High Order Differential Equations

National Chiao Tung University Chun-Jen Tsai 10/2/2019

Initial-Value Problems

- For a linear $n^{\text {th }}$-order differential equation, an initialvalue problem (IVP) is:

Solve:

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Subject to:

$$
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}
$$

Existence of a Unique Solution

- Theorem: Let $a_{n}(x), a_{n-1}(x), \ldots, a_{1}(x), a_{0}(x)$ and $g(x)$ be continuous on an interval I, and let $a_{n}(x) \neq 0$ for every x in this interval. If $x=x_{0}$ is any point in this interval, then a solution $y(x)$ of the IVP exists on the interval and is unique.

Examples:

- The trivial solution $y=0$ is the unique solution of the IVP $3 y^{(3)}+5 y^{\prime \prime}-y^{\prime}+7 y=0, y(1)=y^{\prime}(1)=y^{\prime \prime}(1)=0$ on any interval containing $x=1$.
- The solution $y=3 e^{2 x}+e^{-2 x}-3 x$ is the unique solution of the IVP $y^{\prime \prime}-4 y=12 x, y(0)=4, y^{\prime}(0)=1$ on any interval containing $x=0$.
- The solution family $y=c x^{2}+x+3$ are solutions of the IVP $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=6, y(0)=3, y^{\prime}(0)=1$ $\rightarrow a_{2}(x)=x^{2}=0$ at 0 .

Boundary-Value Problem

- Solving a linear DE with y or its derivatives specified at different points. For example,

Solve

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Subject to

$$
y(a)=y_{0}, \quad y(b)=y_{1}
$$

Solutions of a BVP

- A BVP can have many, one, or no solutions.

Example: $x=c_{1} \cos 4 t+c_{2} \sin 4 t$ is a solution family of $x^{\prime \prime}+16 x=0$. What are the solutions of the BVPs with
(1) $x(0)=0, x(\pi / 2)=0$?
(2) $x(0)=0, x(\pi / 8)=0$?
(3) $x(0)=0, x(\pi / 2)=1$?

Homogeneous Equations

- For a linear $n^{\text {th }}$-order differential equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x),
$$

if $g(x)=0$, it is called a homogeneous differential equation, otherwise, it is non-homogeneous.

Note that: the solution of a non-homogeneous differential equation is based on the solution to its associated homogeneous differential equation.

Differential Operators

- The symbol D, defined by $D y=d y / d x$, is called a differential operator. D transforms a function into another function.

Example: $D(\cos 4 x)=-4 \sin 4 x, D\left(5 x^{3}-6 x^{2}\right)=15 x^{2}-12 x$

- Polynomial expressions involving D, such as $D+3$ and $D^{2}+3 D-4$ are also differential operators.

Linear Operator

- An $n^{\text {th }}$-order differential operator is defined as:
$L=a_{n}(x) D^{n}+a_{n-1}(x) D^{n-1}+\ldots+a_{1}(x) D+a_{0}(x)$
L is a linear operator, that is,

$$
L\{\alpha f(x)+\beta g(x)\}=\alpha L(f(x))+\beta L(g(x))
$$

" D " Representation of DEs

- Any differential equations can be expressed in terms of the D notation.

For example, $y^{\prime \prime}+5 y^{\prime}+6 y=5 x-3$ can be written as
$D^{2} y+5 D y+6 y=5 x-3$ or $\left(D^{2}+5 D+6\right) y=5 x-3$

- A linear $n^{\text {th }}$-order differential equation can be write compactly as $L(y)=g(x)$.

Superposition Principle

- Theorem: Let $y_{1}, y_{2}, \ldots, y_{k}$ be solutions of a homogeneous linear $n^{\text {th }}$-order DE on an interval I. Then the linear combination

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{k} y_{k}(x)
$$

where $c_{i}, i=1,2, \ldots, k$ are arbitrary constants, is also a solution on this interval.
\rightarrow Can be proved by using linear operator property.

Linear Dependency

- A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ is said to be linearly dependent on an interval I if there exist constants $c_{1}, c_{2}, \ldots, c_{n}$, not all zero, such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0
$$

Otherwise, it's said to be linearly independent.

- Example: Are $\cos ^{2} x, \sin ^{2} x, \sec ^{2} x, \tan ^{2} x$ linearly dependent on the interval $(-\pi / 2, \pi / 2)$?

Wronskian

- We are interested in linearly independent solutions of a linear differential equations \rightarrow How to verify?
\square Suppose each of the functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ has at least $n-1$ derivatives. The determinant

$$
W\left(f_{1}, f_{2}, \cdots, f_{n}\right)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{n}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

is called the Wronskian of the functions.

Criterion for Linear Independency

\square Theorem: Let $y_{1}, y_{2}, \ldots, y_{n}$ be n solutions of the linear n th-order homogeneous DE on an interval I. Then, the set of solutions is linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right) \neq 0$ for every x in the interval.

