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Initial-Value Problems

 For a linear nth-order differential equation, an initial-
value problem (IVP) is:

Solve:

Subject to:
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Existence of a Unique Solution

 Theorem: Let an(x), an-1(x), …, a1(x), a0(x) and g(x) be 
continuous on an interval I, and let an(x)  0 for every x
in this interval.  If x = x0 is any point in this interval, then 
a solution y(x) of the IVP exists on the interval and is 
unique.
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Examples:

 The trivial solution y = 0 is the unique solution of the 
IVP 3y(3) + 5y" – y' + 7y = 0, y(1) = y'(1) = y"(1) = 0 on any 
interval containing x = 1.

 The solution y = 3e2x + e–2x – 3x is the unique solution of 
the IVP y"– 4y = 12x, y(0) = 4, y'(0) = 1 on any interval 
containing x = 0.

 The solution family y = cx2 + x + 3 are solutions of the 
IVP x2y"– 2xy' + 2y = 6, y(0) = 3, y'(0) = 1
 a2(x) = x2 = 0 at 0.
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Boundary-Value Problem

 Solving a linear DE with y or its derivatives specified at 
different points.  For example,

Solve

Subject to
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Solutions of a BVP

 A BVP can have many, one, or no solutions.

Example: x = c1 cos 4t + c2 sin 4t is a solution family of
x" + 16x = 0.  What are the solutions of the BVPs with

(1) x(0) = 0, x(/2) = 0?
(2) x(0) = 0, x(/8) = 0?
(3) x(0) = 0, x(/2) = 1?

x

t

(0, 0)

1

-1

C2 = 1

C2 = 1/2

C2 = 1/4

C2 = 0

C2 = –1/2
(/2, 0)
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Homogeneous Equations

 For a linear nth-order differential equation

if g(x) = 0, it is called a homogeneous differential 
equation, otherwise, it is non-homogeneous.

Note that: the solution of a non-homogeneous 
differential equation is based on the solution to its 
associated homogeneous differential equation.
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Differential Operators

 The symbol D, defined by Dy = dy/dx, is called a 
differential operator.  D transforms a function into 
another function.

Example: D(cos 4x) = –4sin 4x, D(5x3 – 6x2) = 15x2 – 12x

 Polynomial expressions involving D, such as D + 3 and 
D2 + 3D – 4 are also differential operators.
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Linear Operator

 An nth-order differential operator is defined as:

L = an(x)Dn＋an-1(x)Dn–1＋…＋a1(x)D＋a0(x)

L is a linear operator, that is,

L{ f(x)＋ g(x)}＝ L(f(x))＋ L(g(x))

9



/69

“D” Representation of DEs

 Any differential equations can be expressed in terms of 
the D notation.

For example, y" + 5y' + 6y = 5x – 3 can be written as
D2y＋5Dy＋6y = 5x－3 or (D2＋5D＋6)y = 5x－3

 A linear nth-order differential equation can be write 
compactly as L(y) = g(x).
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Superposition Principle

 Theorem: Let y1, y2,…,yk be solutions of a homogeneous 
linear nth-order DE on an interval I.  Then the linear 
combination

y = c1y1(x) + c2y2(x) +… + ckyk(x),

where ci, i = 1, 2, …, k are arbitrary constants, is also a 
solution on this interval.

 Can be proved by using linear operator property.
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Linear Dependency

 A set of functions f1(x), f2(x), …,  fn(x) is said to be 
linearly dependent on an interval I if there exist 
constants c1, c2,…, cn, not all zero, such that

c1 f1(x) + c2 f2(x) +…+ cn fn(x) = 0.

Otherwise, it’s said to be linearly independent.

 Example: Are cos2x, sin2x, sec2x, tan2x linearly dependent 
on the interval (–/2, /2)?
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Wronskian

 We are interested in linearly independent solutions of a 
linear differential equations  How to verify?

