Modeling with High-Order Differential Equations

National Chiao Tung University
Chun-Jen Tsai 10/16/2019

Linear Models: IVP

- Many linear dynamic systems can be represented using a $2^{\text {nd }}$ order DE with constant coefficients:

$$
a_{2} \frac{d^{2} y}{d t^{2}}+a_{1} \frac{d y}{d t}+a_{0} y=g(t)
$$

In this formulation, $g(t)$ is the input or forcing function of the system, the output of the system is a solution $y(t)$ of the DE that satisfies the initial conditions $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}$ on an interval containing t_{0}.

Free Undamped Motion

- Hooke's law describes the restoring force:

$$
F=k s
$$

- Newton's $2^{\text {nd }}$ law $(F=m a)$ describes the motion:

$$
\begin{aligned}
m\left(d^{2} x / d t^{2}\right) & =-k(s+x)+m g \\
& =-k x+(m g-k s)=-k x
\end{aligned}
$$

- DE of free undamped motion:

$$
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0, x(0)=x_{0}, x^{\prime}(0)=x_{1}
$$

- Solution of the motion:

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t
$$

Alternative Form of Solution

- By applying trigonometric formula, we have:

$$
x(t)=A \sin (\omega t+\phi), A=\sqrt{c_{1}^{2}+c_{2}^{2}}, \tan \phi=\frac{c_{1}}{c_{2}}
$$

Aging Spring

- In real world, the spring constant k usually varies as the spring gets old. Replace k with $k(t)=k e^{-\alpha t}, k>0$, $\alpha>0$, we have a more realistic system model:

$$
m x^{\prime \prime}+k e^{-\alpha t} x=0
$$

\rightarrow Non-constant coefficient $2^{\text {nd }}$-order linear DE!

Free Damped Motion

- DE of free damped motion:

$$
\begin{array}{r}
m \frac{d^{2} x}{d t^{2}}=-k x-\beta \frac{d x}{d t} \\
\rightarrow \frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=0
\end{array}
$$

\rightarrow The roots of the auxiliary eq.:

$$
m=-\lambda \pm \sqrt{\lambda^{2}-\omega^{2}}
$$

Three Cases of Damped Motion

- Case I: Over-damped

$$
x(t)=e^{-\lambda t}\left(c_{1} e^{\sqrt{\lambda^{2}-\omega^{2}} t}+c_{2} e^{-\sqrt{\lambda^{2}-\omega^{2}} t}\right)
$$

- Case II: Critically damped

$$
x(t)=e^{-\lambda t}\left(c_{1}+c_{2} t\right)
$$

- Case III: Under-damped

$$
\begin{aligned}
x(t)=e^{-\lambda t} & \left(c_{1} \cos \sqrt{\omega^{2}-\lambda^{2}} t\right. \\
& \left.+c_{2} \sin \sqrt{\omega^{2}-\lambda^{2}} t\right)
\end{aligned}
$$

Driven Motion

- Now, consider the effect of external force $f(t)$ on the damped motion system:

$$
\begin{aligned}
& m \frac{d^{2} x}{d t^{2}}=-k x-\beta \frac{d x}{d t}+f(t) \\
\rightarrow & \frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=F(t)
\end{aligned}
$$

Transient and Steady-State Terms

When $F(t)$ is a periodic function and $\lambda>0$, the solution is the sum of a non-periodic function $x_{c}(t)$ and a periodic function $x_{p}(t)$. Moreover $\lim _{t \rightarrow \infty} x_{c}(t)=0$.

Example: Transient/Steady State

- The solution of
$\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x=4 \cos t+2 \sin t, \quad x(0)=0, \quad x^{\prime}(0)=x_{1}$
is $x(t)=\left(x_{1}-2\right) e^{-t} \sin t+2 \sin t$,
transient steady-state

Undamped Forced Motion

- The solution of

$$
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=F_{0} \sin \gamma t, \quad x(0)=0, \quad x^{\prime}(0)=0
$$

is

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t+\frac{F_{0}}{\omega^{2}-\gamma^{2}} \sin \gamma t
$$

where $c_{1}=0, c_{2}=-\gamma F_{0} / \omega\left(\omega^{2}-\gamma^{2}\right)$.
$\rightarrow x(t)=\frac{F_{0}}{\omega\left(\omega^{2}-\gamma^{2}\right)}(-\gamma \sin \omega t+\omega \sin \gamma t), \quad \gamma \neq \omega$
\rightarrow There is no transient term.

Pure Resonance

- In the previous example, when $\gamma \rightarrow \omega$, the displacement of the system become large as $t \rightarrow \infty$.

$$
\begin{aligned}
x(t) & =\lim _{\gamma \rightarrow \omega} F_{0} \frac{-\gamma \sin \omega t+\omega \sin \gamma t}{\omega\left(\omega^{2}-\gamma^{2}\right)} \\
& =F_{0} \lim _{\gamma \rightarrow \omega} \frac{\frac{d}{d \gamma}(-\gamma \sin \omega t+\omega \sin \gamma t)}{\frac{d}{d \gamma}\left(\omega^{3}-\omega \gamma^{2}\right)} \\
& =\frac{F_{0}}{2 \omega^{2}} \sin \omega t-\frac{F_{0}}{2 \omega} t \cos \omega t
\end{aligned}
$$

Tacoma Narrow Bridge, WA, USA

- Opened in July 1, 1940, collapsed in Nov. 7, 1940.
- The wind-blow frequency matched the natural frequency of the bridge, which caused a pure resonance effect that destroyed the bridge.