- Example: for $y^{\prime \prime}-3 y^{\prime}+2 y=0$, the two solutions $y_{1}=e^{x}$ and $y_{2}=e^{2 x}$ has the Wronskian:

$$
W\left(e^{x}, e^{2 x}\right)=\left|\begin{array}{cc}
e^{x} & e^{2 x} \\
e^{x} & 2 e^{2 x}
\end{array}\right|=e^{3 x} \neq 0, \quad \forall x \in(-\infty, \infty) .
$$

Wronskian Independence Checks

- The previous theorem implies that if y_{1} and y_{2} are two solutions of a linear homogeneous D.E., then either $W\left(y_{1}, y_{2}\right) \equiv 0$ or $W\left(y_{1}, y_{2}\right) \neq 0, \forall x$.
- This can be proven by applying the existence and uniqueness theorem on zero initial condition IVP!
\square For any two functions y_{1} and y_{2} that are not solutions of a linear homogeneous D.E. over an interval I :
- If $W\left(y_{1}, y_{2}\right) \neq 0$, for some $x \in I$, then y_{1} and y_{2} are linearly independent over I.
- If $W\left(y_{1}, y_{2}\right) \equiv 0, \forall x$, and $y_{1} \& y_{2}$ are nonzero with continuous derivatives in I, then y_{1} and y_{2} are linearly dependent over I.

Fundamental Set of Solutions

\square Any set $y_{1}, y_{2}, \ldots, y_{n}$ of n linearly independent solutions of the homogeneous linear $n^{\text {th }}$-order DE on an interval I is said to be a fundamental set of solutions on the interval I.

- Theorem: There exists a fundamental set of solutions for the homogeneous linear $n^{\text {th }}$-order DE.
\rightarrow Similar to that a vector can be decomposed into linear combinations of basis vectors.

General Solution (1/2)

- Theorem: Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions of the homogeneous linear $n^{\text {th }}$-order DE on an interval I. Then, the general solution of the equation on the interval is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)
$$

where $c_{i}, i=1,2, \ldots, n$ are arbitrary constants.
Proof on $n=2$:
Let Y be a solution of $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$ on an interval I, y_{1} and y_{2} be linearly independent solutions of the DE. Initial conditions are $Y(t)=k_{1}$ and $Y^{\prime}(t)=k_{2}$.

General Solution (2/2)

To solve for $\left(c_{1}, c_{2}\right)^{T}$, we have:

$$
\left\{\begin{array}{l}
c_{1} y_{1}(t)+c_{2} y_{2}(t)=k_{1} \\
c_{1} y_{1}^{\prime}(t)+c_{2} y^{\prime}{ }_{2}(t)=k_{2}
\end{array} \quad \text { or } \quad\left(\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{k_{1}}{k_{2}} .\right.
$$

Since the Wronskian

$$
W=\left|\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}{ }_{1}(t) & y^{\prime}(t)
\end{array}\right| \neq 0,
$$

given any k_{1}, k_{2}, there is always a unique solution for c_{1}, c_{2}.

Example: Linear Combo. of Solutions

व $y_{1}=e^{3 x}$ and $y_{2}=e^{-3 x}$ are both solutions of $y^{\prime \prime}-9 y=0$ on the interval $(-\infty, \infty)$. Are they linearly independent? By observation? By Wronskian?

- Is $y=4 \sinh 3 x-5 e^{-3 x}$ a solution of $y^{\prime \prime}-9 y=0$?

Nonhomogeneous Solutions (1/2)

\square Theorem: Let y_{p} be any particular solution of the nonhomogeneous linear $n^{\text {th }}$-order DE

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

on an interval I, and let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions. Then the general solution of the equation on the interval is:

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)+y_{p}
$$

where $c_{i}, i=1,2, \ldots, n$ are arbitrary constants.

Nonhomogeneous Solutions (2/2)

Proof:

Let $Y(x)$ and $y_{p}(x)$ be particular solutions of $L(y)=g(x)$.
Define $u(x)=Y(x)-y_{p}(x)$, we have
$L(u)=L\left\{Y(x)-y_{p}(x)\right\}=L(Y(x))-L\left(y_{p}(x)\right)=g(x)-g(x)=0$
Thus, $u(x)$ must be a solution to the homogeneous DE.
Therefore, $u(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)$
$\rightarrow Y(x)-y_{p}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)$
$\rightarrow Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)+y_{p}(x)$
Any particular solution can be represented in this form.

Complementary Function

- The general solution of a homogeneous linear $n^{\text {th }}$-order DE is called the complementary function for the associated non-homogeneous DE.

Let $y_{c}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)$, the general solution of a nonhomogeneous linear $n^{\text {th }}$-order DE has the form:

$$
y(x)=y_{c}(x)+y_{p}(x) .
$$

Superposition Principle for DE

- Theorem: Let $y_{p_{1},}, y_{p_{2}}, \ldots, y_{p_{k}}$ be k particular solutions of the non-homogeneous linear $n^{\text {th }}$-order DE on I, corresponding to k distinct functions $g_{1}, g_{2}, \ldots, g_{k}$. Then,

$$
y_{p}=y_{p_{1}}(x)+y_{p_{2}}(x)+\ldots+y_{p_{k}}(x)
$$

is a particular solution of

$$
\begin{aligned}
a_{n}(x) y^{(n)} & +a_{n-1}(x) y^{(n-1)}+\ldots+a_{1}(x) y^{\prime}+a_{0}(x) y \\
& =g_{1}(x)+g_{2}(x)+\ldots+g_{k}(x)
\end{aligned}
$$

