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Initial-Value Problems

0 For a linear nt"-order differential equation, an initial-
value problem (IVP) is:

Solve:
d"y - d
a <x ()T, (1) L+ 4, (0)y = g(x)
dax" dx
Subject to:

y(x,) = J’an’(xo) = yla---ay(n_l)(xo) = Vo1
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Existence of a Unique Solution

a Theorem: Let g (x), a, ((x), ..., a,(x), a)(x) and g(x) be
continuous on an interval /, and let ¢, (x) # 0 for every x
in this interval. If x =x, is any point in this interval, then
a solution y(x) of the IVP exists on the interval and is
unique.
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Examples:

Q The trivial solution y =0 is the unique solution of the
IVP 33 +5y"—y"+7y=0,p(1)=y(1)=yp"(1) =0 on any
interval containing x = 1.

Q The solution y = 3e?*+ ¢2*— 3x is the unique solution of
the IVP y"- 4y =12x, y(0) =4, '(0) = 1 on any interval
containing x = 0.

Q The solution family y = cx? + x + 3 are solutions of the

IVP x?y"—2xy"+ 2y =6, y(0) =3, y'(0) =1
— a,(x)=x*=0at 0.
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Boundary-Value Problem

Q Solving a linear DE with y or its derivatives specified at
different points. For example,

Solve e
a, <x>${+al (x)

4

PR (x)y =g(x)

Solutions of the DE

y /

Subject to
y(a)=y,, ()=

(b,jp
X x
— 1 —
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Solutions of a BVP

a A BVP can have many, one, or no solutions.

Example: x = ¢, cos 4¢ + ¢, sin 4t is a solution family of
x"+ 16x=0. What are the solutions of the BVPs with

(1) x(0) =0, x(7/2) =07 |-
(2) x(0) =0, x(7/8) =07
(3) x(0) =0, x(72)=17
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Homogeneous Equations

Q For a linear nt"-order differential equation

d" d™! d
a,(X) 2 +a, (X) 2 +..+a,(x) = +a,(x)y = g(x),
dx dx dx

if g(x) =0, it is called a homogeneous differential
equation, otherwise, it is non-homogeneous.

Note that: the solution of a non-homogeneous

differential equation is based on the solution to its
associated homogeneous differential equation.
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Differential Operators

Q The symbol D, defined by Dy = dy/dx, is called a
differential operator. D transforms a function into
another function.

Example: D(cos 4x) = —4sin 4x, D(5x3 — 6x?) = 15x> — 12x

A Polynomial expressions involving D, such as D + 3 and
D? + 3D — 4 are also differential operators.
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Linear Operator

Q An nth-order differential operator is defined as:
L=a(x)D"+a, (x)D"'4 ... 4+a,(x)D+ayx)
L is a linear operator, that is,

Liafx)+fe(x)} = aL(f(x)+ fL(g(x))
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“D” Representation of DEs

Q Any differential equations can be expressed in terms of
the D notation.

For example, y"+ 5y'+ 6y = 5x — 3 can be written as
D?y+5Dy+6y=5x—3 or (D°+5D+6)y=5x—3

0 Alinear nth-order differential equation can be write
compactly as L(y) = g(x).
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Superposition Principle

a Theorem: Let y,, y,,...,y, be solutions of a homogeneous
linear nt"-order DE on an interval 7. Then the linear
combination

y=cpi(x) T epy(x) Tt o),

where c,i=1, 2, ..., k are arbitrary constants, is also a
solution on this interval.

— Can be proved by using linear operator property.
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Linear Dependency

a Aset of functions f,(x), f,(x), ..., f,(x) is said to be
linearly dependent on an interval / if there exist
constants ¢, ¢,,..., ¢,, not all zero, such that

° n?

¢ fi(x) ¢y folx) +... 4 ¢, f,(x) = 0.

Otherwise, it's said to be linearly independent.

O Example: Are cos?x, sin’x, sec’x, tan’x linearly dependent
on the interval (-7/2, 7/2)"?
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Wronskian

a We are interested in linearly independent solutions of a
linear differential equations — How to verify?

O Suppose each of the functions f,(x), £,(x),..., f,(x) has at
least n—1 derivatives. The determinant

f1 f2 fn

W fo f)=| 2 2
—1 —1 —1

A S A

IS called the Wronskian of the functions.
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Criterion for Linear Independency

a Theorem: Let y,, y,,...,y, be n solutions of the linear
nth-order homogeneous DE on an interval 1. Then,
the set of solutions is linearly independent on / if and
only if W(y,, ¥,,...,y,,) # 0 for every x in the interval.

a Example: for y" —3y" + 2y =0, the two solutions y, = e*
and y, = e** has the Wronskian:

ex 82x

o W(ex’QZx): eX Dp2x

=e3* £ 0, Vx € (—0, ).
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Wronskian Independence Checks

Q The previous theorem implies that if y, and y, are two
solutions of a linear homogeneous D.E., then

either W(y,, y,) =0 or W(y,,y,) # 0, Vx.

m This can be proven by applying the existence and uniqueness
theorem on zero initial condition [VP!

a For any two functions y, and y, that are not solutions of
a linear homogeneous D.E. over an interval I

m If W(y,, y,) =0, for some xe [, then y, and y, are linearly

independent over /.
m If W(y,»,) =0, Vx, and y, & y, are nonzero with continuous
derivatives in /, then y, and y, are linearly dependent over /.
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Fundamental Set of Solutions

a Any sety,,»,, ..., y, of nlinearly independent solutions
of the homogeneous linear nt"-order DE on an interval 1

IS said to be a fundamental set of solutions on the
interval 1.

O Theorem: There exists a fundamental set of solutions
for the homogeneous linear nt"-order DE.

— Similar to that a vector can be decomposed into
linear combinations of basis vectors.
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General Solution (1/2)

a Theorem: Let y, y,,...,y, be a fundamental set of
solutions of the homogeneous linear nth-order DE on
an interval 1. Then, the general solution of the equation
on the interval is

y=c(x) Fepy(x)+ .. ey, (x),
where ¢, i =1,2,...,n are arbitrary constants.

Proof on n =2:

Let Y be a solution of a,(x)y” + a,(x)y’+ a,(x)y =0 on an
interval /, y, and y, be linearly independent solutions of
the DE. Initial conditions are ¥(¢) = k, and Y'(¢) = k.
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General Solution (2/2)

To solve for (¢, ¢,)?, we have:

c1y1(8) + c2y2(t) = ky or yi(®)  y20) )\ e\ (ke
c1y' (&) + 2y, () =k (yll(t) }"z(t)> (Cz) B (kz

Since the Wronskian

yi(t)  y2(t)

=y y,m

* 0,

given any k,, k,, there is always a unique solution
for ¢y, c,. i

).
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Example: Linear Combo. of Solutions

a y, =e* and y, = e>* are both solutions of y"—9y =0 on
the interval (—o, ). Are they linearly independent? By
observation? By Wronskian?

Q Is y =4sinh 3x — 5¢7* a solution of y” -9y =07?

19/69




Nonhomogeneous Solutions (1/2)

a Theorem: Let y, be any particular solution of the non-
homogeneous linear nt"-order DE
dn -1
dx"”
on an interval /, and let y,,y,,..., v, be a fundamental set

of solutions. Then the general solution of the equation
on the interval is:

Yot (024 0,50y = ()

a1(X)

y=c(x) e+ e (x) + V)

where ¢, i = 1,2,...,n are arbitrary constants.
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Nonhomogeneous Solutions (2/2)

Proof:

Let Y(x) and y,(x) be particular solutions of L(y) = g(x).
Define u(x) = Y(x) —y,(x), we have

L(u) = L{Y(x) - y,(x)} = L(Y(x)) — L(y,(x)) = g(x) — g(x) = 0

Thus, u(x) must be a solution to the homogeneous DE.
Therefore, u(x) = c,y,(x) + cy,(x) + ... + ¢, p,(x)

— Y(x) = y,(x) = c1(x) T () ..o ¢, (%)

= Y(x) =cy(0) t cpnp(x) + ... +cp,(%) +)’p(x)

Any particular solution can be represented in this form.
#
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Complementary Function

O The general solution of a homogeneous linear nth-order
DE is called the complementary function for the
associated non-homogeneous DE.

