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Linear Models: IVP

a Many linear dynamic systems can be represented
using a 2"? order DE with constant coefficients:
dy —dy
T ) =g(?)
In this formulation, g(¢) is the input or forcing function of
the system, the output of the system is a solution y(¢) of
the DE that satisfies the initial conditions
y(t) =y, ¥V'(t,) =y, On an interval containing ¢,.
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Free Undamped Motion

Q Hooke’s law describes the restoring force:
F=ks
0 Newton’s 2" |aw (F = ma) describes the motion:
m(d?x/dt*) = —k(s + x) + mg
=—kx + (mg — ks) = —kx — \

Q DE of free undamped motion: T
| g
d’x
1 +0'x=0, x(0)=x,, x'(0)=x T |
L !
] ] equili.b'rium i)
Q Solution of the maotion: I vy

motion

x(t) = ¢, cos wt + ¢, sin wt.
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Alternative Form of Solution

Q By applying trigonometric formula, we have:

x(1) = Asin(@t +¢), A=+t +c2, tang="1

C,

1

X negative

X positive

'
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Aging Spring

a In real world, the spring constant £ usually varies as the
spring gets old. Replace & with k(¢) = ke, k> 0,
a >0, we have a more realistic system model:

mx" + ke %x = ()

— Non-constant coefficient 2"9-order linear DE!
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Free Damped Motion

Q DE of free damped motion:

d*x dx
m =—kx— f—
dt’ ﬁdt
N d’x + 22@ +o'x=0
dt’ dt

— The roots of the auxiliary eq.:

m=—A+~N I -

w7y

@

6/24




Three Cases of Damped Motion

Q Case |I: Over-damped X
x(t)=e” (cle"i2 oty cze”f—”zt)

Q Case ll: Critically damped
x(t) = e ¥ (c, +c,t)

Y

Q Case lll: Under-damped | undamped
x(t)=e ¥ (c, cosN* - A t

\ underdamped

+c,sinva® - A 1) \\//\v/‘ |
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Driven Motion

a Now, consider the effect of external
force f(r) on the damped motion system:

d’*x dc .
m——=—kx—f—+ f(¢ I ———
. B f ) iy
2

- Q+2ﬂ@+a)2x=F(t) oy

dt’ dt
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Transient and Steady-State Terms

Q When F(¢) is a periodic function and 4 > 0, the solution
Is the sum of a non-periodic function x.(7) and a
periodic function x (7). Moreover lim,_,,, x(¢) = 0.

X X

I
steady state xp(?) x(t) = transient

+ steady-state

Al L
=\ U

1 |
/2 /2

9/24




Example: Transient/Steady State

Q The solution of

2
d—f+2@+2x:4cost+2sin1, x(0)=0, x'(0)=x,
dt dt

IS x(#) = (x; —2)e’sint + 2 sin ¢,

~— ~—

transient steady-state AL om=T
/ x1=3
2'1 :%‘< x,=0 /\
\//\ !
\ _3\/
2. 1T
-4
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Undamped Forced Motion

Q The solution of

d’ .
;f+a)2x:Fosmyt, x(0)=0, x'(0)=0

IS , F,
x(t) = ¢, cos wt + ¢, sin wt +

sin yt
0> — 7/2 4
where ¢, =0, ¢, = —F, /o(w? — y?).
F, . .
— x(t) = 5 2)(—7/s1na)t+a)sm;/t), X0,
—7
— There is no transient term.
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Pure Resonance

Qa In the previous example, when y — w, the
displacement of the system become large as 1 —» «.

