First-Order Differential Equations

National Chiao Tung University Chun-Jen Tsai 9/16/2019

Solution Curves without Solving DE

- Sometimes, just by looking at the differential equation, we can learn useful information about its solutions:
- The solution curve $y=y(x)$ of a first order DE $d y / d x=f(x, y)$ on its interval of definition I must possess a tangent line at each point ($x, y(x)$), and must have no breaks.
- The slope of the tangent line at $(x, y(x))$ on a solution curve is the value of the first derivative $d y / d x$ at this point.
- A (very small) line segment at $(x, y(x))$ that has the slope $f(x, y)$ is called lineal element of the solution curve.

Example of Lineal Element

- Consider $d y / d x=f(x, y)=0.2 x y$, the slope of the lineal element of the solution curve at $(2,3)$ is $f(2,3)=1.2$.

Lineal element at $(2,3)$

Lineal element is tangent to solution curve passes $(2,3)$

Direction Field

. The collection of the lineal elements on a rectangular grid on the $x y$-plane is called a direction field or a slope field of the DE $d y / d x=f(x, y)$.
\square A single solution curve on the $x-y$ plane will follow the flow pattern of the slope field.

The slope field of $d y / d x=0.2 x y$.

Solution family: $y=c e^{0.1 x^{2}}$

Increasing/Decreasing of a Solution

- If $d y / d x>0$ for all x on the interval of definition I, then the differentiable function $y(x)$ is increasing on I.
- If $d y / d x<0$ for all x on the interval of definition I, then the differentiable function $y(x)$ is decreasing on I.

Example: Approximating a Solution

- We can use a slope field to approximate the IVP, $d y / d x=\sin y, y(0)=-3 / 2$:

1) Define the direction field around $y=0$
2) Constraint 1: the solution must pass $(0,-3 / 2)$
3) Constraint 2: the slope of the solution curve must be 0 when y $=0$ and $y=-\pi$
\rightarrow the solution curve can be approximated as in the figure.

Autonomous First-Order DEs

- A DE in which the independent variable does not appear explicitly is said to be autonomous.
- If x is the independent variable, an autonomous DE can be written as $F\left(y, y^{\prime}\right)=0$, or $d y / d x=f(y)$.
- Example: If $y(t)$ is a function of time, then the following DE is autonomous and time-independent:

$$
\frac{d y}{d t}=1+y^{2}
$$

Critical Points

- In $d y / d x=f(y)$, if $f(c)=0$, then c is called the critical point of the autonomous DE. A critical point is also refer to as an equilibrium point or a stationary point.
- If c is a critical point of $d y / d x=f(y)$, then $y(x)=c$ is a constant solution of the autonomous equation. This is also called an equilibrium solution.

Example: Autonomous DE

- The DE, $d P / d t=(a-b P) P, a>0, b>0$, is autonomous. Let $(a-b P) P=0$, we have two critical points: 0 and a / b.
- The sign of $f(P)=P(a-b P)$ can be shown in a phase portrait
$\left\{\begin{array}{ccccc}P \text {-axis } & & & \\\right.$\cline { 2 - 5 } \& Interval \& Sign of$f(P) & P(t) & \text { Arrow } \\$\cline { 2 - 5 } \& $(-\infty, 0) & \text { minus } & \text { decreasing } & \text { down } \\ & (0, a / b) & \text { plus } & \text { Increasing } & \text { Up } \\ 0 & (a / b, \infty) & \text { minus } & \text { decreasing } & \text { down }\end{array}$

Solution Curve Properties

- The solution space can be divided into several regions by equilibrium solutions:
- $y(x)$ is bounded
- $f(y)>0$ or $f(y)<0$ for all x in a sub region
- $y(x)$ is strictly monotonic
- If $y(x)$ is bounded above or below by a critical point, $y(x)$ approaches this point either as $x \rightarrow \infty$ or as $x \rightarrow-\infty$.

Example: $d P / d t=P(a-b P)$ Revisited

Example: $d y / d x=(y-1)^{2}$

Attractors and Repellers

- The solution curve of a first order DE near a critical point c exhibits one of the following three behaviors:
- Solution curves approach c from either sides. c is called asymptotically stable or an attractor.
- All solution curves starts near c move away from $c . c$ is called unstable critical point or a repeller.
- Solution curves approach c from one side and move away from c from the other side. c is called semistable.

Solution by Integration

- If the DE can be expressed in normal form, $f(x, y)=g(x)$, the equation can be solved by integration.