Let y.(x) = cy(x) +cyy,(x)+... +c,p,(x), the general

solution of a nonhomogeneous linear nt"-order DE has
the form:

Y(x) =y (x) +y,(x).
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Superposition Principle for DE

Q Theorem: Let yy,, yp,,..., y», D€ k particular solutions of
the non-homogeneous linear nth-order DE on 7,
corresponding to k distinct functions g, g,,...,g;.
Then,

Y= ypl(x) + ypz(x) T ypk(x)

Is a particular solution of

a, )y +a, "D+t a(x)y'+ ay(x)y
= g1(x) + g (x) + ...+ gux).
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Example of Superposition Principle

Q Verify:
Yo, =—4x* > y"—3y'+ 4y =—-16x>+ 24x — 8
Y =e?* —y"—3y'+4y=2e>
Yoy =xe* —y"=3y"'+4y=2xe* - ¢

Therefore
Y=Yrit Yot Yoy = —4x* + e + xe¥

IS a solution of

y" =3y +4y——16x2+24x 8 +2e? + 2xe¥ — e’
v \ﬂ_/ N -~
gl(x) 2,(x) g3(x)
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Reduction of Order

Q For a 2" order linear DE, one can construct a 2"
solution y, from a known nontrivial solution y,. If y, and
y, are linearly independent, we must have

y,/y; # constant,

Therefore, y,(x) = u(x)y,(x). Substitute this into the DE
and solve for u(x) is called reduction of order.
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Example: y"—y =0, y,(x) =€, find y,

Q Solution:
Given y,(x) = e, let y,(x) = u(x) e,
—>y'=ue* +eu',y"=ue* + 2e'u’ + e'u”
—>y"'—y=e(u"+2u")=0
—>u"+2u'=0

Let w=u', the DE becomes w'+ 2w =0. Multiplying by
the integrating factor ¢>*, we have d[e*w]/dx = 0.
Therefore, w=c,e?* or u'= c,e?*.

—>u=(-1/2) c,e >+ c,.

— V,(x) =u(x) e* = (—c,/2) e*+ cye¥, letc, =2, ¢, = 0.

— Check W(e*, e¥)#0
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Solution by Reduction of Order (1/2)

Q Put the 2" order DE into the standard form:

y'+ Py’ + Q@x)y =0,
where P(x) and Q(x) are continuous on some interval /.

If y, is a solution on / and that y,(x) #0 for all x €1,
by defining y, = u(x)y,, we have:

»,"+ Py, +Qy,=
uly" \ +Py" 0Oy ] + yu” + (2y" +Pyu’ = 0.

—>yu” + (2 + Pyu'=0
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Solution by Reduction of Order (2/2)

a Letw=u', we have yw' + (2y', + Py,)w=0.

Since
W _ 2V - Pdv — In|wi=~In| v |- P(x)dx +C.
w Y

—[P(x)dx

In|wy |= —jP(x)dx+C — wy. =ce

— [ P(x)dx

e
= = dx.
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Example: x2y" —3xy'+ 4y =0

a Since y, = x? is a known solution.
3 4

" ’ .
- Yy -—y+—ry=0
X X
3jdx/x

[ € 3ldx/x I 3

VY, =X y cz’x(—eI =e" =X
v X
2'dx
=X E—
X
=x"Inx

The general solution is y = ¢,;x*>+ c,x*Inx.
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Constant Coefficients DE

A For homogeneous linear higher-order DE with real
constant coefficients a,,i =0, 1, ..., n,a,#0, i.e.

aym+a yr+ . +ay"t+ay +ay=0,

do we have exponential solutions?

16

Q Recall: by'+ cy =0, g

12

y=ce® on (—oo, ). 1

(=)

ST =T U NORYC NEe
/
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Auxiliary Equations

Q Consider a 2nd-order DE, ay” + by' + ¢y = 0.

Let y = e, and substituting y’'= me™ and y" = m?e™ into
the DE, we have: am?e™ + bme™ + ce™ = ().

e >0forxe R—-> am?+ bm +c=0.