 Suppose each of the functions f1(x), f2(x),…, fn(x) has at 
least n–1 derivatives.  The determinant

is called the Wronskian of the functions.
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Criterion for Linear Independency

 Theorem: Let y1, y2,…,yn be n solutions of the linear 
nth-order homogeneous DE on an interval I.  Then,
the set of solutions is linearly independent on I if and 
only if W(y1, y2,…,yn) ≠ 0 for every x in the interval.

 Example: for y – 3y + 2y = 0, the two solutions y1 = ex

and y2 = e2x has the Wronskian:
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Wronskian Independence Checks

 The previous theorem implies that if y1 and y2 are two 
solutions of a linear homogeneous D.E., then
either W(y1, y2)  0 or W(y1, y2)  0, x.
 This can be proven by applying the existence and uniqueness 

theorem on zero initial condition IVP!

 For any two functions y1 and y2 that are not solutions of 
a linear homogeneous D.E. over an interval I:

 If W(y1, y2)  0, for some x I, then y1 and y2 are linearly 

independent over I.
 If W(y1, y2)  0, x, and y1 & y2 are nonzero with continuous 

derivatives in I, then y1 and y2 are linearly dependent over I.
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Fundamental Set of Solutions

 Any set y1, y2, …, yn of n linearly independent solutions 
of the homogeneous linear nth-order DE on an interval I
is said to be a fundamental set of solutions on the 
interval I.

 Theorem: There exists a fundamental set of solutions 
for the homogeneous linear nth-order DE.

 Similar to that a vector can be decomposed into 
linear combinations of basis vectors.
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General Solution (1/2)

 Theorem: Let y1, y2,…,yn be a fundamental set of 
solutions of the homogeneous linear nth-order DE on 
an interval I.  Then, the general solution of the equation 
on the interval is

y = c1y1(x)＋c2y2(x)＋…＋cnyn(x),

where ci, i = 1,2,…,n are arbitrary constants.

Proof on n = 2:
Let Y be a solution of a2(x)y" + a1(x)y' + a0(x)y = 0 on an 
interval I, y1 and y2 be linearly independent solutions of 
the DE. Initial conditions are Y(t) = k1 and Y'(t) = k2.
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General Solution (2/2)

To solve for (c1, c2)T, we have:

or

Since the Wronskian

given any k1, k2, there is always a unique solution
for c1, c2.                #
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Example: Linear Combo. of Solutions

 y1 = e3x and y2 = e–3x are both solutions of y" – 9y = 0 on 
the interval (–, ).  Are they linearly independent? By 
observation? By Wronskian?

 Is y = 4sinh 3x – 5e–3x a solution of y" – 9y = 0?
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Nonhomogeneous Solutions (1/2)

 Theorem: Let yp be any particular solution of the non-
homogeneous linear nth-order DE

on an interval I, and let y1,y2,…, yn be a fundamental set 
of solutions.  Then the general solution of the equation 
on the interval is:

y = c1y1(x)＋c2y2(x)＋…＋cnyn(x)＋yp,

where ci, i = 1,2,…,n are arbitrary constants.

20
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Nonhomogeneous Solutions (2/2)

Proof:
Let Y(x) and yp(x) be particular solutions of L(y) = g(x).
Define u(x) = Y(x)－yp(x), we have
L(u) = L{Y(x) – yp(x)} = L(Y(x)) – L(yp(x)) = g(x) – g(x) = 0

Thus, u(x) must be a solution to the homogeneous DE.
Therefore, u(x) = c1y1(x) + c2y2(x) +  + cnyn(x)
 Y(x) – yp(x) = c1y1(x) + c2y2(x) +  + cnyn(x)
 Y(x) = c1y1(x) + c2y2(x) +  + cnyn(x) + yp(x)

Any particular solution can be represented in this form.
#
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Complementary Function

 The general solution of a homogeneous linear nth-order 
DE is called the complementary function for the 
associated non-homogeneous DE.

Let yc(x) = c1y1(x)＋c2y2(x)＋…＋cnyn(x), the general 
solution of a nonhomogeneous linear nth-order DE has 
the form:

y(x) = yc(x)＋yp(x).
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Superposition Principle for DE

 Theorem: Let yp1, yp2,…, ypk be k particular solutions of 
the non-homogeneous linear nth-order DE on I, 
corresponding to k distinct functions g1, g2,…,gk.
Then,

yp = yp1(x)＋ yp2(x)＋…＋ ypk(x)

is a particular solution of

an(x)y(n)＋an–1(x)y(n–1)＋…＋a1(x)y'＋a0(x)y
= g1(x) + g2(x) + …＋gk(x).
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Example of Superposition Principle

 Verify:

yp1 = –4x2  y" – 3y' + 4y = –16x2 + 24x – 8
yp2 = e2x  y" – 3y' + 4y = 2e2x

yp3 = xex  y" – 3y' + 4y = 2xex – ex

Therefore

y = yp1 + yp2 + yp3 = –4x2 + e2x + xex

is a solution of
y" – 3y' + 4y = –16x2 + 24x – 8 + 2e2x + 2xex – ex

g1(x)                    g2(x)             g3(x)
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Reduction of Order

 For a 2nd order linear DE, one can construct a 2nd

solution y2 from a known nontrivial solution y1.  If y1 and 
y2 are linearly independent, we must have

y2/y1  constant,

Therefore, y2(x) = u(x)y1(x).  Substitute this into the DE 
and solve for u(x) is called reduction of order.

25
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Example: y" – y = 0, y1(x) = ex, find y2

 Solution:
Given y1(x) = ex, let y2(x) = u(x) ex,
 y' = uex + exu', y" = uex + 2exu' + exu"
 y" – y = ex(u"+ 2u') = 0
 u"+ 2u' = 0

Let w = u', the DE becomes w' + 2w = 0.  Multiplying by 
the integrating factor e2x, we have d[e2xw]/dx = 0.
Therefore, w = c1e–2x or u' = c1e–2x.
 u = (–1/2) c1e–2x + c2.
 y2(x) = u(x) ex = (–c1/2) e–x + c2ex, let c1 = –2, c2 = 0.
 Check W(ex, e–x)≠0

26
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Solution by Reduction of Order (1/2)

 Put the 2nd order DE into the standard form:

y" + P(x)y' + Q(x)y = 0,

where P(x) and Q(x) are continuous on some interval I.  
If y1 is a solution on I and that y1(x) ≠ 0 for all x  I,
by defining y2 = u(x)y1, we have:

y2 + Py2 + Qy2 =

u[y1+Py1+Qy1] + y1u + (2y1+Py1)u = 0.

 y1u + (2y1 + Py1)u = 0

27
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Solution by Reduction of Order (2/2)

 Let w = u, we have y1w + (2y1 + Py1)w = 0.
Since
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Example: x2y" – 3xy' + 4y = 0

 Since y1 = x2 is a known solution.



The general solution is y = c1x2＋c2x2lnx.
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Constant Coefficients DE

 For homogeneous linear higher-order DE with real 
constant coefficients ai, i = 0, 1, …, n, an  0, i.e.

any(n) + an-1y(n–1) + … + a2y" + a1y' + a0y = 0,

do we have exponential solutions?

 Recall: by' + cy = 0,
y = c1e–ax on (–, ).
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Auxiliary Equations

 Consider a 2nd-order DE, ay" + by' + cy = 0.

Let y = emx, and substituting y' = memx and y" = m2emx into 
the DE, we have: am2emx + bmemx + cemx = 0.

emx > 0 for x  R  am2 + bm + c = 0.

This is called the auxiliary equation of the DE.

