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Initial-Value Problems

 For a linear nth-order differential equation, an initial-
value problem (IVP) is:

Solve:

Subject to:
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Existence of a Unique Solution

 Theorem: Let an(x), an-1(x), …, a1(x), a0(x) and g(x) be 
continuous on an interval I, and let an(x)  0 for every x
in this interval.  If x = x0 is any point in this interval, then 
a solution y(x) of the IVP exists on the interval and is 
unique.
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Examples:

 The trivial solution y = 0 is the unique solution of the 
IVP 3y(3) + 5y" – y' + 7y = 0, y(1) = y'(1) = y"(1) = 0 on any 
interval containing x = 1.

 The solution y = 3e2x + e–2x – 3x is the unique solution of 
the IVP y"– 4y = 12x, y(0) = 4, y'(0) = 1 on any interval 
containing x = 0.

 The solution family y = cx2 + x + 3 are solutions of the 
IVP x2y"– 2xy' + 2y = 6, y(0) = 3, y'(0) = 1
 a2(x) = x2 = 0 at 0.
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Boundary-Value Problem

 Solving a linear DE with y or its derivatives specified at 
different points.  For example,

Solve

Subject to
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Solutions of a BVP

 A BVP can have many, one, or no solutions.

Example: x = c1 cos 4t + c2 sin 4t is a solution family of
x" + 16x = 0.  What are the solutions of the BVPs with

(1) x(0) = 0, x(/2) = 0?
(2) x(0) = 0, x(/8) = 0?
(3) x(0) = 0, x(/2) = 1?

x

t

(0, 0)

1

-1

C2 = 1

C2 = 1/2

C2 = 1/4

C2 = 0

C2 = –1/2
(/2, 0)
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Homogeneous Equations

 For a linear nth-order differential equation

if g(x) = 0, it is called a homogeneous differential 
equation, otherwise, it is non-homogeneous.

Note that: the solution of a non-homogeneous 
differential equation is based on the solution to its 
associated homogeneous differential equation.
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Differential Operators

 The symbol D, defined by Dy = dy/dx, is called a 
differential operator.  D transforms a function into 
another function.

Example: D(cos 4x) = –4sin 4x, D(5x3 – 6x2) = 15x2 – 12x

 Polynomial expressions involving D, such as D + 3 and 
D2 + 3D – 4 are also differential operators.
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Linear Operator

 An nth-order differential operator is defined as:

L = an(x)Dn＋an-1(x)Dn–1＋…＋a1(x)D＋a0(x)

L is a linear operator, that is,

L{ f(x)＋ g(x)}＝ L(f(x))＋ L(g(x))
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“D” Representation of DEs

 Any differential equations can be expressed in terms of 
the D notation.

For example, y" + 5y' + 6y = 5x – 3 can be written as
D2y＋5Dy＋6y = 5x－3 or (D2＋5D＋6)y = 5x－3

 A linear nth-order differential equation can be write 
compactly as L(y) = g(x).
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Superposition Principle

 Theorem: Let y1, y2,…,yk be solutions of a homogeneous 
linear nth-order DE on an interval I.  Then the linear 
combination

y = c1y1(x) + c2y2(x) +… + ckyk(x),

where ci, i = 1, 2, …, k are arbitrary constants, is also a 
solution on this interval.

 Can be proved by using linear operator property.
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Linear Dependency

 A set of functions f1(x), f2(x), …,  fn(x) is said to be 
linearly dependent on an interval I if there exist 
constants c1, c2,…, cn, not all zero, such that

c1 f1(x) + c2 f2(x) +…+ cn fn(x) = 0.

Otherwise, it’s said to be linearly independent.

 Example: Are cos2x, sin2x, sec2x, tan2x linearly dependent 
on the interval (–/2, /2)?

12
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Wronskian

 We are interested in linearly independent solutions of a 
linear differential equations  How to verify?

 Suppose each of the functions f1(x), f2(x),…, fn(x) has at 
least n–1 derivatives.  The determinant

is called the Wronskian of the functions.

13

  



/69

Criterion for Linear Independency

 Theorem: Let y1, y2,…,yn be n solutions of the linear 
nth-order homogeneous DE on an interval I.  Then,
the set of solutions is linearly independent on I if and 
only if W(y1, y2,…,yn) ≠ 0 for every x in the interval.

