linear DE!

Free Damped Motion

□ DE of free damped motion:

$$m\frac{d^2x}{dt^2} = -kx - \beta\frac{dx}{dt}$$

$$\rightarrow \frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 x = 0$$

 \rightarrow The roots of the auxiliary eq.:

$$m = -\lambda \pm \sqrt{\lambda^2 - \omega^2}$$

Three Cases of Damped Motion

Driven Motion

□ Now, consider the effect of external force f(t) on the damped motion system:

$$m\frac{d^2x}{dt^2} = -kx - \beta\frac{dx}{dt} + f(t)$$

$$\rightarrow \frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 x = F(t)$$

Transient and Steady-State Terms

□ When F(t) is a periodic function and $\lambda > 0$, the solution is the sum of a non-periodic function $x_c(t)$ and a periodic function $x_p(t)$. Moreover $\lim_{t\to\infty} x_c(t) = 0$.

Example: Transient/Steady State

□ The solution of

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 2x = 4\cos t + 2\sin t , \quad x(0) = 0 , \quad x'(0) = x_1$$

is $x(t) = (x_1 - 2)e^{-t} \sin t + 2 \sin t$,

transient steady-state

Undamped Forced Motion

□ The solution of

$$\frac{d^2x}{dt^2} + \omega^2 x = F_0 \sin \gamma t , \quad x(0) = 0 , \quad x'(0) = 0$$

is
$$x(t) = c_1 \cos \omega t + c_2 \sin \omega t + \frac{F_0}{\omega^2 - \gamma^2} \sin \gamma t$$

where $c_1 = 0$, $c_2 = -\gamma F_0 / \omega (\omega^2 - \gamma^2)$.

$$\rightarrow x(t) = \frac{F_0}{\omega(\omega^2 - \gamma^2)} (-\gamma \sin \omega t + \omega \sin \gamma t), \quad \gamma \neq \omega$$

 \rightarrow There is no transient term.

□ In the previous example, when $\gamma \rightarrow \omega$, the displacement of the system become large as $t \rightarrow \infty$.

$$x(t) = \lim_{\gamma \to \omega} F_0 \frac{-\gamma \sin \omega t + \omega \sin \gamma t}{\omega(\omega^2 - \gamma^2)}$$
$$= F_0 \lim_{\gamma \to \omega} \frac{\frac{d}{d\gamma} (-\gamma \sin \omega t + \omega \sin \gamma t)}{\frac{d}{d\gamma} (\omega^3 - \omega \gamma^2)}$$
$$= \frac{F_0}{2\omega^2} \sin \omega t - \frac{F_0}{2\omega} t \cos \omega t$$

12/24

Tacoma Narrow Bridge, WA, USA

□ Opened in July 1, 1940, collapsed in Nov. 7, 1940.

The wind-blow frequency matched the natural frequency of the bridge, which caused a pure resonance effect that destroyed the bridge.

Damping System of Taipei 101

Taipei 101 uses a 730-ton damping ball⁺ to stabilize the building under wind-blow effect

+ Picture from: https://nl.m.wikipedia.org/wiki/Bestand:Tuned_mass_damper.gif

Boundary Conditions

□ Boundary conditions of a flexible beam:

End of beam	Boundary conditions	
embedded	y = 0	<i>y′</i> =0
free	<i>y</i> ″=0	<i>y′′′′</i> =0
supported	<i>y</i> = 0	<i>y</i> ″=0

Supported at both ends

Eigenvalue Problems

□ An eigenvalue problem in DE is a homogeneous BVP such that the boundary conditions evaluate to 0 and there is a parameter λ at the coefficient of *y*:

 $y'' + p(x)y' + \lambda q(x)y = 0, y(a) = 0, y(b) = 0.$

The eigenvalue problem tries to find a λ (eigenvalue) such that the BVP has a nontrivial solution.

□ The non-trivial solution that corresponding to an eigenvalue λ is then called an eigenfunction.

Example:
$$y'' + \lambda y = 0$$
, $y(0) = y(L) = 0$ (1/2)

□ The problem can be solved by enumerating different cases when $\lambda = 0$, $\lambda < 0$, and $\lambda > 0$.

(1) $\lambda = 0$, we have y'' = 0, \rightarrow the general solution is y(x) = Ax + B. $\rightarrow y = 0$ is the only solution for the BVP $\rightarrow \lambda = 0$ is not an eigenvalue of the BVP

(2) $\lambda < 0$, let $\lambda = -\alpha^2$, $\alpha > 0$, we have $y'' - \alpha^2 y = 0$, \rightarrow the general solution is $y(x) = c_1 e^{\alpha x} + c_2 e^{-\alpha x}$. $\rightarrow y = 0$ is the only solution for the BVP $\rightarrow \lambda < 0$ do not have eigenvalues of the BVP

Example:
$$y'' + \lambda y = 0$$
, $y(0) = y(L) = 0$ (2/2)

3)
$$\lambda > 0$$
, let $\lambda = \alpha^2$, $\alpha > 0$, we have $y'' + \alpha^2 y = 0$,
 \rightarrow the solution is $y(x) = c_1 \cos(\alpha x) + c_2 \sin(\alpha x)$.
 $\rightarrow y(0) = 0$ implies $c_1 = 0$
 $\rightarrow y(L) = 0$ implies $\sin(\alpha L) = 0$, or $\alpha L = n\pi$, $n \in Z$
 \rightarrow The BVP has infinitely many eigenvalues:

$$\lambda = \left(\frac{n\pi}{L}\right)^2, \qquad n \in \mathbb{Z}$$

and the corresponding eigenfunctions are:

$$y_n = c_2 \sin\left(\frac{n\pi}{L}x\right), \quad n = 1, 2, 3, \dots$$

20/24

Nonlinear Spring Models (1/2)

The general mathematical model of an undamped spring has the form:

$$m\frac{d^2x}{dt^2} + F(x) = 0$$

for a linear spring model, F(x) = kx. However, spring are quite often nonlinear, e.g. $F(x) = kx + k_1x^3$.

Nonlinear Spring Models (2/2)

Damping force of a spring system can be nonlinear as well:

$$m\frac{d^{2}x}{dt^{2}} + \beta \left|\frac{dx}{dt}\right|\frac{dx}{dt} + F(x) = 0$$

□ Restoring force F(x) is usually an odd function such as $kx + k_1x^3$. The reason is that we want F(-x) = -F(x).

Nonlinear Pendulum

The pendulum system can be modeled as

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0.$$

Using Maclaurin series of $\sin \theta$, we have

$$\sin\theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots,$$

Linearization of Nonlinear Systems

 \Box Assuming that sin $\theta \approx \theta - \theta^{3}/6$, we have:

$$\frac{d^2\theta}{dt^2} + \left(\frac{g}{l}\right)\theta + \left(\frac{g}{6l}\right)\theta^3 = 0.$$

A nonlinear model → similar to the spring systems!

System can be linearized by assuming $\sin \theta \approx \theta$:

$$\frac{d^2\theta}{dt^2} + \left(\frac{g}{l}\right)\theta = 0.$$

□ Impact of initial values:

