

For a linear nth-order differential equation, an initialvalue problem (IVP) is:

Solve:

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Subject to:

$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$$

Existence of a Unique Solution

□ **Theorem**: Let $a_n(x)$, $a_{n-1}(x)$, ..., $a_1(x)$, $a_0(x)$ and g(x) be continuous on an interval *I*, and let $a_n(x) \neq 0$ for every *x* in this interval. If $x = x_0$ is any point in this interval, then a solution y(x) of the IVP exists on the interval and is unique.

Examples:

- □ The trivial solution y = 0 is the unique solution of the IVP $3y^{(3)} + 5y'' - y' + 7y = 0$, y(1) = y'(1) = y''(1) = 0 on any interval containing x = 1.
- □ The solution $y = 3e^{2x} + e^{-2x} 3x$ is the unique solution of the IVP y'' - 4y = 12x, y(0) = 4, y'(0) = 1 on any interval containing x = 0.
- □ The solution family $y = cx^2 + x + 3$ are solutions of the IVP $x^2y'' - 2xy' + 2y = 6$, y(0) = 3, y'(0) = 1 $\rightarrow a_2(x) = x^2 = 0$ at 0.

Boundary-Value Problem

Solving a linear DE with y or its derivatives specified at different points. For example,

Solve
$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Subject to

$$y(a) = y_0, \ y(b) = y_1$$

Solutions of a BVP

□ A BVP can have many, one, or no solutions.

Example: $x = c_1 \cos 4t + c_2 \sin 4t$ is a solution family of x'' + 16x = 0. What are the solutions of the BVPs with

(1) x(0) = 0, $x(\pi/2) = 0$? (2) x(0) = 0, $x(\pi/8) = 0$? (3) x(0) = 0, $x(\pi/2) = 1$?

Homogeneous Equations

 \Box For a linear *n*th-order differential equation

$$a_{n}(x)\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = g(x),$$

if g(x) = 0, it is called a homogeneous differential equation, otherwise, it is non-homogeneous.

Note that: the solution of a non-homogeneous differential equation is based on the solution to its associated homogeneous differential equation.

Differential Operators

□ The symbol *D*, defined by Dy = dy/dx, is called a **differential operator**. *D* transforms a function into another function.

Example: $D(\cos 4x) = -4\sin 4x$, $D(5x^3 - 6x^2) = 15x^2 - 12x$

□ Polynomial expressions involving *D*, such as D + 3 and $D^2 + 3D - 4$ are also differential operators.

Linear Operator

 \Box An *n*th-order differential operator is defined as:

$$L = a_n(x)D^n + a_{n-1}(x)D^{n-1} + \ldots + a_1(x)D + a_0(x)$$

L is a linear operator, that is,

$$L\{\alpha f(x) + \beta g(x)\} = \alpha L(f(x)) + \beta L(g(x))$$

"D" Representation of DEs

Any differential equations can be expressed in terms of the *D* notation.

For example, y'' + 5y' + 6y = 5x - 3 can be written as $D^2y + 5Dy + 6y = 5x - 3$ or $(D^2 + 5D + 6)y = 5x - 3$

□ A linear n^{th} -order differential equation can be write compactly as L(y) = g(x).

Superposition Principle

□ **Theorem**: Let $y_1, y_2, ..., y_k$ be solutions of a homogeneous linear n^{th} -order DE on an interval *I*. Then the linear combination

$$y = c_1 y_1(x) + c_2 y_2(x) + \ldots + c_k y_k(x),$$

where c_i , i = 1, 2, ..., k are arbitrary constants, is also a solution on this interval.

 \rightarrow Can be proved by using linear operator property.

Wronskian

- ❑ We are interested in linearly independent solutions of a linear differential equations → How to verify?
- □ Suppose each of the functions $f_1(x), f_2(x), ..., f_n(x)$ has at least *n*−1 derivatives. The determinant

$$W(f_1, f_2, \cdots, f_n) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f_1' & f_2' & \cdots & f_n' \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_n^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

is called the Wronskian of the functions.

Criterion for Linear Independency

- □ **Theorem**: Let $y_1, y_2, ..., y_n$ be *n* solutions of the linear *n*th-order homogeneous DE on an interval *I*. Then, the set of solutions is linearly independent on *I* if and only if $W(y_1, y_2, ..., y_n) \neq 0$ for every *x* in the interval.
- □ Example: for y'' 3y' + 2y = 0, the two solutions $y_1 = e^x$ and $y_2 = e^{2x}$ has the Wronskian:

$$W(e^{x}, e^{2x}) = \begin{vmatrix} e^{x} & e^{2x} \\ e^{x} & 2e^{2x} \end{vmatrix} = e^{3x} \neq 0, \ \forall x \in (-\infty, \infty).$$

Wronskian Independence Checks

- □ The previous theorem implies that if y_1 and y_2 are two solutions of a linear homogeneous D.E., then either $W(y_1, y_2) \equiv 0$ or $W(y_1, y_2) \neq 0$, $\forall x$.
 - This can be proven by applying the existence and uniqueness theorem on zero initial condition IVP!
- □ For any two functions y_1 and y_2 that are not solutions of a linear homogeneous D.E. over an interval *I*:
 - If $W(y_1, y_2) \neq 0$, for some $x \in I$, then y_1 and y_2 are linearly independent over *I*.
 - If $W(y_1, y_2) \equiv 0$, $\forall x$, and $y_1 \& y_2$ are nonzero with continuous derivatives in *I*, then y_1 and y_2 are linearly dependent over *I*.

Fundamental Set of Solutions

- Any set y₁, y₂, ..., y_n of n linearly independent solutions of the homogeneous linear nth-order DE on an interval I is said to be a fundamental set of solutions on the interval I.
- □ Theorem: There exists a fundamental set of solutions for the homogeneous linear nth-order DE.

 \rightarrow Similar to that a vector can be decomposed into linear combinations of basis vectors.

General Solution (1/2)

□ **Theorem**: Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions of the homogeneous linear n^{th} -order DE on an interval *I*. Then, the general solution of the equation on the interval is

 $y = c_1 y_1(x) + c_2 y_2(x) + \ldots + c_n y_n(x),$

where c_i , i = 1, 2, ..., n are arbitrary constants.

Proof on *n* = 2:

Let *Y* be a solution of $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$ on an interval *I*, y_1 and y_2 be linearly independent solutions of the DE. Initial conditions are $Y(t) = k_1$ and $Y'(t) = k_2$.

General Solution (2/2)

To solve for $(c_1, c_2)^T$, we have:

$$c_{1}y_{1}(t) + c_{2}y_{2}(t) = k_{1}$$

$$c_{1}y'_{1}(t) + c_{2}y'_{2}(t) = k_{2}$$
 or $\begin{pmatrix} y_{1}(t) & y_{2}(t) \\ y'_{1}(t) & y'_{2}(t) \end{pmatrix} \begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix} = \begin{pmatrix} k_{1} \\ k_{2} \end{pmatrix}.$

Since the Wronskian

$$W = \begin{vmatrix} y_{1}(t) & y_{2}(t) \\ y'_{1}(t) & y'_{2}(t) \end{vmatrix} \neq 0,$$

given any k_1 , k_2 , there is always a unique solution for c_1 , c_2 .

18/69

#

Example: Linear Combo. of Solutions

□ $y_1 = e^{3x}$ and $y_2 = e^{-3x}$ are both solutions of y'' - 9y = 0 on the interval (-∞, ∞). Are they linearly independent? By observation? By Wronskian?

□ Is $y = 4 \sinh 3x - 5e^{-3x}$ a solution of y'' - 9y = 0?

Nonhomogeneous Solutions (1/2)

□ **Theorem**: Let y_p be any particular solution of the nonhomogeneous linear n^{th} -order DE

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

on an interval *I*, and let $y_1, y_2, ..., y_n$ be a fundamental set of solutions. Then the general solution of the equation on the interval is:

$$y = c_1 y_1(x) + c_2 y_2(x) + \ldots + c_n y_n(x) + y_p$$

where c_i , i = 1, 2, ..., n are arbitrary constants.

Nonhomogeneous Solutions (2/2)

Proof:

Let Y(x) and $y_p(x)$ be particular solutions of L(y) = g(x). Define $u(x) = Y(x) - y_p(x)$, we have $L(u) = L\{Y(x) - y_p(x)\} = L(Y(x)) - L(y_p(x)) = g(x) - g(x) = 0$

Thus, u(x) must be a solution to the homogeneous DE. Therefore, $u(x) = c_1y_1(x) + c_2y_2(x) + \dots + c_ny_n(x)$ $\rightarrow Y(x) - y_p(x) = c_1y_1(x) + c_2y_2(x) + \dots + c_ny_n(x)$ $\rightarrow Y(x) = c_1y_1(x) + c_2y_2(x) + \dots + c_ny_n(x) + y_p(x)$

Any particular solution can be represented in this form.