Example of Superposition Principle

- Verify:

$$
\begin{aligned}
& y_{p_{1}}=-4 x^{2} \rightarrow y^{\prime \prime}-3 y^{\prime}+4 y=-16 x^{2}+24 x-8 \\
& y_{p_{2}}=e^{2 x} \rightarrow y^{\prime \prime}-3 y^{\prime}+4 y=2 e^{2 x} \\
& y_{p_{3}}=x e^{x} \rightarrow y^{\prime \prime}-3 y^{\prime}+4 y=2 x e^{x}-e^{x}
\end{aligned}
$$

Therefore

$$
y=y_{p_{1}}+y_{p_{2}}+y_{p_{3}}=-4 x^{2}+e^{2 x}+x e^{x}
$$

is a solution of

$$
y^{\prime \prime}-3 y^{\prime}+4 y=\underbrace{-16 x^{2}+24 x-8}_{g_{1}(x)}+\underbrace{2 e^{2 x}}_{g_{2}(x)}+\underbrace{2 x e^{x}-e^{x}}_{g_{3}(x)}
$$

Reduction of Order

- For a $2^{\text {nd }}$ order linear DE, one can construct a $2^{\text {nd }}$ solution y_{2} from a known nontrivial solution y_{1}. If y_{1} and y_{2} are linearly independent, we must have

$$
y_{2} / y_{1} \neq \text { constant }
$$

Therefore, $y_{2}(x)=u(x) y_{1}(x)$. Substitute this into the DE and solve for $u(x)$ is called reduction of order.

Example: $y^{\prime \prime}-y=0, y_{1}(x)=e^{x}$, find y_{2}

- Solution:

Given $y_{1}(x)=e^{x}$, let $y_{2}(x)=u(x) e^{x}$,
$\rightarrow y^{\prime}=u e^{x}+e^{x} u^{\prime}, y^{\prime \prime}=u e^{x}+2 e^{x} u^{\prime}+e^{x} u^{\prime \prime}$
$\rightarrow y^{\prime \prime}-y=e^{x}\left(u^{\prime \prime}+2 u^{\prime}\right)=0$
$\rightarrow u^{\prime \prime}+2 u^{\prime}=0$

Let $w=u^{\prime}$, the DE becomes $w^{\prime}+2 w=0$. Multiplying by the integrating factor $e^{2 x}$, we have $d\left[e^{2 x} w\right] / d x=0$.
Therefore, $w=c_{1} e^{-2 x}$ or $u^{\prime}=c_{1} e^{-2 x}$.
$\rightarrow u=(-1 / 2) c_{1} e^{-2 x}+c_{2}$.
$\rightarrow y_{2}(x)=u(x) e^{x}=\left(-c_{1} / 2\right) e^{-x}+c_{2} e^{x}$, let $c_{1}=-2, c_{2}=0$.
\rightarrow Check $W\left(e^{x}, e^{-x}\right) \neq 0$

Solution by Reduction of Order (1/2)

- Put the $2^{\text {nd }}$ order DE into the standard form:

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

where $P(x)$ and $Q(x)$ are continuous on some interval I. If y_{1} is a solution on I and that $y_{1}(x) \neq 0$ for all $x \in I$, by defining $y_{2}=u(x) y_{1}$, we have:

$$
\begin{aligned}
& \quad y_{2}^{\prime \prime}+P y_{2}{ }^{\prime}+Q y_{2}= \\
& \quad u\left[y^{\prime \prime}{ }_{1}+P y_{1}{ }_{1}+Q y_{1}\right]+y_{1} u^{\prime \prime}+\left(2 y_{1}{ }_{1}+P y_{1}\right) u^{\prime}=0 . \\
& \rightarrow y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}=0
\end{aligned}
$$

Solution by Reduction of Order (2/2)

- Let $w=u^{\prime}$, we have $y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) w=0$.

Since

$$
\begin{gathered}
\frac{d w}{w}=-\frac{2 y_{1}}{y_{1}} d x-P d x \rightarrow \ln |w|=-\ln \left|y_{1}^{2}\right|-\int P(x) d x+C . \\
\ln \left|w y_{1}^{2}\right|=-\int P(x) d x+C \rightarrow w y_{1}^{2}=c_{1} e^{-\int P(x) d x} \\
y_{2}=y_{1} u=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}(x)} d x .
\end{gathered}
$$

Example: $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$

- Since $y_{1}=x^{2}$ is a known solution.

$$
\begin{aligned}
& \rightarrow \quad y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0 \\
& y_{2}=x^{2} \int \frac{e^{3 \int d x / x}}{x^{4}} d x \leftarrow e^{3 \int d x / x}=e^{\ln x^{3}}=x^{3} \\
& \\
& =x^{2} \int \frac{d x}{x} \\
& \\
& =x^{2} \ln x
\end{aligned}
$$

The general solution is $y=c_{1} x^{2}+c_{2} x^{2} \ln x$.