 Example: for y – 3y + 2y = 0, the two solutions y1 = ex

and y2 = e2x has the Wronskian:
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Wronskian Independence Checks

 The previous theorem implies that if y1 and y2 are two 
solutions of a linear homogeneous D.E., then
either W(y1, y2)  0 or W(y1, y2)  0, x.
 This can be proven by applying the existence and uniqueness 

theorem on zero initial condition IVP!

 For any two functions y1 and y2 that are not solutions of 
a linear homogeneous D.E. over an interval I:

 If W(y1, y2)  0, for some x I, then y1 and y2 are linearly 

independent over I.
 If W(y1, y2)  0, x, and y1 & y2 are nonzero with continuous 

derivatives in I, then y1 and y2 are linearly dependent over I.
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Fundamental Set of Solutions

 Any set y1, y2, …, yn of n linearly independent solutions 
of the homogeneous linear nth-order DE on an interval I
is said to be a fundamental set of solutions on the 
interval I.

 Theorem: There exists a fundamental set of solutions 
for the homogeneous linear nth-order DE.

 Similar to that a vector can be decomposed into 
linear combinations of basis vectors.
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General Solution (1/2)

 Theorem: Let y1, y2,…,yn be a fundamental set of 
solutions of the homogeneous linear nth-order DE on 
an interval I.  Then, the general solution of the equation 
on the interval is

y = c1y1(x)＋c2y2(x)＋…＋cnyn(x),

where ci, i = 1,2,…,n are arbitrary constants.

Proof on n = 2:
Let Y be a solution of a2(x)y" + a1(x)y' + a0(x)y = 0 on an 
interval I, y1 and y2 be linearly independent solutions of 
the DE. Initial conditions are Y(t) = k1 and Y'(t) = k2.
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General Solution (2/2)

To solve for (c1, c2)T, we have:

or

Since the Wronskian

given any k1, k2, there is always a unique solution
for c1, c2.                #
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Example: Linear Combo. of Solutions

 y1 = e3x and y2 = e–3x are both solutions of y" – 9y = 0 on 
the interval (–, ).  Are they linearly independent? By 
observation? By Wronskian?

 Is y = 4sinh 3x – 5e–3x a solution of y" – 9y = 0?

19
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Nonhomogeneous Solutions (1/2)

 Theorem: Let yp be any particular solution of the non-
homogeneous linear nth-order DE

on an interval I, and let y1,y2,…, yn be a fundamental set 
of solutions.  Then the general solution of the equation 
on the interval is:

y = c1y1(x)＋c2y2(x)＋…＋cnyn(x)＋yp,

where ci, i = 1,2,…,n are arbitrary constants.

20
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Nonhomogeneous Solutions (2/2)

Proof:
Let Y(x) and yp(x) be particular solutions of L(y) = g(x).
Define u(x) = Y(x)－yp(x), we have
L(u) = L{Y(x) – yp(x)} = L(Y(x)) – L(yp(x)) = g(x) – g(x) = 0

Thus, u(x) must be a solution to the homogeneous DE.
Therefore, u(x) = c1y1(x) + c2y2(x) +  + cnyn(x)
 Y(x) – yp(x) = c1y1(x) + c2y2(x) +  + cnyn(x)
 Y(x) = c1y1(x) + c2y2(x) +  + cnyn(x) + yp(x)

Any particular solution can be represented in this form.
#

21
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Complementary Function

 The general solution of a homogeneous linear nth-order 
DE is called the complementary function for the 
associated non-homogeneous DE.

Let yc(x) = c1y1(x)＋c2y2(x)＋…＋cnyn(x), the general 
solution of a nonhomogeneous linear nth-order DE has 
the form:

y(x) = yc(x)＋yp(x).
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Superposition Principle for DE

 Theorem: Let yp1, yp2,…, ypk be k particular solutions of 
the non-homogeneous linear nth-order DE on I, 
corresponding to k distinct functions g1, g2,…,gk.
Then,

yp = yp1(x)＋ yp2(x)＋…＋ ypk(x)

is a particular solution of

an(x)y(n)＋an–1(x)y(n–1)＋…＋a1(x)y'＋a0(x)y
= g1(x) + g2(x) + …＋gk(x).
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Example of Superposition Principle

 Verify:

yp1 = –4x2  y" – 3y' + 4y = –16x2 + 24x – 8
yp2 = e2x  y" – 3y' + 4y = 2e2x

yp3 = xex  y" – 3y' + 4y = 2xex – ex

Therefore

y = yp1 + yp2 + yp3 = –4x2 + e2x + xex

is a solution of
y" – 3y' + 4y = –16x2 + 24x – 8 + 2e2x + 2xex – ex

g1(x)                    g2(x)             g3(x)

24
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Reduction of Order

 For a 2nd order linear DE, one can construct a 2nd

solution y2 from a known nontrivial solution y1.  If y1 and 
y2 are linearly independent, we must have

y2/y1  constant,

Therefore, y2(x) = u(x)y1(x).  Substitute this into the DE 
and solve for u(x) is called reduction of order.

