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Solution Curves without Solving DE

Q Sometimes, just by looking at the differential equation,
we can learn useful information about its solutions:

m The solution curve y=y(x) of a first order DE
dyldx = f (x, y) on its interval of definition / must possess a
tangent line at each point (x, y(x)), and must have no breaks.

m The slope of the tangent line at (x, y(x)) on a solution curve is
the value of the first derivative dy/dx at this point.

m A (very small) line segment at (x, y(x)) that has the slope 1 (x, y)
IS called lineal element of the solution curve.
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Example of Lineal Element

Q Consider dy/dx = f(x, y) = 0.2xy, the slope of the lineal
element of the solution curve at (2, 3)is f(2,3)=1.2.

74 Y oa solution
T slope = 1.2 4+ curve
- 2,3 1L
/ ) /2,3)

tangent

]

Lineal element at (2, 3) Lineal element is tangent to

solution curve passes (2,3)
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Direction Field

Q The collection of the lineal elements on a rectangular
grid on the xy-plane is called a direction field or a slope
field of the DE dy/dx =f(x, y).

Q Asingle solution curve on the x—y plane will follow the
flow pattern of the slope field.
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Increasing/Decreasing of a Solution

Q If dy/dx > 0 for all x on the interval of definition 7, then
the differentiable function y(x) is increasing on /1.

Q If dy/dx <0 for all x on the interval of definition 7, then
the differentiable function y(x) is decreasing on 1.
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Example: Approximating a Solution

aQ We can use a slope field to approximate the VP,
dy/dx = sin y, y(0) =—3/2:
1) Define the direction field around y =0
2) Constraint 1: the solution must pass (0, —3/2)

3) Constraint 2: the slope of the solution curve must be 0 when y
=0andy=-x
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Autonomous First-Order DEs

a A DE in which the independent variable does not
appear explicitly is said to be autonomous.

Q If x is the independent variable, an autonomous DE can
be written as F(y,y") =0, or dy/dx =f ().

Q Example: If y(¢) is a function of time, then the following
DE is autonomous and time-independent:
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Critical Points

Q Indy/dx=f(y), if filc)=0, then c is called the critical
point of the autonomous DE. A critical point is also
refer to as an equilibrium point or a stationary point.

Q If ¢ is a critical point of dy/dx =f(y), then y(x)=c is a
constant solution of the autonomous equation. This is
also called an equilibrium solution.
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Example: Autonomous DE

Q The DE, dP/dt=(a—bP)P,a >0, b >0, is autonomous.

Let (a—bP)P =0, we have two critical points: 0 and a/b.

QA The sign of AP)= P(a— bP) can be shown in a phase
portrait

P-axis
v Interval  Sign of f(P) P(7) Arrow
L wp (—0, 0) minus decreasing down
A (0, a/b) plus Increasing Up

- 0 (a/b, ) minus decreasing  down
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Solution Curve Properties

A The solution space can be divided into several regions
by equilibrium solutions:
m y(x) is bounded
m f(y)>0orf{y)<0forall xina sub region
m y(x) is strictly monotonic
m If y(x) is bounded above or ‘ 2

below by a critical point, y(x) @~ | | "
approaches this point either
as x — oo Oor as x — —oo. / \ R,
(x(): yo)
Nx) = ¢
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Example: dP/dt = P(a— bP) Revisited

\

phase line

P
R3
decreasing 2
P
increasing . Rz

t
decreasing \ R,
0

tP-plane
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Example: dy/dx = (y —1)?

y
increasing
1
increasing
(a) Phase line (b) xy-plane, y(0) <1 (c) xy-plane, y(0) > 1
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Attractors and Repellers

Q The solution curve of a first order DE near a critical
point ¢ exhibits one of the following three behaviors:

m Solution curves approach ¢ from either sides. ¢ is called
asymptotically stable or an attractor.

m All solution curves starts near ¢ move away from c. c is called
unstable critical point or a repeller.

m Solution curves approach ¢ from one side and move away
from ¢ from the other side. c is called semistable.
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Solution by Integration

Q If the DE can be expressed in normal form, f(x, y) = g(x),
the equation can be solved by integration.