This is called the auxiliary equation of the DE.
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General Solutions (1/2)

a Case I, b*> —4ac > 0:
m has two real roots m, and m,, and y, = ¢™* and
y, = e™* form a fundamental set of solutions.
The general solutions is

y=ce" +ce’.
a Case ll, b>—4ac = 0:
m has one real root m, and y, = e"*. By reduction-of-
order, the 2nd solution of the DE is y, = xe™-.
The general solution is

X

— mx m
_)/ = cle + 62X€ .
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General Solutions (2/2)

Q Case lll, b> —4ac < 0:
m has two complex roots m, = ¢+ iffand m, = a— ip.
Similar to Case /, the general solution is:

e(a+iﬂ)x (a—iﬂ)x.

y=c +c,e

Q By proper selection of ¢, and ¢,, and using Euler’s
formula, ¢/¢= cos@+ i sind, it can be shown that a
general solution can also be represented by

— y=e“ (¢, cos fx+c,sin fx).
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Example: 4y"+4y"+17y =0

Q Solve the IVP: y(0)=-1, y'(0) = 2.
Solution:
The roots of the auxiliary equation 4m*+4m+17 = 0 are
m=—Y'%+2iand m,=—"—-2i
— y=¢e*2 (c,co8 2x + ¢,sin 2x), with y(0) =-1, y'(0) =2
— y =2 (- cos 2x + ¥ sin 2x)

y

/\1: y — 0, as x —> oo.
:/ : '\]//\'\'/A' x

34/69




Higher-Order Auxiliary Equations

Q In general, to solve
aym+a, YU+ L +ay”"tay +ay=0,
where a; € R and a, # 0, we must solve
am'+a_m'+ .. +am*+am+a,=0.

The general solution of the DE is:
Case | (no repeated roots):

m,_1x
y=ce +c,e™ +..+ce.
Case Il (with repeated roots):
myXx My X k=1 _mgx mx m,_; X
y=ce " +c,xe” +..+c,x e +c e +..+ce .
— o A ~ _/
solution form of solution form of

repeated roots distinct roots
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Solution of Repeated Roots (1/2)

Q For an nth-order linear DE, assuming that the auxiliary

equation of
aym+a, YU+ . +ay t+tay=0

has k repeated roots m,. This means that the DE can
be expressed as:

(D —m)(D-my)...(D-m, )y =0.

Hence, the solution of (D — m,)*y = 0 will also be a
solution of the nth-order DE.
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Solution of Repeated Roots (2/2)

Q Since y, = e¢™* is a solution of (D —my)*y =0, let

Y(x) = u(x)e™".
Note that
(D — mg)[u(x)e™ ] = (Du(x))e™".

Applying the operator & times on y(x), we have
(D — my)u(x)e™ ] = (DFu(x))e™ for any u(x).
Then, u(x)e™" is a solution of the DE <> D*u(x) = 0.

Possible u(x) that meets this condition is a polynomial
with degree less than %.

— Y(x) = (¢;Text ... +exFem* is a family of solutions.
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Non-homogeneous Linear DE

Q To solve a non-homogeneous linear DE
ay" + a, YD+ Lt ay"tay' agy =g),
we must do two things:

(1) Find the complementary function y;
(2) Find any particular solution y , of the DE.
Two methods:
v Method of undetermined coefficients
— v’ Variation of parameters

38/69




Undetermined Coefficients (1/2)

O The method of undetermined coefficients can be
applied under two conditions:

1.a,i=0,1, ..., n, are constants, and
2. g(x) is a linear combination of functions of the
following types:

P(x)=px"+ p, X"+ ..+ px” 4 pix + py,
P(x)e*,

P(x)e*sin fx,

P(x)e*cos pfix.
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Undetermined Coefficients (2/2)

Q There are two approaches to find the particular solution
given g(x) using the undetermined coefficients principle:

m Superposition approach (section 4.4 in the textbook)

— Assume that y (x) has similar form as g(x) with some coefficients
to be determined

m Annihilator approach (section 4.5 in the textbook)

— Try to find a linear operator L, such that when applied to both side
of the DE turns it into a higher-order homogeneous DE. That is:

L(y)=gx) = Ly L) =L, glx)=0.