25
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Example: y" – y = 0, y1(x) = ex, find y2

 Solution:
Given y1(x) = ex, let y2(x) = u(x) ex,
 y' = uex + exu', y" = uex + 2exu' + exu"
 y" – y = ex(u"+ 2u') = 0
 u"+ 2u' = 0

Let w = u', the DE becomes w' + 2w = 0.  Multiplying by 
the integrating factor e2x, we have d[e2xw]/dx = 0.
Therefore, w = c1e–2x or u' = c1e–2x.
 u = (–1/2) c1e–2x + c2.
 y2(x) = u(x) ex = (–c1/2) e–x + c2ex, let c1 = –2, c2 = 0.
 Check W(ex, e–x)≠0

26
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Solution by Reduction of Order (1/2)

 Put the 2nd order DE into the standard form:

y" + P(x)y' + Q(x)y = 0,

where P(x) and Q(x) are continuous on some interval I.  
If y1 is a solution on I and that y1(x) ≠ 0 for all x  I,
by defining y2 = u(x)y1, we have:

y2 + Py2 + Qy2 =

u[y1+Py1+Qy1] + y1u + (2y1+Py1)u = 0.

 y1u + (2y1 + Py1)u = 0

27



/69

Solution by Reduction of Order (2/2)

 Let w = u, we have y1w + (2y1 + Py1)w = 0.
Since

28
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Example: x2y" – 3xy' + 4y = 0

 Since y1 = x2 is a known solution.



The general solution is y = c1x2＋c2x2lnx.
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Constant Coefficients DE

 For homogeneous linear higher-order DE with real 
constant coefficients ai, i = 0, 1, …, n, an  0, i.e.

any(n) + an-1y(n–1) + … + a2y" + a1y' + a0y = 0,

do we have exponential solutions?

 Recall: by' + cy = 0,
y = c1e–ax on (–, ).
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Auxiliary Equations

 Consider a 2nd-order DE, ay" + by' + cy = 0.

Let y = emx, and substituting y' = memx and y" = m2emx into 
the DE, we have: am2emx + bmemx + cemx = 0.

emx > 0 for x  R  am2 + bm + c = 0.

This is called the auxiliary equation of the DE.

31
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General Solutions (1/2)

 Case I, b2 – 4ac > 0:
m has two real roots m1 and m2, and y1 = em1x and
y2 = em2x form a fundamental set of solutions.
The general solutions is

 Case II, b2 – 4ac = 0:
m has one real root m1 and y1 = em1x.  By reduction-of-
order, the 2nd solution of the DE is y2 = xem1x.
The general solution is

.21
21

xmxm ececy 

.11
21

xmxm xececy 
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General Solutions (2/2)

 Case III, b2 – 4ac < 0:
m has two complex roots m1 =  + i and m2 =  – i.  
Similar to Case I, the general solution is:

 By proper selection of c1 and c2, and using Euler’s 
formula, eiq = cosq + i sinq, it can be shown that a 
general solution can also be represented by

.)(
2

)(
1

xixi ececy   

).sincos( 21 xcxcey x  
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Example: 4y"+4y'+17y = 0

 Solve the IVP: y(0) = –1, y'(0) = 2.
Solution:
The roots of the auxiliary equation 4m2+4m+17 = 0 are 
m1 = – ½ + 2i and m2 = – ½ – 2i
 y = e–x/2 (c1cos 2x + c2sin 2x), with y(0) = –1, y'(0) = 2
 y = e–x/2 (– cos 2x + ¾ sin 2x)

y  0, as x .
x

1

y

1
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Higher-Order Auxiliary Equations

 In general, to solve

any(n) + an–1y(n–1) + … + a2y" + a1y' + a0y = 0,

where ai  R and an  0, we must solve

anmn + an–1mn–1 + … + a2m2 + a1m + a0 = 0.

The general solution of the DE is:
Case I (no repeated roots):

Case II (with repeated roots):

.... 110
21

xm
n

xmxm necececy 

....... 1000
1
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Solution of Repeated Roots (1/2)

 For an nth-order linear DE, assuming that the auxiliary 
equation of

any(n) + an–1y(n–1) + … + a1y' + a0y = 0

has k repeated roots m0. This means that the DE can 
be expressed as:

(D – m0)k(D – m1) … (D – mn–k)y = 0.