Since,
dy

e g(x)
X

Integrating both sides, we have:
y= J.g(x)dx = G(x)+ c
where G(x) is the indefinite integral of g(x).
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Example: Solution by Integration

Q Solving the initial value problem

@: 2x+3, y()=2.
dx

By integrating both sides, we have

y(x) = j(2x+3)dx =x" +3x+c.

NN A
\ c=2 / Solution that passes through
NPV 1L+ theinitial condition (1, 2) is
,,,E,ﬁo the curve with C=-2
c=2
C=4
C=-6

Family of solution curves
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2"9-Order Solution by Integration

Q If we have a second-order DE of the special form:
d’y
dx’

= g(x),
we have .

V[V (dx = [ g(n)dx = G(x)+C,

where G is an anti-derivative of g and C, is an arbitrary
constant. Therefore,

P(x) = j V'(x)dx = j [G(x)+C Jax = j G(x)dx+Cx+C,,

where C, is a second arbitrary constant.
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Separable Equations (1/2)

a Afirst order DE of the form

% = g()n(y)=g(x)/£(v), where f(3)=1/h(y)

IS said to be separable or to have separable variables.

Divide both side by 4(y), the DE becomes

dy

flr)===glx)

Integrating both sides w.r.t. x, we have

jf(Y(x))% dx = Ig(x)dx+ C.

17/58




Separable Equations (2/2)

Cancelling the differential term dx, we have

| f()dy =] g(x)ax+C.
If the two anti-derivatives
F)=[f)dy and G(x)=[g(x)dx
can be found, we have the family of equations
F(y(x)) =Gx) +C
— that conforms to the differential equation.
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Example: dy/dx = —6xy, y(0) =7

Q Rearranging the equation, we have dy/y = —6xdx,
therefore,

de/y=_[—6xdx

—> ln‘y‘ =-3x"+C,.

—_——— e = AN — — — — —

Thus |y| = e3* eCior y = +eCie, 2
We have, y = C,e ', C, = +e¢ € R. 2
However, y =0 is also a solution. oL

Note thatas C, —» 0, y — 0.

Since y(0) = 7, the particular solution is y = 7e3<"
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Example: dy/dx = —x/y, y(4) = -3

0 Since /ydy =-/xdx, we have V42 =-x?/2 + ¢,.

The solution must pass (4, -3), thus, ¢, =25/2.
— the solution is the lower half-circle of radius 5
centered at (0, 0).

Y

family of solutions:
x2+y2=C

A particular solution: 4,-3)
x> +y*=25

.
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Losing a Solution

Q Some care should be exercised when separating
variables, since the variable divisors could be zero in
some cases.

Q If »is a zero of A(y), then y =r is a constant solution of
the DE. However, y =» may not show up in the family
of solutions. Recall that this is called a singular
solution.
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Example: dy/dx = y*—4

Q Since y*—4 is separable

d 1/4 1/4
Iy2{4:jabc o I{y—2_y+2}dy:jdx

1 1
Zln‘y—2‘—zln‘y+2‘ =X+c,

-2 -2
|2 =4x+c,, or Y =ce™, c = e
y+2 y+2
1+ ce™
— =)
Y 1—ce™

Note: The solutions y = 12 have been excluded in the first step!
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Example: (e — y)cos xZ—i} =¥ sin 2x, y(0) =0

Q Solve the IVP by dividing both sides by e’ cos x, then
multiply both sides by dx, we have

I(ey—ye_y)dy=2jsinxdx
e’ +ye’+e’ =-2cosx+c, y(0)=0

— c=4
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Linear First Order DE

Q A first-order differential equation of the form:

a <x>%+ao (x)y = g(x) (1)

IS said to be a linear equation. \WWhen g(x) =0, the
linear equation is said to be homogeneous, otherwise
It is non-homogeneous.

a Dividing both side of (1) by the leading coefficient a,(x),
we have the standard form:

dy

dx

+P(x)y = f(x)
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Solving the 15t-Order Standard Form

QA The solution of dy/dx + P(x)y = f(x) can be derived by
multiplying both sides of the equation by a special
function u(x). We want the function w(x) to satisfy the

property:

d dy du dy B
gy = [u(x)y]=u s u( dx+P<x>yj—uf<x>.