Constant Coefficients DE

- For homogeneous linear higher-order DE with real constant coefficients $a_{i}, i=0,1, \ldots, n, a_{n} \neq 0$, i.e.

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

do we have exponential solutions?

- Recall: $b y^{\prime}+c y=0$,

$$
y=c_{1} e^{-a x} \text { on }(-\infty, \infty) .
$$

Auxiliary Equations

- Consider a 2nd-order DE, $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Let $y=e^{m x}$, and substituting $y^{\prime}=m e^{m x}$ and $y^{\prime \prime}=m^{2} e^{m x}$ into the DE, we have: $a m^{2} e^{m x}+b m e^{m x}+c e^{m x}=0$.

$$
e^{m x}>0 \text { for } x \in R \rightarrow a m^{2}+b m+c=0
$$

This is called the auxiliary equation of the DE.

General Solutions (1/2)

- Case $I, b^{2}-4 a c>0$:
m has two real roots m_{1} and m_{2}, and $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ form a fundamental set of solutions.
The general solutions is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} .
$$

- Case II, $b^{2}-4 a c=0$:
m has one real root m_{1} and $y_{1}=e^{m_{1} x}$. By reduction-oforder, the 2 nd solution of the DE is $y_{2}=x e^{m_{1} x}$.
The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}
$$

General Solutions (2/2)

- Case III, $b^{2}-4 a c<0$:
m has two complex roots $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$. Similar to Case I, the general solution is:

$$
y=c_{1} e^{(\alpha+i \beta) x}+c_{2} e^{(\alpha-i \beta) x} .
$$

\square By proper selection of c_{1} and c_{2}, and using Euler's formula, $e^{i \theta}=\cos \theta+i \sin \theta$, it can be shown that a general solution can also be represented by

$$
y=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right) .
$$

Example: $4 y^{\prime \prime}+4 y^{\prime}+17 y=0$

\square Solve the IVP: $y(0)=-1, y^{\prime}(0)=2$.
Solution:
The roots of the auxiliary equation $4 m^{2}+4 m+17=0$ are
$m_{1}=-1 / 2+2 i$ and $m_{2}=-1 / 2-2 i$
$\rightarrow y=e^{-x / 2}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)$, with $y(0)=-1, y^{\prime}(0)=2$
$\rightarrow y=e^{-x / 2}(-\cos 2 x+3 / 4 \sin 2 x)$

$$
y \rightarrow 0, \text { as } x \rightarrow \infty .
$$

Higher-Order Auxiliary Equations

- In general, to solve

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

where $a_{i} \in R$ and $a_{n} \neq 0$, we must solve

$$
a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots+a_{2} m^{2}+a_{1} m+a_{0}=0
$$

The general solution of the DE is:
Case I (no repeated roots):

$$
y=c_{1} e^{m_{0} x}+c_{2} e^{m_{1} x}+\ldots+c_{n} e^{m_{n-1} x} .
$$

Case II (with repeated roots):

$$
y=\underbrace{c_{1} e^{m_{0} x}+c_{2} x e^{m_{0} x}+\ldots+c_{k} x^{k-1} e^{m_{0} x}}_{\begin{array}{c}
\text { solution form of } \\
\text { repeated roots }
\end{array}} \underbrace{+c_{k+1} e^{m_{1} x}+\ldots+c_{n} e^{m_{n-k} x}}_{\begin{array}{c}
\text { solution form of } \\
\text { distinct roots }
\end{array}} .
$$

Solution of Repeated Roots (1/2)

- For an $n^{\text {th }}$-order linear DE, assuming that the auxiliary equation of

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{1} y^{\prime}+a_{0} y=0
$$

has k repeated roots m_{0}. This means that the DE can be expressed as:

$$
\left(D-m_{0}\right)^{k}\left(D-m_{1}\right) \ldots\left(D-m_{n-k}\right) y=0
$$

Hence, the solution of $\left(D-m_{0}\right)^{k} y=0$ will also be a solution of the n th-order DE.

Solution of Repeated Roots (2/2)

\square Since $y_{1}=e^{m_{0} x}$ is a solution of $\left(D-m_{0}\right)^{k} y=0$, let

$$
y(x)=u(x) e^{m_{0} x} .
$$

Note that

$$
\left(D-m_{0}\right)\left[u(x) e^{m_{0} x}\right]=(D u(x)) e^{m_{0} x} .
$$

Applying the operator k times on $y(x)$, we have

$$
\left(D-m_{0}\right)^{k}\left[u(x) e^{m_{0} x}\right]=\left(D^{k} u(x)\right) e^{m_{0} x} \text { for any } u(x) .
$$

Then, $u(x) e^{m_{0} x}$ is a solution of the $\mathrm{DE} \leftrightarrow D^{k} u(x)=0$.
Possible $u(x)$ that meets this condition is a polynomial with degree less than k.
$\rightarrow y(x)=\left(c_{1}+c_{2} x+\ldots+c_{k} x^{k-1}\right) e^{m_{0} x}$ is a family of solutions.

Non-homogeneous Linear DE

- To solve a non-homogeneous linear DE

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

we must do two things:
(1) Find the complementary function y_{c};
(2) Find any particular solution y_{p} of the DE.