Damping System of Taipei 101

- Taipei 101 uses a 730-ton damping ball ${ }^{\dagger}$ to stabilize the building under wind-blow effect

Linear Models: BVP

- The deflection of a flexible beam can be modelled by a $4^{\text {th }}$-order differential equation:

A straight flexible beam

The deflection curve of the beam

Flexible Beam Applications

- For precise robot arm control, we must take into account the bending effect of the robot links:

Boundary Conditions

- Boundary conditions of a flexible beam:

End of beam	Boundary conditions	
embedded	$y=0$	$y^{\prime}=0$
free	$y^{\prime \prime}=0$	$y^{\prime \prime \prime}=0$
supported	$y=0$	$y^{\prime \prime}=0$

Embedded at both ends

Free at the right end

Supported at both ends

Eigenvalue Problems

- An eigenvalue problem in DE is a homogeneous BVP such that the boundary conditions evaluate to 0 and there is a parameter λ at the coefficient of y :

$$
y^{\prime \prime}+p(x) y^{\prime}+\lambda q(x) y=0, y(a)=0, y(b)=0 .
$$

The eigenvalue problem tries to find a λ (eigenvalue) such that the BVP has a nontrivial solution.

- The non-trivial solution that corresponding to an eigenvalue λ is then called an eigenfunction.

Example: $y^{\prime \prime}+\lambda y=0, y(0)=y(L)=0(1 / 2)$

- The problem can be solved by enumerating different cases when $\lambda=0, \lambda<0$, and $\lambda>0$.
(1) $\lambda=0$, we have $y^{\prime \prime}=0$,
\rightarrow the general solution is $y(x)=A x+B$.
$\rightarrow y=0$ is the only solution for the BVP
$\rightarrow \lambda=0$ is not an eigenvalue of the BVP
(2) $\lambda<0$, let $\lambda=-\alpha^{2}, \alpha>0$, we have $y^{\prime \prime}-\alpha^{2} y=0$,
\rightarrow the general solution is $y(x)=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x}$.
$\rightarrow y=0$ is the only solution for the BVP
$\rightarrow \lambda<0$ do not have eigenvalues of the BVP

Example: $y^{\prime \prime}+\lambda y=0, y(0)=y(L)=0(2 / 2)$

(3) $\lambda>0$, let $\lambda=\alpha^{2}, \alpha>0$, we have $y^{\prime \prime}+\alpha^{2} y=0$,
\rightarrow the solution is $y(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)$.
$\rightarrow y(0)=0$ implies $c_{1}=0$
$\rightarrow y(L)=0$ implies $\sin (\alpha L)=0$, or $\alpha L=n \pi, n \in Z$
\rightarrow The BVP has infinitely many eigenvalues:

$$
\lambda=\left(\frac{n \pi}{L}\right)^{2}, \quad n \in Z
$$

and the corresponding eigenfunctions are:

$$
y_{n}=c_{2} \sin \left(\frac{n \pi}{L} x\right), \quad n=1,2,3, \ldots
$$

Nonlinear Spring Models (1/2)

- The general mathematical model of an undamped spring has the form:

$$
m \frac{d^{2} x}{d t^{2}}+F(x)=0
$$

for a linear spring model, $F(x)=k x$. However, spring are quite often nonlinear, e.g. $F(x)=k x+k_{1} x^{3}$.

Nonlinear Spring Models (2/2)

- Damping force of a spring system can be nonlinear as well:

$$
m \frac{d^{2} x}{d t^{2}}+\beta\left|\frac{d x}{d t}\right| \frac{d x}{d t}+F(x)=0
$$

- Restoring force $F(x)$ is usually an odd function such as $k x+k_{1} x^{3}$. The reason is that we want $F(-x)=-F(x)$.

Nonlinear Pendulum

- The pendulum system can be modeled as

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{l} \sin \theta=0 .
$$

Using Maclaurin series of $\sin \theta$, we have

$$
\sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots
$$

Linearization of Nonlinear Systems

- Assuming that $\sin \theta \approx \theta-\theta^{3} / 6$, we have:

$$
\frac{d^{2} \theta}{d t^{2}}+\left(\frac{g}{l}\right) \theta+\left(\frac{g}{6 l}\right) \theta^{3}=0 . \quad \rightarrow \begin{gathered}
\text { A nonlinear model } \\
\text { similar to the spring } \\
\text { systems! }
\end{gathered}
$$

System can be linearized by assuming $\sin \theta \approx \theta$:

$$
\frac{d^{2} \theta}{d t^{2}}+\left(\frac{g}{l}\right) \theta=0 .
$$

- Impact of initial values:

$\begin{aligned} \theta(0) & =\frac{1}{2}, \\ \theta^{\prime}(0) & =\frac{1}{2}\end{aligned}$

$\theta(0)=\frac{1}{2}$,
$\theta^{\prime}(0)=2$