Complementary Function

The general solution of a homogeneous linear nth-order DE is called the **complementary function** for the associated non-homogeneous DE.

Let $y_c(x) = c_1y_1(x) + c_2y_2(x) + ... + c_ny_n(x)$, the general solution of a nonhomogeneous linear *n*th-order DE has the form:

 $y(x) = y_c(x) + y_p(x).$

Superposition Principle for DE

□ **Theorem**: Let $y_{p_1}, y_{p_2}, ..., y_{p_k}$ be *k* particular solutions of the non-homogeneous linear *n*th-order DE on *I*, corresponding to *k* distinct functions $g_1, g_2, ..., g_k$. Then,

$$y_p = y_{p_1}(x) + y_{p_2}(x) + \ldots + y_{p_k}(x)$$

is a particular solution of

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y$$

= $g_1(x) + g_2(x) + \dots + g_k(x)$.

Example of Superposition Principle

□ Verify:

$$y_{p_1} = -4x^2 \rightarrow y'' - 3y' + 4y = -16x^2 + 24x - 8$$

$$y_{p_2} = e^{2x} \rightarrow y'' - 3y' + 4y = 2e^{2x}$$

$$y_{p_3} = xe^x \rightarrow y'' - 3y' + 4y = 2xe^x - e^x$$

Therefore

$$y = y_{p_1} + y_{p_2} + y_{p_3} = -4x^2 + e^{2x} + xe^x$$

is a solution of
$$y'' - 3y' + 4y = -\underbrace{16x^2 + 24x - 8}_{g_1(x)} + \underbrace{2e^{2x} + 2xe^x - e^x}_{g_2(x)}$$

Reduction of Order

□ For a 2nd order linear DE, one can construct a 2nd solution y_2 from a known nontrivial solution y_1 . If y_1 and y_2 are linearly independent, we must have

 $y_2/y_1 \neq \text{constant},$

Therefore, $y_2(x) = u(x)y_1(x)$. Substitute this into the DE and solve for u(x) is called reduction of order.

Example:
$$y'' - y = 0$$
, $y_1(x) = e^x$, find y_2

□ Solution:

Given
$$y_1(x) = e^x$$
, let $y_2(x) = u(x) e^x$,
 $\rightarrow y' = ue^x + e^x u', y'' = ue^x + 2e^x u' + e^x u''$
 $\rightarrow y'' - y = e^x (u'' + 2u') = 0$
 $\rightarrow u'' + 2u' = 0$

Let w = u', the DE becomes w' + 2w = 0. Multiplying by the integrating factor e^{2x} , we have $d[e^{2x}w]/dx = 0$. Therefore, $w = c_1e^{-2x}$ or $u' = c_1e^{-2x}$. $\rightarrow u = (-1/2) c_1e^{-2x} + c_2$. $\rightarrow y_2(x) = u(x) e^x = (-c_1/2) e^{-x} + c_2e^x$, let $c_1 = -2$, $c_2 = 0$. \rightarrow Check $W(e^x, e^{-x}) \neq 0$

Solution by Reduction of Order (1/2)

□ Put the 2nd order DE into the standard form:

y'' + P(x)y' + Q(x)y = 0,

where P(x) and Q(x) are continuous on some interval *I*. If y_1 is a solution on *I* and that $y_1(x) \neq 0$ for all $x \in I$, by defining $y_2 = u(x)y_1$, we have:

 $y_{2}'' + Py_{2}' + Qy_{2} =$ $u[y''_{1} + Py'_{1} + Qy_{1}] + y_{1}u'' + (2y'_{1} + Py_{1})u' = 0.$

 $\rightarrow y_1 u'' + (2y'_1 + Py_1)u' = 0$

Solution by Reduction of Order (2/2)

 \Box Let w = u', we have $y_1w' + (2y'_1 + Py_1)w = 0$. Since $\frac{dw}{w} = -\frac{2y_1}{y_1} dx - Pdx \rightarrow \ln|w| = -\ln|y_1^2| - \int P(x) dx + C.$ $\ln |wy_1^2| = -\int P(x)dx + C \to wy_1^2 = c_1 e^{-\int P(x)dx}.$ $y_2 = y_1 u = y_1(x) \int \frac{e^{-\int P(x)dx}}{v_1^2(x)} dx.$

Example:
$$x^2y'' - 3xy' + 4y = 0$$

□ Since $y_1 = x^2$ is a known solution.

$$\rightarrow y'' - \frac{3}{x}y' + \frac{4}{x^2}y = 0$$

$$y_2 = x^2 \int \frac{e^{3\int dx/x}}{x^4} dx \leftarrow e^{3\int dx/x} = e^{\ln x^3} = x^3$$

$$= x^2 \int \frac{dx}{x}$$

$$= x^2 \ln x$$

The general solution is $y = c_1 x^2 + c_2 x^2 \ln x$.