31



/69

General Solutions (1/2)

 Case I, b2 – 4ac > 0:
m has two real roots m1 and m2, and y1 = em1x and
y2 = em2x form a fundamental set of solutions.
The general solutions is

 Case II, b2 – 4ac = 0:
m has one real root m1 and y1 = em1x.  By reduction-of-
order, the 2nd solution of the DE is y2 = xem1x.
The general solution is

.21
21

xmxm ececy 

.11
21

xmxm xececy 
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General Solutions (2/2)

 Case III, b2 – 4ac < 0:
m has two complex roots m1 =  + i and m2 =  – i.  
Similar to Case I, the general solution is:

 By proper selection of c1 and c2, and using Euler’s 
formula, eiq = cosq + i sinq, it can be shown that a 
general solution can also be represented by

.)(
2

)(
1

xixi ececy   

).sincos( 21 xcxcey x  
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Example: 4y"+4y'+17y = 0

 Solve the IVP: y(0) = –1, y'(0) = 2.
Solution:
The roots of the auxiliary equation 4m2+4m+17 = 0 are 
m1 = – ½ + 2i and m2 = – ½ – 2i
 y = e–x/2 (c1cos 2x + c2sin 2x), with y(0) = –1, y'(0) = 2
 y = e–x/2 (– cos 2x + ¾ sin 2x)

y  0, as x .
x

1

y

1
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Higher-Order Auxiliary Equations

 In general, to solve

any(n) + an–1y(n–1) + … + a2y" + a1y' + a0y = 0,

where ai  R and an  0, we must solve

anmn + an–1mn–1 + … + a2m2 + a1m + a0 = 0.

The general solution of the DE is:
Case I (no repeated roots):

Case II (with repeated roots):

.... 110
21

xm
n

xmxm necececy 

....... 1000
1

1
21

xm
n

xm
k

xmk
k

xmxm knececexcexcecy  


solution form of
repeated roots

solution form of
distinct roots
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Solution of Repeated Roots (1/2)

 For an nth-order linear DE, assuming that the auxiliary 
equation of

any(n) + an–1y(n–1) + … + a1y' + a0y = 0

has k repeated roots m0. This means that the DE can 
be expressed as:

(D – m0)k(D – m1) … (D – mn–k)y = 0.

Hence, the solution of (D – m0)ky = 0 will also be a 
solution of the nth-order DE.
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Solution of Repeated Roots (2/2)

 Since y1 = em0x is a solution of (D – m0)ky = 0, let 

y(x) = u(x)em0x.
Note that

(D – m0)[u(x)em0x] = (Du(x))em0x.

Applying the operator k times on y(x), we have

(D – m0)k[u(x)em0x] = (Dku(x))em0x for any u(x).

Then, u(x)em0x is a solution of the DE  Dku(x) = 0.

Possible u(x) that meets this condition is a polynomial 
with degree less than k.

 y(x) = (c1+c2x+ … +ckxk–1)em0x is a family of solutions.
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Non-homogeneous Linear DE

 To solve a non-homogeneous linear DE

any(n) + an-1y(n–1) + … + a2y" + a1y' + a0y = g(x),

we must do two things:

(1) Find the complementary function yc;
(2) Find any particular solution yp of the DE.

Two methods:
 Method of undetermined coefficients
 Variation of parameters
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Undetermined Coefficients (1/2)

 The method of undetermined coefficients can be 
applied under two conditions:

1. ai, i = 0, 1, …, n, are constants, and
2. g(x) is a linear combination of functions of the 
following types:

P(x) = pnxn + pn–1xn–1 + … + p2x2 + p1x + p0,
P(x)ex,
P(x)exsin x,
P(x)excos x.

39
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Undetermined Coefficients (2/2)

 There are two approaches to find the particular solution 
given g(x) using the undetermined coefficients principle:
 Superposition approach (section 4.4 in the textbook)

 Assume that yp(x) has similar form as g(x) with some coefficients 
to be determined

 Annihilator approach (section 4.5 in the textbook)
 Try to find a linear operator LA such that when applied to both side 

of the DE turns it into a higher-order homogeneous DE. That is:

L(y) = g(x)   LA  L(y) = LA  g(x) = 0.