Two methods:
\checkmark Method of undetermined coefficients
\checkmark Variation of parameters

Undetermined Coefficients (1/2)

. The method of undetermined coefficients can be applied under two conditions:

1. $a_{i}, i=0,1, \ldots, n$, are constants, and
2. $g(x)$ is a linear combination of functions of the following types:

$$
\begin{aligned}
& P(x)=p_{n} x^{n}+p_{n-1} x^{n-1}+\ldots+p_{2} x^{2}+p_{1} x+p_{0} \\
& P(x) e^{\alpha x} \\
& P(x) e^{\alpha x} \sin \beta x \\
& P(x) e^{\alpha x} \cos \beta x
\end{aligned}
$$

Undetermined Coefficients (2/2)

- There are two approaches to find the particular solution given $g(x)$ using the undetermined coefficients principle:
- Superposition approach (section 4.4 in the textbook)
- Assume that $y_{p}(x)$ has similar form as $g(x)$ with some coefficients to be determined
- Annihilator approach (section 4.5 in the textbook)
- Try to find a linear operator L_{A} such that when applied to both side of the DE turns it into a higher-order homogeneous DE. That is:

$$
L(y)=g(x) \rightarrow L_{A} \cdot L(y)=L_{A} \cdot g(x)=0 .
$$

The extra solution subspace of $L_{A} \cdot L(y)=0$ should be the subspace of the particular solution.

Example: $y^{\prime \prime}+4 y^{\prime}-2 y=2 x^{2}-3 x+6$

\square By guessing, let $y_{p}=A x^{2}+B x+C$, we have

$$
y_{p}^{\prime}=2 A x+B, \text { and } y_{p}^{\prime \prime}=2 A .
$$

Therefore:

$$
\begin{aligned}
& y_{p}^{\prime \prime}+4 y_{p}^{\prime}-2 y_{p} \\
& \quad=2 A+8 A x+4 B-2 A x^{2}-2 B x-2 C \\
& \quad=-2 A x^{2}+(8 A-2 B) x+(2 A+4 B-2 C) \\
& \quad=2 x^{2}-3 x+6 . \\
& \rightarrow y_{p}=-x^{2}-(5 / 2) x-9 .
\end{aligned}
$$

Example: $y^{\prime \prime}-y^{\prime}+y=2 \sin 3 x$

\square By guessing, let $y_{p}=A \cos 3 x+B \sin 3 x$, we have

$$
\begin{aligned}
& y_{p}^{\prime}=-3 A \sin 3 x+3 B \cos 3 x, \text { and } \\
& y_{p}^{\prime \prime}=-9 A \cos 3 x-9 B \sin 3 x .
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& y_{p}^{\prime \prime}-y_{p}^{\prime}+y_{p} \\
& \quad=(-9 A-3 B+A) \cos 3 x+(-9 B+3 A+B) \sin 3 x \\
& =2 \sin 3 x . \\
& \rightarrow y_{p}=(6 / 73) \cos 3 x-(16 / 73) \sin 3 x .
\end{aligned}
$$

Example: y_{p} by Superposition

\square Solve $y^{\prime \prime}-2 y^{\prime}-3 y=4 x-5+6 x e^{2 x}$.
By super position principle, we divide the problem into two sub-problems, that is,

$$
g(x)=g_{1}(x)+g_{2}(x),
$$

where $g_{1}(x)=4 x-5$, and $g_{2}(x)=6 x e^{2 x}$.
By guessing, let $y_{p_{1}}=A x+B$, and $y_{p_{2}}=C x e^{2 x}+E e^{2 x}$. Substitute $y_{p}=A x+B+C x e^{2 x}+E e^{2 x}$ into the DE, we have:

$$
y_{p}=-(4 / 3) x+(23 / 9)-2 x e^{2 x}-(4 / 3) e^{2 x}
$$

Example: A Glitch in the Method

- Solve $y^{\prime \prime}-5 y^{\prime}+4 y=8 e^{x}$. Simply guessing that $y_{p}=A e^{x}$ and substituting y_{p} into the DE gives us $0=8 e^{x}$. What went wrong?

If the guessed form of y_{p} falls in the solution space of y_{c} (i.e., $y_{c}=c_{1} e^{x}+c_{2} e^{4 x}$), then we always get $0=g(x)$.

Solution, let $y_{p}=A x e^{x}$. Since the derivatives of y_{p} contains both the term $A e^{x}$ and $A x e^{x}$, it is a reasonable guess for a particular solution.

Summary of Two Cases (1/2)

\square Case I:
No functions in the assumed particular solution is a solution of the associated homogeneous DE. \rightarrow Substitute with $y_{p}=$ "the form of $g(x)$ ".