Since,

$$
\frac{d y}{d x}=g(x)
$$

Integrating both sides, we have:

$$
y=\int g(x) d x=G(x)+c
$$

where $G(x)$ is the indefinite integral of $g(x)$.

Example: Solution by Integration

\square Solving the initial value problem

$$
\frac{d y}{d x}=2 x+3, \quad y(1)=2 .
$$

By integrating both sides, we have

$$
y(x)=\int(2 x+3) d x=x^{2}+3 x+c .
$$

$2^{\text {nd }}$-Order Solution by Integration

- If we have a second-order DE of the special form:

$$
\frac{d^{2} y}{d x^{2}}=g(x)
$$

we have

$$
\int y^{\prime \prime}(x) d x=\int g(x) d x=G(x)+C_{1}
$$

where G is an anti-derivative of g and C_{1} is an arbitrary constant. Therefore,

$$
y(x)=\int y^{\prime}(x) d x=\int\left[G(x)+C_{1}\right] d x=\int G(x) d x+C_{1} x+C_{2},
$$

where C_{2} is a second arbitrary constant.

Separable Equations (1/2)

- A first order DE of the form

$$
\frac{d y}{d x}=g(x) h(y)=g(x) / f(y), \text { where } f(y)=1 / h(y)
$$

is said to be separable or to have separable variables. Divide both side by $h(y)$, the DE becomes

$$
f(y) \frac{d y}{d x}=g(x)
$$

Integrating both sides w.r.t. x, we have

$$
\int f(y(x)) \frac{d y}{d x} d x=\int g(x) d x+C .
$$

Separable Equations (2/2)

Cancelling the differential term $d x$, we have

$$
\int f(y) d y=\int g(x) d x+C
$$

If the two anti-derivatives

$$
F(y)=\int f(y) d y \text { and } G(x)=\int g(x) d x
$$

can be found, we have the family of equations

$$
F(y(x))=G(x)+C
$$

that conforms to the differential equation.

Example: $d y / d x=-6 x y, y(0)=7$

\square Rearranging the equation, we have $d y / y=-6 x d x$, therefore,

$$
\begin{aligned}
& \int d y / y=\int-6 x d x \\
& \rightarrow \ln |y|=-3 x^{2}+C_{1} .
\end{aligned}
$$

Thus $|y|=e^{-3 x^{2}} e^{C_{1}}$ or $y= \pm e^{C_{1}} e^{-3 x^{2}}$. We have, $y=C_{2} e^{-3 x^{2}}, C_{2}= \pm e^{C_{1}} \in R$. However, $y=0$ is also a solution. Note that as $C_{2} \rightarrow 0, y \rightarrow 0$.

Since $y(0)=7$, the particular solution is $y=7 e^{-3 x^{2}}$.

Example: $d y / d x=-x / y, y(4)=-3$

- Since $\int y d y=-\int x d x$, we have $y^{2} / 2=-x^{2} / 2+c_{1}$.

The solution must pass $(4,-3)$, thus, $c_{1}=25 / 2$.
\rightarrow the solution is the lower half-circle of radius 5 centered at $(0,0)$.

Losing a Solution

- Some care should be exercised when separating variables, since the variable divisors could be zero in some cases.
I If r is a zero of $h(y)$, then $y=r$ is a constant solution of the DE. However, $y=r$ may not show up in the family of solutions. Recall that this is called a singular solution.

Example: $d y / d x=y^{2}-4$

\square Since $y^{2}-4$ is separable

$$
\begin{aligned}
& \int \frac{d y}{y^{2}-4}=\int d x \longrightarrow \int\left[\frac{1 / 4}{y-2}-\frac{1 / 4}{y+2}\right] d y=\int d x \\
& \frac{1}{4} \ln |y-2|-\frac{1}{4} \ln |y+2|=x+c_{1} \\
& \ln \left|\frac{y-2}{y+2}\right|=4 x+c_{2}, \quad \text { or } \frac{y-2}{y+2}=c e^{4 x}, c= \pm e^{c_{2}} \\
& \longrightarrow \quad y=2 \frac{1+c e^{4 x}}{1-c e^{4 x}}
\end{aligned}
$$

Note: The solutions $y= \pm 2$ have been excluded in the first step!