Thus dw/dx = uP(x) — p= elP®ix

The function u(x) is called the integrating factor.
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Solution by Integrating Factors

a We can solve the

DE by multiplying both sides of the

standard form by e/?®é thus:

. j P(xydx dy

dx

d

dx

 —

—  ye

+ P(x)e

j P(x)dx j P(x)dx

y=f(x)e

i j P(x)dx

yeIP(x)dx:| _ f(x)e

[ P(x)dx [PCx)a

dx +c

= [ f(x)e
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Dropping Integrating Factor Constant

a Note that you do not need to keep the constant when
computing the anti-derivative of the integrating factor.
Assume that G(x) is the anti-derivative of P(x), since

lP@)dx = oGXx) +c = ¢ e,

The constant ¢, = e will simply be cancelled out on
both side of the differential equation.
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Example: Solve dy/dx —3y =6

Q Solution:
. j (v _ e
N e—3x d_y_3e—3xy — 68_3x
dx
d| -3
s —leyl=6e"
dx[ y]
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General Solutionon /

a If P(x) and f(x) in the standard form are continuous on
an open interval /, then

)= Ce—jp(x)dx N ejp(x)dxjejp(x)dxf(x)dx
IS a general solution of dy/dx + P(x)y = f(x).
That is, every solutions on I has the form. In other

words, there is no singular solution for the linear 15t
order differential equation on 1.
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Particular Solution on /

a Given an initial condition y(x,) =y, to the linear first
order DE dy/dx + P(x)y = O(x) on I where P(x) and O(x)
are continuous, the particular solution of the DE has
the form:

- —J:;P(t)dt X I;OP(u)du
yy=e ™y ] e o

Note that it is easy to verify that y(x,) = y,.
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Example: (x>-9)dy/dx +xy =0

a Solution:

dy X X
+ =0, ..P(x)=
dx x2—9y () (x> =9)

Thus, the integrating factor is:

ej(xz—x_g)dx = el/zln‘xz_g‘ = 1/‘)62 —9|, x # -3, 3.
— d
Therefore, dx[ | —9M = 0.

s ‘xz —9‘y=c, x #-=3,3.

P(x) is continuous on (-, -3), (-3, 3), and (3, «).
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Example: IVP y'+y=x, y(0) =4

Q Since P(x) =1 and QO(x) = x are continuous on (-0, o),
we have integrating factor el® = ¢;

4 exy]z xe"

dx

— yz(x—l){ge_f}, —0 <X <©

_.-=> transient term
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Example: Discontinuous f(x)

A Find a continuous function satisfying

Yy =17 and w0y =0
X X an — U.
dx Y= 0, x>1 (0)
Solution: .
{1—eﬁ 0<x<I |
y=4 L.
Cze o x>1 } } } —x

—  — find ¢, so that

lim . y(x) = y(1)
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Non-elementary Functions

Q Some simple function do not possess antiderivatives
that are elementary functions, and integrals of this kind
of functions are called non-elementary.

Q The integrations of non-elementary functions can only
be solved by numerical methods.

Example:

2

e " dx

sin x°dx

2
erf(x)zﬁ jo e dt
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Level Curves and Family of Solutions

Q In multivariate calculus, for a function of two variables,
z = G(x, y), the curves defined by G(x, y)=c (cis a
constant) are called level curves of the function.

Y

S

=

v
= C -
- \ w20/
X
0, 0)
- c=2 -
1 - -

1
[\S)
—

Level curves of e+yer+e+2cos = ¢

A

-2l 1 -ll 1 1 i ] é
Solutions of IVPs
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Differentials of Two-Variable Functions

Q If z=f(x, y) is a function of two variables with
continuous first partial derivatives in a region R of the
xy-plane, then its total differential is:

dz = fdx+ f
Ox @y

If £ (x, y) =c, we have:
2 —dx+
Ox oy

— Given a one-parameter family of curves f'(x, y) = c,
we can derive a first order DE.

fdy 0.
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Example:

a If x? - 5xy + 33 = ¢, then taking the differential gives
(2x — 5y) dx + (=5x + 3y?) dy = 0.

Question: can we think reversely?
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Exact Equations

Q Adifferential expression M(x, y) dx + N(x, y) dy is an
exact differential in a region R of the xy-plane if it is
the total differential of some function f(x, y).