The extra solution subspace of L, - L(y) = 0 should be the
subspace of the particular solution.
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Example: y"+ 4y’ -2y =2x>-3x+6

0 By guessing, let y, = 4x* + Bx + C, we have
Y, =24x+B,and y,"=24.

Therefore:

yp" _|_ 4yp’_ 2yp
=24+ 8Ax + 4B — 2A4x* - 2Bx - 2C
= _24x2+ (84— 2B)x + (24 + 4B — 20)
=2x>—-3x + 6.

> y,=—x*—(5/2x-09.
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Example: y"—y'+y =2 sin 3x

Q By guessing, let y,= A4 cos 3x + B sin 3x,
we have
y,'=— 34 sin 3x + 3B cos 3x, and
y,"==94 cos 3x — 9B sin 3x.

Therefore:

yp”—yp’+yp
= (=94 3B+ 4) cos 3x + (= 9B + 34 + B) sin 3x
=2 sin 3x.

— y,=(6/73) cos 3x — (16/73) sin 3x.
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Example: y, by Superposition

Q Solve y"—2y'—3y=4x -5 + 6xe*~.
By super position principle, we divide the problem into
two sub-problems, that is,
g(x) = g(x) + g(x),
where g,(x) =4x — 5, and g,(x) = 6xe?*.
By guessing, let y,, = Ax + B, and yp, = Cxe?* + Ee*~.

Substitute y, = Ax + B + Cxe** + Ee** into the DE, we
have:

y, =—(4/3)x +(23/9) — 2xe™ — (4/3)e*"
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Example: A Glitch in the Method

Q Solve y"—5y"+ 4y = 8e".
Simply guessing that y = 4e* and substituting y, into
the DE gives us 0 = 8¢*. What went wrong?

If the guessed form of y, falls in the solution space of y,
(i.e., y.= c,e* + c,e¥), then we always get 0 = g(x).

Solution, let y, = Axe*. Since the derivatives of y,

contains both the term 4e* and Axe*, it is a reasonable
guess for a particular solution.
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Summary of Two Cases (1/2)

Q Case I
No functions in the assumed particular solution is a
solution of the associated homogeneous DE.
— Substitute with y = "the form of g(x)".

g(x) Y,
1. 1 (any constant) | A4
2. X3 -x+1 Ax3+Bx*+ Cx+E
3. sindx, or cos4x A cos 4x + B sin 4x
4. e Ae>
5. x%e> (Ax* + Bx + C)e>*
6. e’*sindx Ae*cosdx + Be3*sindx
7. 5x?sindx (Ax? + Bx + C)cosdx + (Ex? + Fx + G)sindx
8. xe3*cosdx (Ax + B)e¥*cosdx + (Cx + E)e¥*sindx
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Summary of Two Cases (2/2)

Q Case Il
A function in the assumed particular solution is also a

solution of the associated homogeneous DE.

— Substitute with y, = x" x “the form of g(x)”, where n is
the smallest positive integer so that y, is not in the

solution space of y..
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Examples:

a Case |
my"— 8y +25y=>5xe"—Te*
m y'+4y=xcosx
m y" -9y + 14y =3x> -5 sin 2x + Txe®

a Case
my'-2ty=e
m)y'+y=4x+10sinx, y(n)=0,)'"(n)=2
my'—6) +9y=6x>+2-12¢*
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Annihilator Approach

Q The differential operators that annihilate different g(x)
are as follows:
m D" annihilates 1, x, x2, ..., x*1.
m (D - )" annihilates e®, xe®, x?e®, ..., x"le*.
m [D?-2aD + (¢ + F)]" annihilates e*cosfx, e®sinfix, xe®™cosfx,
xe®sinfx, ... , X" le®cosfx, x"le®sinfx.

A Complementary solution to the annihilator DE gives
you the form of y, — you still need to substitute the
— solution form to determine the coefficients!
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Example of Annihilator Approach

Q Determine the y, form of the DE: " + 3y" + 2y = 4x2.

The annihilator of 4x? is D?. Thus, the root of the
auxiliary equation of D’(y)=0ism=0,0,0. The
complementary solution is y = ¢, + c,x + c3x2%.