$g(x)$	y_{p}
1. 1 (any constant)	A
2. $x^{3}-x+1$	$A x^{3}+B x^{2}+C x+E$
3. $\sin 4 x$, or $\cos 4 x$	$A \cos 4 x+B \sin 4 x$
4. $e^{5 x}$	$A e^{5 x}$
5. $x^{2} e^{5 x}$	$\left(A x^{2}+B x+C\right) e^{5 x}$
6. $e^{3 x} \sin 4 x$	$A e^{3 x} \cos 4 x+B e^{3 x} \sin 4 x$
7. $5 x^{2} \sin 4 x$	$\left(A x^{2}+B x+C\right) \cos 4 x+\left(E x^{2}+F x+G\right) \sin 4 x$
8. $x e^{3 x} \cos 4 x$	$(A x+B) e^{3 x} \cos 4 x+(C x+E) e^{3 x} \sin 4 x$

Summary of Two Cases (2/2)

- Case II:

A function in the assumed particular solution is also a solution of the associated homogeneous DE.
\rightarrow Substitute with $y_{p}=x^{n} \times$ "the form of $g(x)$ ", where n is the smallest positive integer so that y_{p} is not in the solution space of y_{c}.

Examples:

- Case I
- $y^{\prime \prime}-8 y^{\prime}+25 y=5 x^{3} e^{-x}-7 e^{-x}$
- $y^{\prime \prime}+4 y=x \cos x$
- $y^{\prime \prime}-9 y^{\prime}+14 y=3 x^{2}-5 \sin 2 x+7 x e^{6 x}$
- Case II
- $y^{\prime \prime}-2 y^{\prime}+y=e^{x}$
- $y^{\prime \prime}+y=4 x+10 \sin x, y(\pi)=0, y^{\prime}(\pi)=2$
- $y^{\prime \prime}-6 y^{\prime}+9 y=6 x^{2}+2-12 e^{3 x}$

Annihilator Approach

- The differential operators that annihilate different $g(x)$ are as follows:
- D^{n} annihilates $1, x, x^{2}, \ldots, x^{n-1}$.
- $(D-\alpha)^{n}$ annihilates $e^{\alpha x}, x e^{\alpha x}, x^{2} e^{\alpha x}, \ldots, x^{n-1} e^{\alpha x}$.

■ $\left[D^{2}-2 \alpha D+\left(\alpha^{2}+\beta^{2}\right)\right]^{n}$ annihilates $e^{\alpha x} \cos \beta x, e^{\alpha x} \sin \beta x, x e^{\alpha x} \cos \beta x$, $x e^{\alpha x} \sin \beta x, \ldots, x^{n-1} e^{\alpha x} \cos \beta x, x^{n-1} e^{\alpha x} \sin \beta x$.

- Complementary solution to the annihilator DE gives you the form of $y_{p} \rightarrow$ you still need to substitute the solution form to determine the coefficients!

Example of Annihilator Approach

\square Determine the y_{p} form of the DE: $y^{\prime \prime}+3 y^{\prime}+2 y=4 x^{2}$.
The annihilator of $4 x^{2}$ is D^{3}. Thus, the root of the auxiliary equation of $D^{3}(y)=0$ is $m=0,0,0$. The complementary solution is $y=c_{1}+c_{2} x+c_{3} x^{2}$. Therefore, the particular solution should have the form:

$$
y_{p}=A+B x+C x^{2} .
$$

- One advantage of the annihilator approach is that the y_{c} of $L_{A}(y)=0$ and $L(y)=0$ can be considered jointly to choose a y_{p} without glitch.

Variation of Parameters (1/3)

- To adopt the variation of parameters to a linear $2^{\text {nd }}$ order DE $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)$, one must put the DE in the standard form:

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)
$$

We seek a particular solution of the form

$$
y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x),
$$

where y_{1} and y_{2} form a fundamental set of solutions on I of the associated homogeneous DE.

Variation of Parameters (2/3)

- Take the derivatives $y_{p}{ }^{\prime}$ and $y_{p}{ }^{\prime \prime}$, and substitute them into the DE, we have

$$
\begin{aligned}
& y_{p}^{\prime \prime}+P(x) y_{p}^{\prime}+Q(x) y_{p} \\
&= u_{1}\left[y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right]+u_{2}\left[y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}\right] \\
&+y_{1} u_{1}^{\prime \prime}+u_{1}^{\prime} y_{1}+y_{2} u_{2}^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime}+P(x)\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime} \\
&= \frac{d}{d x}\left[y_{1} u_{1}^{\prime}\right]+\frac{d}{d x}\left[y_{2} u_{2}^{\prime}\right]+P(x)\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime} \\
&= \frac{d}{d x}\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+P(x)\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=f(x) . \\
& \text { If } y_{1} u_{1}^{\prime}+ y_{2} u_{2}^{\prime}=h(x) \text {, then }\left\{\begin{array}{l}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=h(x) \\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=f(x)-h^{\prime}(x)-P(x) h(x)
\end{array}\right.
\end{aligned}
$$

Variation of Parameters (3/3)

- If we let $h(x)=0$, then the solution of the system is

$$
\left\{\begin{array}{l}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0 \\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=f(x)
\end{array}\right.
$$

can be expressed in terms of determinants:

$$
u_{1}^{\prime}=\frac{W_{1}}{W}=-\frac{y_{2} f(x)}{W} \quad \text { and } \quad u_{2}^{\prime}=\frac{W_{2}}{W}=\frac{y_{1} f(x)}{W},
$$

where

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|, \quad W_{1}=\left|\begin{array}{cc}
0 & y_{2} \\
f(x) & y_{2}^{\prime}
\end{array}\right|, \quad W_{2}=\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & f(x)
\end{array}\right| .
$$