Constant Coefficients DE

□ For homogeneous linear higher-order DE with real constant coefficients a_i , $i = 0, 1, ..., n, a_n \neq 0$, i.e.

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0,$$

do we have exponential solutions?

□ Recall:
$$by' + cy = 0$$
,
 $y = c_1 e^{-ax}$ on $(-\infty, \infty)$.

Auxiliary Equations

□ Consider a 2nd-order DE, ay'' + by' + cy = 0.

Let $y = e^{mx}$, and substituting $y' = me^{mx}$ and $y'' = m^2 e^{mx}$ into the DE, we have: $am^2 e^{mx} + bm e^{mx} + ce^{mx} = 0$.

$$e^{mx} > 0$$
 for $x \in R \rightarrow am^2 + bm + c = 0$.

This is called the **auxiliary equation** of the DE.

General Solutions (1/2)

□ Case *I*, $b^2 - 4ac > 0$:

m has two real roots m_1 and m_2 , and $y_1 = e^{m_1 x}$ and $y_2 = e^{m_2 x}$ form a fundamental set of solutions. The general solutions is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}.$$

Case II, $b^2 - 4ac = 0$:

m has one real root m_1 and $y_1 = e^{m_1 x}$. By reduction-oforder, the 2nd solution of the DE is $y_2 = xe^{m_1 x}$. The general solution is

$$y = c_1 e^{m_1 x} + c_2 x e^{m_1 x}.$$

General Solutions (2/2)

□ Case III, $b^2 - 4ac < 0$:

m has two complex roots $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$. Similar to *Case I*, the general solution is:

$$y = c_1 e^{(\alpha + i\beta)x} + c_2 e^{(\alpha - i\beta)x}.$$

□ By proper selection of c_1 and c_2 , and using Euler's formula, $e^{i\theta} = \cos\theta + i\sin\theta$, it can be shown that a general solution can also be represented by

$$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x).$$

Example: 4y''+4y'+17y = 0

□ Solve the IVP: y(0) = -1, y'(0) = 2. Solution: The roots of the auxiliary equation $4m^2+4m+17 = 0$ are $m_1 = -\frac{1}{2} + 2i$ and $m_2 = -\frac{1}{2} - 2i$ $\rightarrow y = e^{-x/2} (c_1 \cos 2x + c_2 \sin 2x)$, with y(0) = -1, y'(0) = 2 $\rightarrow y = e^{-x/2} (-\cos 2x + \frac{3}{4} \sin 2x)$

$$y \to 0$$
, as $x \to \infty$.

Higher-Order Auxiliary Equations

□ In general, to solve

 $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0,$

where $a_i \in R$ and $a_n \neq 0$, we must solve

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_2 m^2 + a_1 m + a_0 = 0.$$

The general solution of the DE is: Case I (no repeated roots):

$$y = c_1 e^{m_0 x} + c_2 e^{m_1 x} + \dots + c_n e^{m_{n-1} x}.$$

Case II (with repeated roots):

$$y = \underbrace{c_1 e^{m_0 x} + c_2 x e^{m_0 x} + \ldots + c_k x^{k-1} e^{m_0 x} + c_{k+1} e^{m_1 x} + \ldots + c_n e^{m_{n-k} x}}_{(k+1)}.$$

solution form of repeated roots

solution form of distinct roots

Solution of Repeated Roots (1/2)

For an nth-order linear DE, assuming that the auxiliary equation of

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0$$

has k repeated roots m_0 . This means that the DE can be expressed as:

$$(D-m_0)^k(D-m_1)\dots(D-m_{n-k})y=0.$$

Hence, the solution of $(D - m_0)^k y = 0$ will also be a solution of the *n*th-order DE.

