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Linear Models: IVP

 Many linear dynamic systems can be represented 
using a 2nd order DE with constant coefficients:

In this formulation, g(t) is the input or forcing function of 
the system, the output of the system is a solution y(t) of 
the DE that satisfies the initial conditions
y(t0) = y0, y(t0) = y1 on an interval containing t0.
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Free Undamped Motion

 Hooke’s law describes the restoring force:
F = ks

 Newton’s 2nd law (F = ma) describes the motion:
m(d2x/dt2) = –k(s + x) + mg

= –kx + (mg – ks) = –kx

 DE of free undamped motion:

 Solution of the motion:
x(t) = c1 cos t + c2 sin t.
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Alternative Form of Solution

 By applying trigonometric formula, we have:
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Aging Spring

 In real world, the spring constant k usually varies as the 
spring gets old.  Replace k with k(t) = ke–t, k > 0,
 > 0, we have a more realistic system model:

mx + ke–tx = 0

 Non-constant coefficient 2nd-order linear DE!
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Free Damped Motion

 DE of free damped motion:



 The roots of the auxiliary eq.:
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Three Cases of Damped Motion

 Case I: Over-damped

 Case II: Critically damped

 Case III: Under-damped
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Driven Motion

 Now, consider the effect of external
force f(t) on the damped motion system:
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Transient and Steady-State Terms

 When F(t) is a periodic function and  > 0, the solution 
is the sum of a non-periodic function xc(t) and a 
periodic function xp(t).  Moreover limt xc(t) = 0.
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Example: Transient/Steady State

 The solution of

is x(t) = (x1 – 2)e–t sin t + 2 sin t,
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Undamped Forced Motion

 The solution of

is

where c1 = 0, c2 = –γF0 /ω(ω2 – γ2).



 There is no transient term.
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Pure Resonance

 In the previous example, when   , the 
displacement of the system become large as t  .
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Tacoma Narrow Bridge, WA, USA

 Opened in July 1, 1940, collapsed in Nov. 7, 1940.
 The wind-blow frequency matched the natural frequency of the 

bridge, which caused a pure resonance effect that destroyed 
the bridge.
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Damping System of Taipei 101

 Taipei 101 uses a 730-ton damping ball† to stabilize the 
building under wind-blow effect

14† Picture from: https://nl.m.wikipedia.org/wiki/Bestand:Tuned_mass_damper.gif
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Linear Models: BVP

 The deflection of a flexible beam can be modelled by a 
4th-order differential equation:

load per unit lengthflexural rigidity

A straight flexible beam The deflection curve of the beam

15

)(
4

4

xw
dx

yd
EI 



/24

Flexible Beam Applications

 For precise robot arm control, we must take into 
account the bending effect of the robot links:
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Base position (x0, y0)

True end-point position (x4, y4)

Estimated end-point position (𝑥ොସ, 𝑦ොସ)
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Boundary Conditions

 Boundary conditions of a flexible beam:

End of beam Boundary conditions

embedded y = 0 y = 0

free y = 0 y = 0

supported y = 0 y = 0

x = 0 x = L x = 0 x = L x = 0 x = L

Embedded at both ends Free at the right end Supported at both ends
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Eigenvalue Problems

 An eigenvalue problem in DE is a homogeneous BVP 
such that the boundary conditions evaluate to 0 and 
there is a parameter  at the coefficient of y:

y" + p(x)y' + q(x)y = 0, y(a) = 0, y(b) = 0.

The eigenvalue problem tries to find a  (eigenvalue) 
such that the BVP has a nontrivial solution.

 The non-trivial solution that corresponding to an 
eigenvalue  is then called an eigenfunction.
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Example: y" + y = 0, y(0) = y(L) = 0 (1/2)

 The problem can be solved by enumerating different 
cases when  = 0,  < 0, and  > 0.

(1)  = 0, we have y = 0,
 the general solution is y(x) = Ax + B.
 y = 0 is the only solution for the BVP
  = 0 is not an eigenvalue of the BVP

(2)  < 0, let  = –2,  > 0, we have y – 2y = 0,
 the general solution is y(x) = c1ex + c2e–x.
 y = 0 is the only solution for the BVP
  < 0 do not have eigenvalues of the BVP
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Example: y" + y = 0, y(0) = y(L) = 0 (2/2)

(3)  > 0, let  = 2,  > 0, we have y + 2y = 0,
 the solution is y(x) = c1cos(x) + c2 sin(x).
 y(0) = 0 implies c1 = 0
 y(L) = 0 implies sin(L) = 0, or L = n, n Z
 The BVP has infinitely many eigenvalues:

and the corresponding eigenfunctions are:
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Nonlinear Spring Models (1/2)

 The general mathematical model of an undamped 
spring has the form:

for a linear spring model, F(x) = kx.  However, spring 
are quite often nonlinear, e.g. F(x) = kx + k1x3.
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Nonlinear Spring Models (2/2)

 Damping force of a spring system can be nonlinear as 
well:

 Restoring force F(x) is usually an odd function such as 
kx + k1x3.  The reason is that we want F(–x) = –F(x).
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Nonlinear Pendulum

 The pendulum system can be
modeled as

Using Maclaurin series of sin ,
we have
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Linearization of Nonlinear Systems

 Assuming that sin    –  3/6, we have:

System can be linearized by assuming sin    :

 Impact of initial values:
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