Hence, the solution of (D – m0)ky = 0 will also be a 
solution of the nth-order DE.

36
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Solution of Repeated Roots (2/2)

 Since y1 = em0x is a solution of (D – m0)ky = 0, let 

y(x) = u(x)em0x.
Note that

(D – m0)[u(x)em0x] = (Du(x))em0x.

Applying the operator k times on y(x), we have

(D – m0)k[u(x)em0x] = (Dku(x))em0x for any u(x).

Then, u(x)em0x is a solution of the DE  Dku(x) = 0.

Possible u(x) that meets this condition is a polynomial 
with degree less than k.

 y(x) = (c1+c2x+ … +ckxk–1)em0x is a family of solutions.
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Non-homogeneous Linear DE

 To solve a non-homogeneous linear DE

any(n) + an-1y(n–1) + … + a2y" + a1y' + a0y = g(x),

we must do two things:

(1) Find the complementary function yc;
(2) Find any particular solution yp of the DE.

Two methods:
 Method of undetermined coefficients
 Variation of parameters

38
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Undetermined Coefficients (1/2)

 The method of undetermined coefficients can be 
applied under two conditions:

1. ai, i = 0, 1, …, n, are constants, and
2. g(x) is a linear combination of functions of the 
following types:

P(x) = pnxn + pn–1xn–1 + … + p2x2 + p1x + p0,
P(x)ex,
P(x)exsin x,
P(x)excos x.

39
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Undetermined Coefficients (2/2)

 There are two approaches to find the particular solution 
given g(x) using the undetermined coefficients principle:
 Superposition approach (section 4.4 in the textbook)

 Assume that yp(x) has similar form as g(x) with some coefficients 
to be determined

 Annihilator approach (section 4.5 in the textbook)
 Try to find a linear operator LA such that when applied to both side 

of the DE turns it into a higher-order homogeneous DE. That is:

L(y) = g(x)   LA  L(y) = LA  g(x) = 0.

The extra solution subspace of LA  L(y) = 0 should be the 
subspace of the particular solution.

40
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Example: y" + 4y' – 2y = 2x2 – 3x + 6

 By guessing, let yp = Ax2 + Bx + C, we have
yp' = 2Ax + B, and yp" = 2A.

Therefore:

yp" + 4yp' – 2yp

= 2A + 8Ax + 4B – 2Ax2 – 2Bx – 2C
= – 2Ax2 + (8A – 2B)x + (2A + 4B – 2C)
= 2x2 – 3x + 6.

 yp = – x2 – (5/2)x – 9.

41
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Example: y" – y' + y = 2 sin 3x

 By guessing, let yp = A cos 3x + B sin 3x,
we have

yp' = – 3A sin 3x + 3B cos 3x, and
yp" = – 9A cos 3x – 9B sin 3x.

Therefore:

yp" – yp' + yp

= (– 9A – 3B + A) cos 3x + (– 9B + 3A + B) sin 3x
= 2 sin 3x.

 yp = (6/73) cos 3x – (16/73) sin 3x.

42
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Example: yp by Superposition

 Solve y" – 2y' – 3y = 4x – 5 + 6xe2x.
By super position principle, we divide the problem into 
two sub-problems, that is,

g(x) = g1(x) + g2(x),

where g1(x) = 4x – 5, and g2(x) = 6xe2x.

By guessing, let yp1 = Ax + B, and yp2 = Cxe2x + Ee2x.
Substitute yp = Ax + B + Cxe2x + Ee2x into the DE, we 
have:

yp = –(4/3)x + (23/9) – 2xe2x – (4/3)e2x

43



/69

Example: A Glitch in the Method

 Solve y" – 5y' + 4y = 8ex.
Simply guessing that yp = Aex and substituting yp into 
the DE gives us 0 = 8ex.  What went wrong?

If the guessed form of yp falls in the solution space of yc

(i.e., yc = c1ex + c2e4x), then we always get 0 = g(x).