The extra solution subspace of LA  L(y) = 0 should be the 
subspace of the particular solution.

40
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Example: y" + 4y' – 2y = 2x2 – 3x + 6

 By guessing, let yp = Ax2 + Bx + C, we have
yp' = 2Ax + B, and yp" = 2A.

Therefore:

yp" + 4yp' – 2yp

= 2A + 8Ax + 4B – 2Ax2 – 2Bx – 2C
= – 2Ax2 + (8A – 2B)x + (2A + 4B – 2C)
= 2x2 – 3x + 6.

 yp = – x2 – (5/2)x – 9.

41
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Example: y" – y' + y = 2 sin 3x

 By guessing, let yp = A cos 3x + B sin 3x,
we have

yp' = – 3A sin 3x + 3B cos 3x, and
yp" = – 9A cos 3x – 9B sin 3x.

Therefore:

yp" – yp' + yp

= (– 9A – 3B + A) cos 3x + (– 9B + 3A + B) sin 3x
= 2 sin 3x.

 yp = (6/73) cos 3x – (16/73) sin 3x.

42
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Example: yp by Superposition

 Solve y" – 2y' – 3y = 4x – 5 + 6xe2x.
By super position principle, we divide the problem into 
two sub-problems, that is,

g(x) = g1(x) + g2(x),

where g1(x) = 4x – 5, and g2(x) = 6xe2x.

By guessing, let yp1 = Ax + B, and yp2 = Cxe2x + Ee2x.
Substitute yp = Ax + B + Cxe2x + Ee2x into the DE, we 
have:

yp = –(4/3)x + (23/9) – 2xe2x – (4/3)e2x

43
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Example: A Glitch in the Method

 Solve y" – 5y' + 4y = 8ex.
Simply guessing that yp = Aex and substituting yp into 
the DE gives us 0 = 8ex.  What went wrong?

If the guessed form of yp falls in the solution space of yc

(i.e., yc = c1ex + c2e4x), then we always get 0 = g(x).

Solution, let yp = Axex.  Since the derivatives of yp

contains both the term Aex and Axex, it is a reasonable 
guess for a particular solution.
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Summary of Two Cases (1/2)

 Case I:
No functions in the assumed particular solution is a 
solution of the associated homogeneous DE.
 Substitute with yp = “the form of g(x)”.

g(x) yp

1. 1 (any constant)

2. x3－x＋1

3. sin4x, or cos4x

4. e5x

5. x2e5x

6. e3xsin4x

7. 5x2sin4x

8. xe3xcos4x

A

Ax3＋Bx2＋Cx＋E

A cos 4x＋B sin 4x

Ae5x

(Ax2＋Bx＋C)e5x

Ae3xcos4x＋Be3xsin4x

(Ax2＋Bx＋C)cos4x＋(Ex2＋Fx＋G)sin4x

(Ax＋B)e3xcos4x＋(Cx＋E)e3xsin4x

45



/69

Summary of Two Cases (2/2)

 Case II:
A function in the assumed particular solution is also a 
solution of the associated homogeneous DE.

 Substitute with yp = xn  “the form of g(x)”, where n is 
the smallest positive integer so that yp is not in the 
solution space of yc.

46
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Examples:

 Case I
 y" – 8y + 25y = 5x3e–x – 7e–x

 y" + 4y = x cos x

 y" – 9y + 14y = 3x2 – 5 sin 2x + 7xe6x

 Case II
 y" – 2y + y = ex

 y" + y = 4x + 10 sin x,  y() = 0, y() = 2

 y" – 6y + 9y = 6x2 + 2 – 12 e3x

47
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Annihilator Approach

 The differential operators that annihilate different g(x)
are as follows:
 Dn annihilates 1, x, x2, …, xn–1.