Therefore, the particular solution should have the form:

y,=A+ Bx+ Cx*.

a One advantage of the annihilator approach is that the
y.of L ,(y)=0and L(y) =0 can be considered jointly to
choose a y, without glitch.
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Variation of Parameters (1/3)

0 To adopt the variation of parameters to a linear 2"nd-
order DE a,(x)y"+ a,(x)y" + a,(x)y = g(x), one must put
the DE in the standard form:

y'+ Px)y" + O(x)y = f(x).
We seek a particular solution of the form

Yo~ uy (0)y1(x) + uy(x)y,(x),
where y, and y, form a fundamental set of solutions on
I of the associated homogeneous DE.
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Variation of Parameters (2/3)

Q Take the derivatives y" and y,", and substitute them
into the DE, we have

y, +P(x)y, +0(x)y,
=u, [y + P(x)y] + Q(x)y, |+ u, [y + P(x)y} + O(x),]
+ gl uly, + youly +ulyh + POyl + yyul |+ viu] + ylu

d ' d ' ' / ', ! r,,!
:E[YWI]JFE[YQ%]JFP(X)[M +y2u2]+ylu1 Vo,

d ’ ' [ ' ' 11 1.1
ZE[YWH +y2u2]+P(x)_y1u1 +J/2u2]+y1u1 + Yty = f ().

KJ/1M1, + Y Uy = h(x)
vy + Yiuy = f(x)=h'(x) = P(x)h(x)

If y,u," + y,u, = h(x), then -
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Variation of Parameters (3/3)

Q If we let i(x) =0, then the solution of the system is
{ylu{ +y,uy =0
Vit + yyuy = f(x)

can be expressed in terms of determinants:

4 X
w0l g e n @)
W W w 14

where
0 0
W:ylr yf,le| yfszzylr .
Vi I f(x) Vo 4 f(x)
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Summary of the Method

a To solve a,(x)y"+ a,(x)y" + ay(x)y = g(x):

m Findy, =cy; ey

m Compute the Wronskian W(y,(x), y,(x)).

m Put the DE into standard form: y” + P(x)y’ + O(x)y = A(x).
m Find u, and u, by integrating u," = W,/Wand u,' = W,/W.
m Aparticular solution is y, = u,y; + u,y,.
m The general solutionisy =y, +y,.

A Note that there is no need to introduce any constants
when computing the indefinite integrals of «," and u,".
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Examples:

Q Solve y" -4y +4y =(x+ 1)e*.
Q Solve 4y"+ 36y = csc 3x.

Q Solve y"—y = 1/x.
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Higher-Order Equations

a For a linear nth-order DE

Y+ Pt + L+ Pi(x)y + Py(x)y = fx),

ify.=cy, +cy,+... +cy,Iis the complementary
function of the DE, then a particular solution is

Yp = Uy (0)y1(xX) + uy()yy(x) + ..+, (), (%),
where u,' =W,/ W, k=1, 2, ..., n and Wis the Wronskian
of y,, y,, .., v, and W, is the determinant obtained by

replacing the ith column of the Wronskian by the
column (0, 0, ..., fix))".
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Cauchy-Euler Equation

Q Any linear differential equation of the form

n d ”y n—1 d n_ly dy
a X +a X +---+a,XxX—+d = X),
n ]n n—1 {n—l | I Oy g( )

where the coefficients a; are constants, is called a
Cauchy-Euler equation.

Q Note that a x" =0 at x =0. Therefore, we focus on
solving the equation on (0, «).
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Method of Solution

a Assume that y = x™ is a solution, we have

=a,x"m(m-1)(m-2)...(m—k+1)x"™"

=am(m—-1)(m—-2)..(m—k+1)x".
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2nd-Order Cauchy-Euler Eq.

Q For the 2nd-order homogeneous equation:
a,x*y" + bxy' + cy =0,
substituting y = x™ leads to

2
i 4 {+be—|—cy:(am(m—l)-l—bm-l—C)Xm.
dx dx

ax

Thus y =x" is a solution of the DE whenever m is a
solution of the auxiliary equation

am(m—1)+bm+c=0.
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Auxiliary Equation Solutions (1/2)

Q Case [, distinct real roots m,#m;:
Then y, =x™ and y, = x™ form a fundamental set of

solutions. The general solution is
y=cx" +c,x".