Solution of Repeated Roots (2/2)

□ Since $y_1 = e^{m_0 x}$ is a solution of $(D - m_0)^k y = 0$, let

 $y(x) = u(x)e^{m_0x}.$

Note that

$$(D-m_0)[u(x)e^{m_0x}] = (Du(x))e^{m_0x}.$$

Applying the operator *k* times on y(x), we have

 $(D - m_0)^k [u(x)e^{m_0x}] = (D^k u(x))e^{m_0x}$ for any u(x).

Then, $u(x)e^{m_0x}$ is a solution of the DE $\leftrightarrow D^k u(x) = 0$.

Possible u(x) that meets this condition is a polynomial with degree less than k.

 $\rightarrow y(x) = (c_1 + c_2 x + \dots + c_k x^{k-1})e^{m_0 x}$ is a family of solutions.

Non-homogeneous Linear DE

□ To solve a non-homogeneous linear DE

 $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = g(x),$

we must do two things:

(1) Find the complementary function y_c;
(2) Find any particular solution y_p of the DE. Two methods:

- ✓ Method of undetermined coefficients
- ✓ Variation of parameters

Undetermined Coefficients (1/2)

The method of undetermined coefficients can be applied under two conditions:

1. a_i , i = 0, 1, ..., n, are constants, and 2. g(x) is a linear combination of functions of the following types:

$$P(x) = p_n x^n + p_{n-1} x^{n-1} + \dots + p_2 x^2 + p_1 x + p_0,$$

$$P(x) e^{\alpha x},$$

$$P(x) e^{\alpha x} \sin \beta x,$$

$$P(x) e^{\alpha x} \cos \beta x.$$

Undetermined Coefficients (2/2)

- □ There are two approaches to find the particular solution given g(x) using the undetermined coefficients principle:
 - Superposition approach (section 4.4 in the textbook)
 - Assume that $y_p(x)$ has similar form as g(x) with some coefficients to be determined
 - Annihilator approach (section 4.5 in the textbook)
 - Try to find a linear operator L_A such that when applied to both side of the DE turns it into a higher-order homogeneous DE. That is:

$$L(y) = g(x) \rightarrow L_A \cdot L(y) = L_A \cdot g(x) = 0.$$

The extra solution subspace of $L_A \cdot L(y) = 0$ should be the subspace of the particular solution.

Example:
$$y'' + 4y' - 2y = 2x^2 - 3x + 6$$

□ By guessing, let $y_p = Ax^2 + Bx + C$, we have $y_p' = 2Ax + B$, and $y_p'' = 2A$.

Therefore:

$$\begin{split} y_p'' + 4y_p' - 2y_p \\ &= 2A + 8Ax + 4B - 2Ax^2 - 2Bx - 2C \\ &= -2Ax^2 + (8A - 2B)x + (2A + 4B - 2C) \\ &= 2x^2 - 3x + 6. \\ &\rightarrow y_p = -x^2 - (5/2)x - 9. \end{split}$$

Example:
$$y'' - y' + y = 2 \sin 3x$$

□ By guessing, let $y_p = A \cos 3x + B \sin 3x$, we have

 $y_p' = -3A \sin 3x + 3B \cos 3x$, and $y_p'' = -9A \cos 3x - 9B \sin 3x$.

Therefore:

$$y_p'' - y_p' + y_p$$

= (-9A - 3B + A) cos 3x + (-9B + 3A + B) sin 3x
= 2 sin 3x.
 $\rightarrow y_p = (6/73) \cos 3x - (16/73) \sin 3x.$

Example: y_p by Superposition

□ Solve
$$y'' - 2y' - 3y = 4x - 5 + 6xe^{2x}$$
.

By super position principle, we divide the problem into two sub-problems, that is,

 $g(x) = g_1(x) + g_2(x),$

where $g_1(x) = 4x - 5$, and $g_2(x) = 6xe^{2x}$.

By guessing, let $y_{p_1} = Ax + B$, and $y_{p_2} = Cxe^{2x} + Ee^{2x}$. Substitute $y_p = Ax + B + Cxe^{2x} + Ee^{2x}$ into the DE, we have:

$$y_p = -(4/3)x + (23/9) - 2xe^{2x} - (4/3)e^{2x}$$

Example: A Glitch in the Method

□ Solve $y'' - 5y' + 4y = 8e^x$.

Simply guessing that $y_p = Ae^x$ and substituting y_p into the DE gives us $0 = 8e^x$. What went wrong?

If the guessed form of y_p falls in the solution space of y_c (i.e., $y_c = c_1 e^x + c_2 e^{4x}$), then we always get 0 = g(x).