Solution, let yp = Axex.  Since the derivatives of yp

contains both the term Aex and Axex, it is a reasonable 
guess for a particular solution.
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Summary of Two Cases (1/2)

 Case I:
No functions in the assumed particular solution is a 
solution of the associated homogeneous DE.
 Substitute with yp = “the form of g(x)”.

g(x) yp

1. 1 (any constant)

2. x3－x＋1

3. sin4x, or cos4x

4. e5x

5. x2e5x

6. e3xsin4x

7. 5x2sin4x

8. xe3xcos4x

A

Ax3＋Bx2＋Cx＋E

A cos 4x＋B sin 4x

Ae5x

(Ax2＋Bx＋C)e5x

Ae3xcos4x＋Be3xsin4x

(Ax2＋Bx＋C)cos4x＋(Ex2＋Fx＋G)sin4x

(Ax＋B)e3xcos4x＋(Cx＋E)e3xsin4x
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Summary of Two Cases (2/2)

 Case II:
A function in the assumed particular solution is also a 
solution of the associated homogeneous DE.

 Substitute with yp = xn  “the form of g(x)”, where n is 
the smallest positive integer so that yp is not in the 
solution space of yc.

46
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Examples:

 Case I
 y" – 8y + 25y = 5x3e–x – 7e–x

 y" + 4y = x cos x

 y" – 9y + 14y = 3x2 – 5 sin 2x + 7xe6x

 Case II
 y" – 2y + y = ex

 y" + y = 4x + 10 sin x,  y() = 0, y() = 2

 y" – 6y + 9y = 6x2 + 2 – 12 e3x

47
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Annihilator Approach

 The differential operators that annihilate different g(x)
are as follows:
 Dn annihilates 1, x, x2, …, xn–1.

 (D – )n annihilates ex, xex, x2ex, …, xn–1ex.

 [D2 – 2D + (2 + 2)]n annihilates excosx, exsinx, xexcosx, 
xexsinx, … , xn–1excosx, xn–1exsinx.

 Complementary solution to the annihilator DE gives 
you the form of yp  you still need to substitute the 
solution form to determine the coefficients!

48



/69

Example of Annihilator Approach

 Determine the yp form of the DE: y + 3y + 2y = 4x2.

The annihilator of 4x2 is D3. Thus, the root of the 
auxiliary equation of D3(y) = 0 is m = 0, 0, 0.  The
complementary solution is y = c1 + c2x + c3x2.
Therefore, the particular solution should have the form:

yp = A + Bx + Cx2.

 One advantage of the annihilator approach is that the 
yc of LA(y) = 0 and L(y) = 0 can be considered jointly to 
choose a yp without glitch.
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Variation of Parameters (1/3)

 To adopt the variation of parameters to a linear 2nd-
order DE a2(x)y" + a1(x)y + a0(x)y = g(x), one must put 
the DE in the standard form:

y" + P(x)y + Q(x)y = f(x).

We seek a particular solution of the form

yp = u1(x)y1(x) + u2(x)y2(x),

where y1 and y2 form a fundamental set of solutions on 
I of the associated homogeneous DE.
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Variation of Parameters (2/3)

 Take the derivatives yp and yp", and substitute them 
into the DE, we have

If y1u1
 + y2u2

 = h(x), then

   
 

     

    ).()(

)(

)(

)()()()(

)()(

221122112211

221122112211

2211221122221111

22221111

xfuyuyuyuyxPuyuy
dx

d

uyuyuyuyxPuy
dx

d
uy

dx

d

uyuyuyuyxPyuuyyuuy

yxQyxPyuyxQyxPyu

yxQyxPy ppp










51








)()()()(

)(

2211

2211

xhxPxhxfuyuy

xhuyuy



/69

Variation of Parameters (3/3)

 If we let h(x) = 0, then the solution of the system is

can be expressed in terms of determinants:

and

where
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Summary of the Method

 To solve a2(x)y" + a1(x)y + a0(x)y = g(x):
 Find yc = c1y1 + c2y2.

 Compute the Wronskian W(y1(x), y2(x)).

 Put the DE into standard form: y" + P(x)y + Q(x)y = f(x).

 Find u1 and u2 by integrating u1 = W1/W and u2 = W2/W.

 A particular solution is yp = u1y1 + u2y2.

 The general solution is y = yc + yp.

 Note that there is no need to introduce any constants 
when computing the indefinite integrals of u1 and u2.
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Examples:

 Solve y" – 4y + 4y = (x + 1)e2x.

 Solve 4y" + 36y = csc 3x.