 (D – )n annihilates ex, xex, x2ex, …, xn–1ex.

 [D2 – 2D + (2 + 2)]n annihilates excosx, exsinx, xexcosx, 
xexsinx, … , xn–1excosx, xn–1exsinx.

 Complementary solution to the annihilator DE gives 
you the form of yp  you still need to substitute the 
solution form to determine the coefficients!
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Example of Annihilator Approach

 Determine the yp form of the DE: y + 3y + 2y = 4x2.

The annihilator of 4x2 is D3. Thus, the root of the 
auxiliary equation of D3(y) = 0 is m = 0, 0, 0.  The
complementary solution is y = c1 + c2x + c3x2.
Therefore, the particular solution should have the form:

yp = A + Bx + Cx2.

 One advantage of the annihilator approach is that the 
yc of LA(y) = 0 and L(y) = 0 can be considered jointly to 
choose a yp without glitch.
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Variation of Parameters (1/3)

 To adopt the variation of parameters to a linear 2nd-
order DE a2(x)y" + a1(x)y + a0(x)y = g(x), one must put 
the DE in the standard form:

y" + P(x)y + Q(x)y = f(x).

We seek a particular solution of the form

yp = u1(x)y1(x) + u2(x)y2(x),

where y1 and y2 form a fundamental set of solutions on 
I of the associated homogeneous DE.
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Variation of Parameters (2/3)

 Take the derivatives yp and yp", and substitute them 
into the DE, we have

If y1u1
 + y2u2

 = h(x), then

   
 

     

    ).()(

)(

)(

)()()()(

)()(

221122112211

221122112211

2211221122221111

22221111

xfuyuyuyuyxPuyuy
dx

d

uyuyuyuyxPuy
dx

d
uy

dx

d

uyuyuyuyxPyuuyyuuy

yxQyxPyuyxQyxPyu

yxQyxPy ppp










51








)()()()(

)(

2211

2211

xhxPxhxfuyuy

xhuyuy



/69

Variation of Parameters (3/3)

 If we let h(x) = 0, then the solution of the system is

can be expressed in terms of determinants:

and
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Summary of the Method

 To solve a2(x)y" + a1(x)y + a0(x)y = g(x):
 Find yc = c1y1 + c2y2.

 Compute the Wronskian W(y1(x), y2(x)).

 Put the DE into standard form: y" + P(x)y + Q(x)y = f(x).

 Find u1 and u2 by integrating u1 = W1/W and u2 = W2/W.

 A particular solution is yp = u1y1 + u2y2.

 The general solution is y = yc + yp.

 Note that there is no need to introduce any constants 
when computing the indefinite integrals of u1 and u2.
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Examples:

 Solve y" – 4y + 4y = (x + 1)e2x.

 Solve 4y" + 36y = csc 3x.

 Solve y" – y = 1/x.
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Higher-Order Equations

 For a linear nth-order DE

y(n) + Pn-1(x)y(n-1) + …+ P1(x)y + P0(x)y = f(x),

if yc = c1y1 + c2y2 + … + cnyn is the complementary 
function of the DE, then a particular solution is

yp = u1(x)y1(x) + u2(x)y2(x) + … + un(x)yn(x),

where uk = Wk/W, k = 1, 2, …, n and W is the Wronskian
of y1, y2, .., yn and Wk is the determinant obtained by 
replacing the kth column of the Wronskian by the 
column (0, 0, …, f(x))T.
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Cauchy-Euler Equation

 Any linear differential equation of the form

where the coefficients ai are constants, is called a 
Cauchy-Euler equation.

 Note that anxn = 0 at x = 0.  Therefore, we focus on 
solving the equation on (0, ).
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Method of Solution

 Assume that y = xm is a solution, we have
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2nd-Order Cauchy-Euler Eq.