Solution, let $y_p = Axe^x$. Since the derivatives of y_p contains both the term Ae^x and Axe^x , it is a reasonable guess for a particular solution.

Summary of Two Cases (1/2)

□ Case I:

No functions in the assumed particular solution is a solution of the associated homogeneous DE.

→ Substitute with y_p = "the form of g(x)".

g(x)	\mathcal{Y}_p
1. 1 (any constant)	A
2. $x^3 - x + 1$	$Ax^3 + Bx^2 + Cx + E$
3. $\sin 4x$, or $\cos 4x$	$A\cos 4x + B\sin 4x$
4. e^{5x}	Ae^{5x}
5. $x^2 e^{5x}$	$(Ax^2 + Bx + C)e^{5x}$
6. $e^{3x}\sin 4x$	$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$
7. $5x^2\sin 4x$	$(Ax^2 + Bx + C)\cos 4x + (Ex^2 + Fx + G)\sin 4x$
8. $xe^{3x}\cos 4x$	$(Ax+B)e^{3x}\cos 4x + (Cx+E)e^{3x}\sin 4x$

Summary of Two Cases (2/2)

□ Case II:

A function in the assumed particular solution is also a solution of the associated homogeneous DE.

→ Substitute with $y_p = x^n \times$ "the form of g(x)", where *n* is the smallest positive integer so that y_p is not in the solution space of y_c .

Examples:

□ Case I

$$y'' - 8y' + 25y = 5x^3e^{-x} - 7e^{-x}$$

$$y'' + 4y = x \cos x$$

• $y'' - 9y' + 14y = 3x^2 - 5 \sin 2x + 7xe^{6x}$

□ Case II

$$y'' - 2y' + y = e^x$$

• $y'' + y = 4x + 10 \sin x$, $y(\pi) = 0$, $y'(\pi) = 2$

$$y'' - 6y' + 9y = 6x^2 + 2 - 12 e^{3x}$$

Example of Annihilator Approach

 \Box Determine the y_p form of the DE: $y'' + 3y' + 2y = 4x^2$.

The annihilator of $4x^2$ is D^3 . Thus, the root of the auxiliary equation of $D^3(y) = 0$ is m = 0, 0, 0. The complementary solution is $y = c_1 + c_2 x + c_3 x^2$. Therefore, the particular solution should have the form:

$$y_p = A + Bx + Cx^2.$$

□ One advantage of the annihilator approach is that the y_c of $L_A(y) = 0$ and L(y) = 0 can be considered jointly to choose a y_p without glitch.

Variation of Parameters (1/3)

□ To adopt the variation of parameters to a linear 2^{nd} order DE $a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x)$, one must put the DE in the standard form:

y'' + P(x)y' + Q(x)y = f(x).

We seek a particular solution of the form

 $y_p = u_1(x)y_1(x) + u_2(x)y_2(x),$

where y_1 and y_2 form a fundamental set of solutions on *I* of the associated homogeneous DE.

Variation of Parameters (2/3)

□ Take the derivatives y_p ' and y_p ", and substitute them into the DE, we have

$$y_{p}'' + P(x)y_{p}' + Q(x)y_{p}$$

$$= u_{1}[y_{1}'' + P(x)y_{1}' + Q(x)y_{1}] + u_{2}[y_{2}'' + P(x)y_{2}' + Q(x)y_{2}]$$

$$+ y_{1}u_{1}'' + u_{1}'y_{1} + y_{2}u_{2}'' + u_{2}'y_{2}' + P(x)[y_{1}u_{1}' + y_{2}u_{2}'] + y_{1}'u_{1}' + y_{2}'u_{2}'$$

$$= \frac{d}{dx}[y_{1}u_{1}'] + \frac{d}{dx}[y_{2}u_{2}'] + P(x)[y_{1}u_{1}' + y_{2}u_{2}'] + y_{1}'u_{1}' + y_{2}'u_{2}'$$

$$= \frac{d}{dx}[y_{1}u_{1}' + y_{2}u_{2}'] + P(x)[y_{1}u_{1}' + y_{2}u_{2}'] + y_{1}'u_{1}' + y_{2}'u_{2}' = f(x).$$
If $y_{1}u_{1}' + y_{2}u_{2}' = h(x)$, then
$$\begin{cases} y_{1}u_{1}' + y_{2}u_{2}' = h(x) \\ y_{1}'u_{1}' + y_{2}'u_{2}' = f(x) - h'(x) - P(x)h(x) \end{cases}$$

Variation of Parameters (3/3)