 Solve y" – y = 1/x.
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Higher-Order Equations

 For a linear nth-order DE

y(n) + Pn-1(x)y(n-1) + …+ P1(x)y + P0(x)y = f(x),

if yc = c1y1 + c2y2 + … + cnyn is the complementary 
function of the DE, then a particular solution is

yp = u1(x)y1(x) + u2(x)y2(x) + … + un(x)yn(x),

where uk = Wk/W, k = 1, 2, …, n and W is the Wronskian
of y1, y2, .., yn and Wk is the determinant obtained by 
replacing the kth column of the Wronskian by the 
column (0, 0, …, f(x))T.
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Cauchy-Euler Equation

 Any linear differential equation of the form

where the coefficients ai are constants, is called a 
Cauchy-Euler equation.

 Note that anxn = 0 at x = 0.  Therefore, we focus on 
solving the equation on (0, ).
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Method of Solution

 Assume that y = xm is a solution, we have
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2nd-Order Cauchy-Euler Eq.

 For the 2nd-order homogeneous equation:

a2x2y+ bxy + cy = 0,

substituting y = xm leads to

Thus y = xm is a solution of the DE whenever m is a 
solution of the auxiliary equation

am(m – 1) + bm + c = 0.

.))1((
2

2
2 mxcbmmamcy

dx

dy
bx

dx

yd
ax 

58



/69

Auxiliary Equation Solutions (1/2)

 Case I, distinct real roots m1≠m2:
Then y1 = xm1 and y2 = xm2 form a fundamental set of 
solutions.  The general solution is

 Case II, repeated real roots m1 = m2:
Then y1 = xm1, by reduction-of-order, the 2nd solution of 
the DE is y2 = xm1ln x.  The general solution is

.21
21

mm xcxcy 
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Auxiliary Equation Solutions (2/2)

 Case III, conjugate complex roots:
If m1 =  + i and m2 =  – i, the general solutions is

 By proper selection of c1 and c2, and using Euler’s 
formula, it can be shown that a general solution can 
also be represented by

.)(
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Example: Particular Solutions

 The method of undetermined coefficients does not in 
general carry over to variable-coefficient DEs.

Therefore, the variation of parameters method should 
be used for solving non-homogeneous Cauchy-Euler 
equations.

 Example: Solve x2y – 3xy + 3y = 2x4ex.
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Reduction to Constant Coefficient Eqs

 A Cauchy-Euler equation can be reduced to a constant 
coefficient equation by the substitution x = et.

Note that dy/dt = dy/dxdx/dt = yet and d2y/dt2 = ye2t + yet.
Thus, ax2y + bxy + cy = 0 can be reduced to

The constant coefficient technique can be used to 
solve y(t) and then y(x) in turn.
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Nonlinear Equations† (1/2)

 Nonlinear DEs do not possess superposition property.

 For example, y1 = ex, y2 = e–x, y3 = cos x, y4 = sin x are 
four linearly independent solutions of the nonlinear 2nd-
order DE (y)2 – y2 = 0 on the interval (–, ).  However, 
the following linear combinations are not solutions:
 y = c1e

x + c3cos x

 y = c2e–x + c4sin x
 y = c1e

x + c2e
–x + c3cos x + c4sin x

63
† Section 4.10 of the textbook.
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Nonlinear Equations (2/2)

 We could find the one-parameter family of solutions of 
a few non-linear DEs, but these solutions are not 
general solutions of the DEs.

 Higher order nonlinear DEs usually can not be solved 
analytically.

 Realistic physical models are often nonlinear.
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Reduction of Order

 Nonlinear 2nd-order DEs of the forms
 F(x, y, y) = 0

 F(y, y, y) = 0

can be reduced to 1st-order DEs by letting u = y.

 For F(y, y, y) = 0, we have F(y, u, u) = 0.

 For F(y, y, y) = 0, observe that

So the problem becomes F(y, u, udu/dy) = 0.
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Example: y missing

 Solve y = 2x(y)2

Solution:
Let u = y, du/dx = y, we have du/dx = 2xu2

 (1/u2) du = 2x dx   u–2du =  2x dx
 – u–1 = x2 + c1  –(y) –1 = x2 + c1

 dy/dx = –(x2 + c1) –1

 y = – (x2 + c1) –1 dx
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Example: x missing

 Solve yy = (y)2

Solution:
Let u = y, y = u du/dy, we have

 ln |u| = ln |y| + c1  u = c2y

  (1/y) dy = c2 dx

 y = c3ec2x.
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Example: Taylor Series Solution (1/2)

 Let us assume that a solution of the IVP exists:
y = x + y – y2, y(0) = –1, y(0) = 1.

If y(x) is analytic at 0, we have the following Taylor 
series expansion centered at 0:

Note that 
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Example: Taylor Series Solution (2/2)

For higher order derivatives, we have:

and so on.

Therefore, we have:
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