 For the 2nd-order homogeneous equation:

a2x2y+ bxy + cy = 0,

substituting y = xm leads to

Thus y = xm is a solution of the DE whenever m is a 
solution of the auxiliary equation

am(m – 1) + bm + c = 0.
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Auxiliary Equation Solutions (1/2)

 Case I, distinct real roots m1≠m2:
Then y1 = xm1 and y2 = xm2 form a fundamental set of 
solutions.  The general solution is

 Case II, repeated real roots m1 = m2:
Then y1 = xm1, by reduction-of-order, the 2nd solution of 
the DE is y2 = xm1ln x.  The general solution is
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Auxiliary Equation Solutions (2/2)

 Case III, conjugate complex roots:
If m1 =  + i and m2 =  – i, the general solutions is

 By proper selection of c1 and c2, and using Euler’s 
formula, it can be shown that a general solution can 
also be represented by

.)(
2

)(
1

 ii xcxcy  

)).lnsin()lncos(( 21 xcxcxy  
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Example: Particular Solutions

 The method of undetermined coefficients does not in 
general carry over to variable-coefficient DEs.

Therefore, the variation of parameters method should 
be used for solving non-homogeneous Cauchy-Euler 
equations.

 Example: Solve x2y – 3xy + 3y = 2x4ex.
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Reduction to Constant Coefficient Eqs

 A Cauchy-Euler equation can be reduced to a constant 
coefficient equation by the substitution x = et.

Note that dy/dt = dy/dxdx/dt = yet and d2y/dt2 = ye2t + yet.
Thus, ax2y + bxy + cy = 0 can be reduced to

The constant coefficient technique can be used to 
solve y(t) and then y(x) in turn.
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Nonlinear Equations† (1/2)

 Nonlinear DEs do not possess superposition property.

 For example, y1 = ex, y2 = e–x, y3 = cos x, y4 = sin x are 
four linearly independent solutions of the nonlinear 2nd-
order DE (y)2 – y2 = 0 on the interval (–, ).  However, 
the following linear combinations are not solutions:
 y = c1e

x + c3cos x

 y = c2e–x + c4sin x
 y = c1e

x + c2e
–x + c3cos x + c4sin x

63
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Nonlinear Equations (2/2)

 We could find the one-parameter family of solutions of 
a few non-linear DEs, but these solutions are not 
general solutions of the DEs.

 Higher order nonlinear DEs usually can not be solved 
analytically.

 Realistic physical models are often nonlinear.
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Reduction of Order

 Nonlinear 2nd-order DEs of the forms
 F(x, y, y) = 0

 F(y, y, y) = 0

can be reduced to 1st-order DEs by letting u = y.

 For F(y, y, y) = 0, we have F(y, u, u) = 0.

 For F(y, y, y) = 0, observe that

So the problem becomes F(y, u, udu/dy) = 0.
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Example: y missing

 Solve y = 2x(y)2

Solution:
Let u = y, du/dx = y, we have du/dx = 2xu2

 (1/u2) du = 2x dx   u–2du =  2x dx
 – u–1 = x2 + c1  –(y) –1 = x2 + c1

 dy/dx = –(x2 + c1) –1

 y = – (x2 + c1) –1 dx
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Example: x missing

 Solve yy = (y)2

Solution:
Let u = y, y = u du/dy, we have

 ln |u| = ln |y| + c1  u = c2y

  (1/y) dy = c2 dx

 y = c3ec2x.
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Example: Taylor Series Solution (1/2)

 Let us assume that a solution of the IVP exists:
y = x + y – y2, y(0) = –1, y(0) = 1.

If y(x) is analytic at 0, we have the following Taylor 
series expansion centered at 0:

Note that 

.2)1()1(0)0()0(0)0( 22  yyy
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Example: Taylor Series Solution (2/2)

For higher order derivatives, we have:

and so on.

Therefore, we have:
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