Q A first-order differential equation of the form
M(x, y) dx + N(x,y) dy =0

IS said to be an exact equation if the expression on
the left-hand side is an exact differential.
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Criterion for an Exact Differential

Q Theorem: Let M(x, y) and N(x, y) be continuous and
have continuous first partial derivatives in a rectangular
region R defined by a <x<b, c <y <d.

Then a necessary and sufficient condition that
M(x, y) dx + N(x, y) dy be an exact differential is

oM  ON
oy ox
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Proof of the Necessity

Q If M(x, y) dx + N(x, y) dy is exact, there exists some
function f'such that for all x in R,

M (x, y)dx+ N(x, y)dy = 2‘){ dx + a‘)f/

Therefore, M(x, y) = df/ox, and N(x, y) = of/dy, and

8M_8(8fj_82f_8 of | _oN
dy oOy\ox) oOyox oOx\ oy ox
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Proof of the Sufficiency (1/2)

3O Note that we have

L Mxy) > fC00)=[ M) g(o)

where g(y), shall be a function ofy Since we want

L N@y) > Nexy) = j M (x, ) +g'()
Y

therefore, g'(»)=N(x,y) —ng(x, y)dx

If we can prove that g'(y) is a function of y alone,
iIntegrating g'(y) w.r.t. y, gives us the solution.
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Proof of the Sufficiency (2/2)

a Since 5

0
ax(N(x’y) s M, y)dxj =

ON oM
ox Oy

and oM/oy = ON/ox, we have 0/0x[g'(y)] = 0.
Thus, ¢'(y) is a function of y alone.

In this case, the solution is

f(x,y)= IM(x, y)dx + J(N(x, V) —%jM(x, y)dxjdy.
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Observations

Q The solution to an exact eq. M(x, y) dx + N(x, y) dy =0 is

f@x )= [ M(x, p)dx+| [N(x, ») —% M, y)dxjdy -,

where c is a constant parameter.

Q The method of solution can start from of/0 y = N(x, y) as
well. Then, we have

f(6p)= [ N(x, y)dy+h(x)

) =M (5, ) =2 [ NG )y
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Example: 2xy dx + (x> — 1)dy =0

Q Solution:
Since M(x, y) =2xy, N(x, y) =x*>—1, we have
OM/0y = 2x = ON/Ox so the equation is exact,
and there exists f(x, y) such that of/ox = 2xy and
ofloy = x*— 1.

Integrating the first equation— fix, y) = x*y + g(y)
Take the partial derivative of y, equate it with N(x, y),
we have x* + g'(y) = x> — 1. Therefore, g'(y) =-1, and
—  f(x,y)=x%—y. The implicit solution is x?y —y =c.
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Example: An |VP of Exact Equation

a Solve

dy xy’—cosxsinx

= T , 1(0)=2.
Solution:
oM ON
—=-2xy=—"
5y Ox
—>Zi=;v(l—x2), [0 =2 (1=x*) +h(x)
y 2
of

> = —xy” + h'(x) = cos xsin x — xp°
X

— h(x) = —I (cos x)(—sin xdx) = —Lcos® x
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Example: An [VP (cont.)

The implicit solution is y*(1 — x?) — cos’x = c.
Substitute the initial condition y(0) =2 into the implicit
solution, we have ¢ = 3.

y

I AN
YYS g

\

D

)

|
@
7
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Integrating Factors for Exactness

A Can we multiply a non-exact equation by an integrating
factors u(x, y) to make it exact? That is, can we make

px, YIM(x, y) dx + pi(x, y)N(x, y) dy =0
an exact differential equation? To achieve this goal,
u(x, y) must satisfy

Mp,— Ny, + (M, —Nu=0.

Q In practice, a proper 1(x, y) is not easy to find unless it
happens to be a function of x or y alone. If wu(x, y) = u(x),

d,U_My_Nx
dx N

L — Separable equation if (M, — N,)/N contains x alone.
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Solution by Substitutions

a We can substitute dy/dx = f (x, y) with y = g(x, u), where u
IS a function of x, to solve for the solution.