—ysin @t + wsin yt

x(¢) =limF,

A P |
d . . B
d(—;/ sin @t + @ sin yt) f\
-t T
ST VARV
3 2 ~A/
T T \/
— FO h

S sin a)t—z—ot COS wt
@ @
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Tacoma Narrow Bridge, WA, USA

Q Opened in July 1, 1940, collapsed in Nov. 7, 1940.

m The wind-blow frequency matched the natural frequency of the
bridge, which caused a pure resonance effect that destroyed
the bridge.
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Damping System of Taipei 101

0 Taipei 101 uses a 730-ton damping ballT to stabilize the
building under wind-blow effect

T Picture from: https://nl.m.wikipedia.org/wiki/Bestand: Tuned_mass_damper.gif 1424




Linear Models: BVP

Q The deflection of a flexible beam can be modelled by a
4t-order differential equation:

d4
EI f = w(x)
flexural rigidity load per unit length

- -
=

A straight flexible beam The deflection curve of the beam
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Flexible Beam Applications

Q For precise robot arm control, we must take into
account the bending effect of the robot links:

Estimated end-point position (X4, ¥4)
without considering bending effect

1
True end-point position (x4, y,)

E_> Base position (x,, y,)
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Boundary Conditions

Q Boundary conditions of a flexible beam:

End of beam Boundary conditions
embedded y=0 y’'=0
free y7=0 y”7=0
supported y=0 y7=0

x=0 x=1L

Embedded at both ends

Free at the right end

x=L x=0 x=1L

Supported at both ends
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Eigenvalue Problems

a An eigenvalue problem in DE is a homogeneous BVP
such that the boundary conditions evaluate to 0 and
there is a parameter A at the coefficient of y:

y'+ploy'+ Ag(x)y =0, y(a) = 0, y(b) = 0.
The eigenvalue problem tries to find a A (eigenvalue)
such that the BVP has a nontrivial solution.

A The non-trivial solution that corresponding to an
— eigenvalue A is then called an eigenfunction.
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Example: y"+ Ay =0, y(0) =»(L) =0 (1/2)

Q The problem can be solved by enumerating different
cases when A=0, 1<0,and 4> 0.

(1) =0, we have y" =0,
— the general solution is y(x) = Ax + B.
— y =0 is the only solution for the BVP
— A=01is not an eigenvalue of the BVP

(2) A<0,let A=—c*, >0, we have y" — o’y =0,
— the general solution Is y(x) = c¢,e® + c,e*.
— y =0 is the only solution for the BVP
— A <0 do not have eigenvalues of the BVP
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Example: y”+ Ay =0, y(0) = y(L) = 0 (2/2)

(3) A>0, let A= a2, >0, we have y" + o’y =0,
— the solution is y(x) = ¢,cos(ax) + ¢, sin( o).
— ¥(0) =0 implies ¢, =0
— y(L) =0 implies sin(al) =0, or al =nx,ne Z
— The BVP has infinitely many eigenvalues:
nm

1=(%), nez

and the corresponding eigenfunctions are:
nr

Yn:CZSin(TX), n=1, 2, 3, ...
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Nonlinear Spring Models (1/2)

Q The general mathematical model of an undamped
spring has the form:

d’x

dt’

m +F(x)=0

for a linear spring model, F(x) = kx. However, spring
are quite often nonlinear, e.g. F(x) = kx + kx>

F 4 hard spring

soft spring

> X

linear spring
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Nonlinear Spring Models (2/2)

A Damping force of a spring system can be nonlinear as
well:

a’zx
t

dx| dx
+ —+F(x)=0
'Bdt dt (x) =

Q Restoring force F(x) is usually an odd function such as
kx + kx*. The reason is that we want F(—x) = —F(x).
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Nonlinear Pendulum

A The pendulum system can be
modeled as

2

dergsin&’:O. Oi

dt | L
Using Maclaurin series of sin 6, i
we have |
3 5 !
sin6’:6’—0 +6’ e, i
31 3 :

~___i. _______ =mg

~
<~
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Linearization of Nonlinear Systems

Q Assuming that sin 8~ 68— 8°/6, we have:
2 A nonlinear model
d f+(§j8+(§j83 — (0. — similar to the spring
dt / 6/ systems!
System can be linearized by assuming sin &= 6

2
d (29 +(§j6’ =0.
dt

Q Impact of initial values:

0: ”~ N
I' ,1' \‘
/ / \
Vo ]
/ -"‘;"-’,’ /',
______ &' "'w\\ /'
ZORE |
610) = 5
t 0(0)=2
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