Summary of the Method

\square To solve $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)$:

- Find $y_{c}=c_{1} y_{1}+c_{2} y_{2}$.
- Compute the Wronskian $W\left(y_{1}(x), y_{2}(x)\right)$.
- Put the DE into standard form: $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)$.
- Find u_{1} and u_{2} by integrating $u_{1}{ }^{\prime}=W_{1} / W$ and $u_{2}{ }^{\prime}=W_{2} / W$.
- A particular solution is $y_{p}=u_{1} y_{1}+u_{2} y_{2}$.
- The general solution is $y=y_{c}+y_{p}$.
. Note that there is no need to introduce any constants when computing the indefinite integrals of $u_{1}{ }^{\prime}$ and $u_{2}{ }^{\prime}$.

Examples:

\square Solve $y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x}$.

- Solve $4 y^{\prime \prime}+36 y=\csc 3 x$.
- Solve $y^{\prime \prime}-y=1 / x$.

Higher-Order Equations

- For a linear n th-order DE

$$
y^{(n)}+P_{n-1}(x) y^{(n-1)}+\ldots+P_{1}(x) y^{\prime}+P_{0}(x) y=f(x),
$$

if $y_{c}=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}$ is the complementary function of the DE, then a particular solution is

$$
y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)+\ldots+u_{n}(x) y_{n}(x)
$$

where $u_{k}^{\prime}=W_{k} / W, k=1,2, \ldots, n$ and W is the Wronskian of $y_{1}, y_{2}, . ., y_{n}$ and W_{k} is the determinant obtained by replacing the k th column of the Wronskian by the column $(0,0, \ldots, f(x))^{\mathrm{T}}$.

Cauchy-Euler Equation

- Any linear differential equation of the form

$$
a_{n} x^{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} x \frac{d y}{d x}+a_{0} y=g(x),
$$

where the coefficients a_{i} are constants, is called a Cauchy-Euler equation.

- Note that $a_{n} x^{n}=0$ at $x=0$. Therefore, we focus on solving the equation on $(0, \infty)$.

Method of Solution

- Assume that $y=x^{m}$ is a solution, we have

$$
\begin{aligned}
& \frac{d y}{d x}=m x^{m-1} \\
& \begin{aligned}
& \frac{d^{2} y}{d x^{2}}=m(m-1) x^{m-2} \\
& \cdots
\end{aligned} \\
& \begin{aligned}
\rightarrow a_{k} & x^{k} \frac{d^{k} y}{d x^{k}} \\
& =a_{k} x^{k} m(m-1)(m-2) \ldots(m-k+1) x^{m-k} \\
& =a_{k} m(m-1)(m-2) \ldots(m-k+1) x^{m} .
\end{aligned}
\end{aligned}
$$

2nd-Order Cauchy-Euler Eq.

- For the 2nd-order homogeneous equation:

$$
a_{2} x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0
$$

substituting $y=x^{m}$ leads to

$$
a x^{2} \frac{d^{2} y}{d x^{2}}+b x \frac{d y}{d x}+c y=(a m(m-1)+b m+c) x^{m}
$$

Thus $y=x^{m}$ is a solution of the DE whenever m is a solution of the auxiliary equation

$$
a m(m-1)+b m+c=0 .
$$

Auxiliary Equation Solutions (1/2)

- Case I, distinct real roots $m_{1} \neq m_{2}$: Then $y_{1}=x^{m_{1}}$ and $y_{2}=x^{m_{2}}$ form a fundamental set of solutions. The general solution is

$$
y=c_{1} x^{m_{1}}+c_{2} x^{m_{2}} .
$$

- Case II, repeated real roots $m_{1}=m_{2}$:

Then $y_{1}=x^{m_{1}}$, by reduction-of-order, the 2 nd solution of the DE is $y_{2}=x^{m_{1}} \ln x$. The general solution is

$$
y=c_{1} x^{m_{1}}+c_{2} x^{m_{1}} \ln x
$$

Auxiliary Equation Solutions (2/2)

- Case III, conjugate complex roots: If $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$, the general solutions is

$$
y=c_{1} x^{(\alpha+i \beta)}+c_{2} x^{(\alpha-i \beta)} .
$$

- By proper selection of c_{1} and c_{2}, and using Euler's formula, it can be shown that a general solution can also be represented by

$$
y=x^{\alpha}\left(c_{1} \cos (\beta \ln x)+c_{2} \sin (\beta \ln x)\right) .
$$

Example: Particular Solutions

- The method of undetermined coefficients does not in general carry over to variable-coefficient DEs.

Therefore, the variation of parameters method should be used for solving non-homogeneous Cauchy-Euler equations.

ㅁ Example: Solve $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=2 x^{4} e^{x}$.

Reduction to Constant Coefficient Eqs

- A Cauchy-Euler equation can be reduced to a constant coefficient equation by the substitution $x=e^{t}$.