By chain rule:

dy du
—=g (x,u)+g, (x,u)—,
'y g.(x,u)+g,( )a’x

then du
f(xa g(xau)) — gx(xau) T8, OC:“)E'

We can then solve for du/dx = F(x, u).
If u = ¢(x) is the solution, then y = g(x, &(x)).
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Homogeneous Equations (1/2)

Q If frx, ty) = t*f(x, y) for some real number ¢, then f'is
said to be a homogeneous equation of degree «.

Example: f(x, y) = x>+)? is a homogeneous equation of
degree 3.

Q Similarly, a first-order DE in differential form
M(x, y)dx+N(x, y)dy =0

Is said to be homogeneous if both A and N are
homogeneous function of the same degree.

49/58




Homogeneous Equations (2/2)

Q The meaning of “homogeneous” here is different from
the “homogeneous™ in Sec. 2.3.

Q If M and N are homogeneous functions of degree «, we
have:
M(x, y) =x*M(1, u) and N(x, y) = x*N(1, u), u = y/x
and
M(x, y)=y*M(v, 1) and N(x, y) = y*N(v, 1), v=1x/y

a We can turn a homogeneous equation into a separable
first order DE using substitution with either y = ux or x =

V).
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Example: (x? +y?)dx + (x* - xy)dy =0

Q Solution:
M and N are 2"d-order homogeneous equation.

Let y = ux, then dy = u dx+x du.
After substitution, we have

— (X +u?x?)dx + (x> —ux?)[u dx+x du] =0
> x*(1+wdx+x>(1—u)du=0

Therefore
1_ua’qu@=O—>[—l+ 2 }dzﬁ@:o
1+u X 1+u X

—u+2 ln‘l + u‘ + ln‘x‘ = ln‘c‘
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Bernoulli's Equation

a The DE

dy

Fa P(x)y = f(x)y"
X

where n is any real number, is called Bernoulli's
equation. Note thatforn=0andn=1, itis linear. For
any other n, the substitution u =y reduces any
equation of this form to a linear equation.

52/58




Example: x dy/dx + y = x*?

a Solution:

dx x ’

substitute with y = v and dy/dx = —udu/dx.

du 1
N d—”——u = —x, the integrating factor on (0, «)
X X

dr _
iS e—jdx/x :X_l, we have —[ IM:IZ —1
dx

xu=-x+c—>y=1/(—x*+cx).
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Another Reduction to Separation

a A DE of the form

d—y:f(A)H-By—I—C)

dx
can always be reduced to an equation with separable
variables by means of the substitution

u=Ax+By+C, B#O.
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Example: dy/dx = (-2x+y)*- 7, y(0)=0

Q Solution:
Let u =—2x-+y, then du/dx =—2+dy/dx.
The DE can be reduced to du/dx = u*>—9.

du y 1[1_1}%:0[)C

u—3 u+3
— ¥(0)=0,c=-1. A&ﬂ((/}c

—> =dx —>
(u—3)u+3) 6

1. lu-3
— —1In
6 |u+3

u_3 6 6
=ce’,c=¢e"
u+3

=x+c, >

3(14 ce™)

—>y=2x+ —

1—ce

55/58




Numerical Methods

A The solution of a DE can be approximated using a
tangent line:

y solution curve
(x1, ¥(x7))

(x1, ¥1)
j slope = f(xg, yo)
| T(xg, Yp)
ol 1 0 Yo
|| N
X0 X1 = JCO + h
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Euler’'s Method

O One can solve the IVP: y’ = fix, v), ¥(x,) = ¥,
numerically using the following procedure:

1. Linearization of y(x) at x = x,: L(x) = flxy, yo)(x —x,) + 1,
2. Replace x in the above equation with x, = x, + 4, we have

L(x,) = f (xg, ¥o)(xg T 7 — X)) + ¥y OF y; =y + hf (X0, Vo),
where y, = L(x,)

3. Ifh—0theny, ~y(x))

4. Use (x;,y,) as a new starting point, we have
X, =x; +h=xy+2h, and y(x,) =y, + hf(x;, y,)

5. Recursively, we havey ., =y + hfix,,y,), where
x,=x,+tnh,n=0,1,2, ...
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Error Accumulations

A Numerical solutions are approximations to the exact
solution of a DE — approximation errors may become
large when x is far away from the initial condition.

V-

exact
solution

Runge-Kutta
method

Euler’s
method
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