□ If we let h(x) = 0, then the solution of the system is

$$\begin{cases} y_1 u_1' + y_2 u_2' = 0\\ y_1' u_1' + y_2' u_2' = f(x) \end{cases}$$

can be expressed in terms of determinants:

$$u_1' = \frac{W_1}{W} = -\frac{y_2 f(x)}{W}$$
 and $u_2' = \frac{W_2}{W} = \frac{y_1 f(x)}{W}$,

where

$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}, \quad W_1 = \begin{vmatrix} 0 & y_2 \\ f(x) & y'_2 \end{vmatrix}, \quad W_2 = \begin{vmatrix} y_1 & 0 \\ y'_1 & f(x) \end{vmatrix}$$

Summary of the Method

□ To solve $a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x)$:

- Find $y_c = c_1 y_1 + c_2 y_2$.
- Compute the Wronskian $W(y_1(x), y_2(x))$.
- Put the DE into standard form: y'' + P(x)y' + Q(x)y = f(x).
- Find u_1 and u_2 by integrating $u_1' = W_1/W$ and $u_2' = W_2/W$.
- A particular solution is $y_p = u_1y_1 + u_2y_2$.
- The general solution is $y = y_c + y_p$.

□ Note that there is no need to introduce any constants when computing the indefinite integrals of u_1' and u_2' .

Examples:

Solve
$$y'' - 4y' + 4y = (x + 1)e^{2x}$$
.

$$\Box \text{ Solve } 4y'' + 36y = \csc 3x.$$

□ Solve
$$y'' - y = 1/x$$
.

Higher-Order Equations

 \Box For a linear *n*th-order DE

 $y^{(n)} + P_{n-1}(x)y^{(n-1)} + \dots + P_1(x)y' + P_0(x)y = f(x),$

if $y_c = c_1y_1 + c_2y_2 + ... + c_ny_n$ is the complementary function of the DE, then a particular solution is

 $y_p = u_1(x)y_1(x) + u_2(x)y_2(x) + \ldots + u_n(x)y_n(x),$

where $u_k' = W_k/W$, k = 1, 2, ..., n and W is the Wronskian of $y_1, y_2, ..., y_n$ and W_k is the determinant obtained by replacing the *k*th column of the Wronskian by the column $(0, 0, ..., f(x))^T$.

□ Any linear differential equation of the form

$$a_{n}x^{n}\frac{d^{n}y}{dx^{n}} + a_{n-1}x^{n-1}\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}x\frac{dy}{dx} + a_{0}y = g(x),$$

where the coefficients a_i are constants, is called a Cauchy-Euler equation.

□ Note that $a_n x^n = 0$ at x = 0. Therefore, we focus on solving the equation on $(0, \infty)$.

Method of Solution

 \Box Assume that $y = x^m$ is a solution, we have

$$\frac{dy}{dx} = mx^{m-1}$$
$$\frac{d^2y}{dx^2} = m(m-1)x^{m-2}$$

$$→ a_k x^k \frac{d^k y}{dx^k} = a_k x^k m(m-1)(m-2)...(m-k+1)x^{m-k} = a_k m(m-1)(m-2)...(m-k+1)x^m.$$

2nd-Order Cauchy-Euler Eq.

□ For the 2nd-order homogeneous equation:

$$a_2 x^2 y'' + b x y' + c y = 0,$$

substituting $y = x^m$ leads to

$$ax^{2} \frac{d^{2} y}{dx^{2}} + bx \frac{dy}{dx} + cy = (am(m-1) + bm + c)x^{m}$$

Thus $y = x^m$ is a solution of the DE whenever *m* is a solution of the auxiliary equation

am(m-1)+bm+c=0.

Auxiliary Equation Solutions (1/2)

□ *Case I*, distinct real roots $m_1 \neq m_2$: Then $y_1 = x^{m_1}$ and $y_2 = x^{m_2}$ form a fundamental set of solutions. The general solution is

$$y = c_1 x^{m_1} + c_2 x^{m_2}.$$

□ *Case II*, repeated real roots $m_1 = m_2$: Then $y_1 = x^{m_1}$, by reduction-of-order, the 2nd solution of the DE is $y_2 = x^{m_1} \ln x$. The general solution is

 $y = c_1 x^{m_1} + c_2 x^{m_1} \ln x.$

Auxiliary Equation Solutions (2/2)

□ Case III, conjugate complex roots: If $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$, the general solutions is

$$y = c_1 x^{(\alpha + i\beta)} + c_2 x^{(\alpha - i\beta)}.$$

□ By proper selection of c_1 and c_2 , and using Euler's formula, it can be shown that a general solution can also be represented by

 $y = x^{\alpha} (c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x)).$

Example: Particular Solutions

□ The method of undetermined coefficients does not in general carry over to variable-coefficient DEs.