Q Case I, repeated real roots m, = m,:
Then y, = x™, by reduction-of-order, the 2nd solution of

the DE is y, =x™In x. The general solution is

= c;x™ 4 ¢, x™1 ]n x.
Y 1 2
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Auxiliary Equation Solutions (2/2)

Q Case lll, conjugate complex roots:
If m; = a+ifand m, = a—if, the general solutions is

— (a+ifp) (a—if)
y=cx +c,x :

Q By proper selection of ¢, and ¢,, and using Euler’s
formula, it can be shown that a general solution can

also be represented by

¥ =x"(c, cos(fInx)+c, sin(f1n x)).
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Example: Particular Solutions

O The method of undetermined coefficients does not in
general carry over to variable-coefficient DEs.

Therefore, the variation of parameters method should
be used for solving non-homogeneous Cauchy-Euler
equations.

Q Example: Solve x%y" —3xy’ + 3y = 2x%e*.
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Reduction to Constant Coefficient Eqs

a A Cauchy-Euler equation can be reduced to a constant
coefficient equation by the substitution x = ¢'.

Note that dy/dt = dy/dx-dx/dt = y'e! and d?y/dt> = y"e*' + y'e!.
Thus, ax?y” + bxy’ + ¢y =0 can be reduced to

[ d?y L dy d’y dy
ae’| e —y'e +bet(e I—J+c =a +(b—a)=+cy=0.
{ (a’tz g H a) O ar ( )dt g

The constant coefficient technique can be used to
solve y(¥) and then y(x) in turn.
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Nonlinear Equations® (1/2)

A Nonlinear DEs do not possess superposition property.

d For example, y, =¢€*, y,=e™, y;=cosx, y, = sinx are
four linearly independent solutions of the nonlinear 2nd-
order DE (y")? —y? =0 on the interval (—x, ). However,
the following linear combinations are not solutions:

m y=ce +c3e08x
my=certcsinx
my=cetce’tc,cosx+c,smnx

T Section 4.10 of the textbook.
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Nonlinear Equations (2/2)

a We could find the one-parameter family of solutions of
a few non-linear DEs, but these solutions are not
general solutions of the DEs.

Q Higher order nonlinear DEs usually can not be solved
analytically.

A Realistic physical models are often nonlinear.
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Reduction of Order

0 Nonlinear 2"-order DEs of the forms
m F(x,),)")=0
m F(,),)")=0
can be reduced to 1st-order DEs by letting u=y'.

a For F(y,y',y")=0, we have F(y, u, u')=0.

a For F(y,y',y") =0, observe that

, du dudy du

y = = =Uu—-.
dx dy dx dy

So the problem becomes F(y, u, u-du/dy) = 0.
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Example: y missing

Q Solve y" =2x()')?

Solution:
Let u =)', du/dx=y", we have du/dx = 2xu?

> (Vu2)du=2xdx — | w?du=]2x dx
—>-—ul=x*+tc, —>-()"'=x+c
— dyldx = —(x*+ ¢{) !
Sy=-]@2+c) ldx

| 4 X
. y=——F=tan

Ja o o

+c,.
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Example: x missing

a Solve yy" = (")?

Solution:
Let u=y', y" =udul/dy, we have

)’(u@jzuz —> du:dy.
dy u -y
> Injul=mnpl+tc, Du=cy

— | (1y)dy = ¢, dx

—> Y = Ccze.
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Example: Taylor Series Solution (1/2)

QO Let us assume that a solution of the IVP exists:
Y'=x+y—-y%,y(0)=-1,)'(0)=1.

If y(x) is analytic at 0, we have the following Taylor
series expansion centered at 0:

y'(0) - »"(0) 2 »"(0)

1! 2! 3!

y(x)= p(0)+ x4
Note that

Y"(0)=0+y(0)-y(0)" =0+(-1)—(-1)* =-2.
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Example: Taylor Series Solution (2/2)

For higher order derivatives, we have:

n d !/ [
y (X)=E(X+y—y2)=1+y -2y,

d ! ! /4 /4 !
y(‘”(X):E(Hy =2 =y"-2n"-2()")%, ..

and so on.

Therefore, we have:
2 1 1
X)=—l+x—x>+=2x ——x"+=x"+---
y(x) 3 3 5
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