Note that $d y / d t=d y / d x \cdot d x / d t=y^{\prime} e^{t}$ and $d^{2} y / d t^{2}=y^{\prime \prime} e^{2 t}+y^{\prime} e^{t}$. Thus, $a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0$ can be reduced to

$$
a e^{2 t}\left[e^{-2 t}\left(\frac{d^{2} y}{d t^{2}}-y^{\prime} e^{t}\right)\right]+b e^{t}\left(e^{-t} \frac{d y}{d t}\right)+c y=a \frac{d^{2} y}{d t^{2}}+(b-a) \frac{d y}{d t}+c y=0
$$

The constant coefficient technique can be used to solve $y(t)$ and then $y(x)$ in turn.

Nonlinear Equations ${ }^{\dagger}$ (1/2)

- Nonlinear DEs do not possess superposition property.
\square For example, $y_{1}=e^{x}, y_{2}=e^{-x}, y_{3}=\cos x, y_{4}=\sin x$ are four linearly independent solutions of the nonlinear $2^{\text {nd }}-$ order DE $\left(y^{\prime \prime}\right)^{2}-y^{2}=0$ on the interval $(-\infty, \infty)$. However, the following linear combinations are not solutions:
- $y=c_{1} e^{x}+c_{3} \cos x$
- $y=c_{2} e^{-x}+c_{4} \sin x$
- $y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos x+\mathrm{c}_{4} \sin x$

Nonlinear Equations (2/2)

- We could find the one-parameter family of solutions of a few non-linear DEs, but these solutions are not general solutions of the DEs.
- Higher order nonlinear DEs usually can not be solved analytically.
- Realistic physical models are often nonlinear.

Reduction of Order

- Nonlinear $2^{\text {nd }}$-order DEs of the forms
- $F\left(x, y^{\prime}, y^{\prime \prime}\right)=0$
- $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$

- For $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$, we have $F\left(y, u, u^{\prime}\right)=0$.
- For $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$, observe that

$$
y^{\prime \prime}=\frac{d u}{d x}=\frac{d u}{d y} \frac{d y}{d x}=u \frac{d u}{d y} .
$$

So the problem becomes $F(y, u, u \cdot d u / d y)=0$.

Example: y missing

- Solve $y^{\prime \prime}=2 x\left(y^{\prime}\right)^{2}$

Solution:
Let $u=y^{\prime}, d u / d x=y^{\prime \prime}$, we have $d u / d x=2 x u^{2}$
$\rightarrow\left(1 / u^{2}\right) d u=2 x d x \rightarrow \int u^{-2} d u=\int 2 x d x$
$\rightarrow-u^{-1}=x^{2}+c_{1} \quad \rightarrow-\left(y^{\prime}\right)^{-1}=x^{2}+c_{1}$
$\rightarrow d y / d x=-\left(x^{2}+c_{1}\right)^{-1}$
$\rightarrow y=-\int\left(x^{2}+c_{1}\right)^{-1} d x$
$\therefore y=-\frac{1}{\sqrt{c_{1}}} \tan ^{-1} \frac{x}{\sqrt{c_{1}}}+c_{2}$.

Example: x missing

- Solve $y y^{\prime \prime}=\left(y^{\prime}\right)^{2}$

Solution:
Let $u=y^{\prime}, y^{\prime \prime}=u d u / d y$, we have
$y\left(u \frac{d u}{d y}\right)=u^{2} \rightarrow \frac{d u}{u}=\frac{d y}{y}$.
$\rightarrow \ln |u|=\ln |y|+c_{1} \rightarrow u=c_{2} y$
$\rightarrow \int(1 / y) d y=c_{2} \int d x$
$\rightarrow y=c_{3} e^{c_{2} x}$.

Example: Taylor Series Solution (1/2)

- Let us assume that a solution of the IVP exists:
$y^{\prime \prime}=x+y-y^{2}, y(0)=-1, y^{\prime}(0)=1$.
If $y(x)$ is analytic at 0 , we have the following Taylor series expansion centered at 0 :

$$
y(x)=y(0)+\frac{y^{\prime}(0)}{1!} x+\frac{y^{\prime \prime}(0)}{2!} x^{2}+\frac{y^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
$$

Note that

$$
y^{\prime \prime}(0)=0+y(0)-y(0)^{2}=0+(-1)-(-1)^{2}=-2 .
$$

Example: Taylor Series Solution (2/2)

For higher order derivatives, we have:

$$
\begin{aligned}
& y^{\prime \prime \prime}(x)=\frac{d}{d x}\left(x+y-y^{2}\right)=1+y^{\prime}-2 y y^{\prime}, \\
& y^{(4)}(x)=\frac{d}{d x}\left(1+y^{\prime}-2 y y^{\prime}\right)=y^{\prime \prime}-2 y y^{\prime \prime}-2\left(y^{\prime}\right)^{2}, \ldots
\end{aligned}
$$

and so on.

Therefore, we have:

$$
y(x)=-1+x-x^{2}+\frac{2}{3} x^{3}-\frac{1}{3} x^{4}+\frac{1}{5} x^{5}+\cdots
$$