Therefore, the variation of parameters method should be used for solving non-homogeneous Cauchy-Euler equations.

 $\Box \text{ Example: Solve } x^2y'' - 3xy' + 3y = 2x^4e^x.$

Reduction to Constant Coefficient Eqs

□ A Cauchy-Euler equation can be reduced to a constant coefficient equation by the substitution $x = e^t$.

Note that $dy/dt = dy/dx \cdot dx/dt = y'e^t$ and $d^2y/dt^2 = y''e^{2t} + y'e^t$. Thus, $ax^2y'' + bxy' + cy = 0$ can be reduced to

$$ae^{2t}\left[e^{-2t}\left(\frac{d^{2}y}{dt^{2}}-y'e^{t}\right)\right]+be^{t}\left(e^{-t}\frac{dy}{dt}\right)+cy=a\frac{d^{2}y}{dt^{2}}+(b-a)\frac{dy}{dt}+cy=0.$$

The constant coefficient technique can be used to solve y(t) and then y(x) in turn.

Nonlinear Equations (2/2)	
We could find the one-parameter family of solutions of a few non-linear DEs, but these solutions are not general solutions of the DEs.	
Higher order nonlinear DEs usually can not be solved analytically.	
Realistic physical models are often nonlinear.	

Reduction of Order

□ Nonlinear 2nd-order DEs of the forms

$$\bullet F(x, y', y'') = 0$$

$$\bullet F(y, y', y'') = 0$$

can be reduced to 1st-order DEs by letting u = y'.

□ For
$$F(y, y', y'') = 0$$
, we have $F(y, u, u') = 0$.

 \Box For F(y, y', y'') = 0, observe that

$$y'' = \frac{du}{dx} = \frac{du}{dy}\frac{dy}{dx} = u\frac{du}{dy}$$

So the problem becomes $F(y, u, u \cdot du/dy) = 0$.

Example: *y* missing

 $\Box \text{ Solve } y'' = 2x(y')^2$

Solution: Let u = y', du/dx = y'', we have $du/dx = 2xu^2$

$$\rightarrow (1/u^2) du = 2x dx \rightarrow \int u^{-2} du = \int 2x dx \rightarrow -u^{-1} = x^2 + c_1 \rightarrow -(y')^{-1} = x^2 + c_1 \rightarrow dy/dx = -(x^2 + c_1)^{-1} \rightarrow y = -\int (x^2 + c_1)^{-1} dx$$

:.
$$y = -\frac{1}{\sqrt{c_1}} \tan^{-1} \frac{x}{\sqrt{c_1}} + c_2.$$

1

Example: *x* missing

□ Solve $yy'' = (y')^2$

Solution: Let $u = y', y'' = u \ du/dy$, we have $y\left(u\frac{du}{dy}\right) = u^2 \rightarrow \frac{du}{u} = \frac{dy}{y}$. $\rightarrow \ln |u| = \ln |y| + c_1 \rightarrow u = c_2 y$ $\rightarrow \int (1/y) \ dy = c_2 \int dx$ $\rightarrow y = c_3 e^{c_2 x}$.

Example: Taylor Series Solution (1/2)

□ Let us assume that a solution of the IVP exists: $y'' = x + y - y^2$, y(0) = -1, y'(0) = 1.

If y(x) is analytic at 0, we have the following Taylor series expansion centered at 0:

$$y(x) = y(0) + \frac{y'(0)}{1!}x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 + \cdots$$

Note that

$$y''(0) = 0 + y(0) - y(0)^{2} = 0 + (-1) - (-1)^{2} = -2.$$

Example: Taylor Series Solution (2/2)

For higher order derivatives, we have:

$$y'''(x) = \frac{d}{dx}(x + y - y^2) = 1 + y' - 2yy',$$
$$y^{(4)}(x) = \frac{d}{dx}(1 + y' - 2yy') = y'' - 2yy'' - 2(y')^2, \dots$$

and so on.

Therefore, we have:

$$y(x) = -1 + x - x^{2} + \frac{2}{3}x^{3} - \frac{1}{3}x^{4} + \frac{1}{5}x^{5} + \cdots$$