Example: $\left(e^{2 y}-y\right) \cos x \frac{d y}{d x}=e^{y} \sin 2 x, y(0)=0$

- Solve the IVP by dividing both sides by $e^{y} \cos x$, then multiply both sides by $d x$, we have

$$
\begin{aligned}
& \frac{e^{2 y}-y}{e^{y}} d y=\frac{\sin 2 x}{\cos x} d x \\
& \int\left(e^{y}-y e^{-y}\right) d y=2 \int \sin x d x \\
& e^{y}+y e^{-y}+e^{-y}=-2 \cos x+c, y(0)=0 \\
& \longrightarrow c=4
\end{aligned}
$$

Linear First Order DE

- A first-order differential equation of the form:

$$
\begin{equation*}
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{1}
\end{equation*}
$$

is said to be a linear equation. When $g(x)=0$, the linear equation is said to be homogeneous, otherwise it is non-homogeneous.

- Dividing both side of (1) by the leading coefficient $a_{1}(x)$, we have the standard form:

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

Solving the $1^{\text {st }}$-Order Standard Form

- The solution of $d y / d x+P(x) y=f(x)$ can be derived by multiplying both sides of the equation by a special function $\mu(x)$. We want the function $\mu(x)$ to satisfy the property:

$$
\frac{d}{d x}[\mu(x) y]=\mu \frac{d y}{d x}+\frac{d \mu}{d x} y \equiv \mu\left(\frac{d y}{d x}+P(x) y\right)=\mu f(x) .
$$

Thus $d \mu / d x=\mu P(x) \rightarrow \mu=e^{[P(x) d x}$.
The function $\mu(x)$ is called the integrating factor.

Solution by Integrating Factors

- We can solve the DE by multiplying both sides of the standard form by $e^{[P(x) d x}$, thus:

$$
\begin{aligned}
& e^{\int P(x) d x} \frac{d y}{d x}+P(x) e^{\int P(x) d x} y=f(x) e^{\int P(x) d x} \\
& \longrightarrow \frac{d}{d x}\left[y e^{\int P(x) d x}\right]=f(x) e^{\int P(x) d x} \\
& \longrightarrow y e^{\int P(x) d x}=\int f(x) e^{\int P(x) d x} d x+c
\end{aligned}
$$

Dropping Integrating Factor Constant

. Note that you do not need to keep the constant when computing the anti-derivative of the integrating factor. Assume that $G(x)$ is the anti-derivative of $P(x)$, since

$$
e^{\int P(x) d x}=e^{G(x)+c}=c_{1} e^{G(x)},
$$

The constant $c_{1}=e^{c}$ will simply be cancelled out on both side of the differential equation.

Example: Solve $d y / d x-3 y=6$

- Solution:

$$
\begin{aligned}
& e^{\int(-3) d x}=e^{-3 x} \\
& \longrightarrow e^{-3 x} \frac{d y}{d x}-3 e^{-3 x} y=6 e^{-3 x} \\
& \longrightarrow \frac{d}{d x}\left[e^{-3 x} y\right]=6 e^{-3 x} \\
& \longrightarrow e^{-3 x} y=-2 e^{-3 x}+c \\
& \longrightarrow y=-2+c e^{3 x}, \quad-\infty<x<\infty
\end{aligned}
$$

General Solution on I

- If $P(x)$ and $f(x)$ in the standard form are continuous on an open interval I, then

$$
y=c e^{-\int P(x) d x}+e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x
$$

is a general solution of $d y / d x+P(x) y=f(x)$.
That is, every solutions on I has the form. In other words, there is no singular solution for the linear $1^{\text {st }}$ order differential equation on I.

Particular Solution on I

- Given an initial condition $y\left(x_{0}\right)=y_{0}$ to the linear first order DE $d y / d x+P(x) y=Q(x)$ on I where $P(x)$ and $Q(x)$ are continuous, the particular solution of the DE has the form:

$$
y(x)=e^{-\int_{x_{00}}^{x} P(t) d t}\left[y_{0}+\int_{x_{0}}^{x} e^{\int_{x_{0}}^{t} P(u) d u} Q(t) d t\right]
$$

Note that it is easy to verify that $y\left(x_{0}\right)=y_{0}$.

Example: $\left(x^{2}-9\right) d y / d x+x y=0$

- Solution:

$$
\frac{d y}{d x}+\frac{x}{x^{2}-9} y=0, \quad \therefore P(x)=\frac{x}{\left(x^{2}-9\right)}
$$

$P(x)$ is continuous on $(-\infty,-3),(-3,3)$, and $(3, \infty)$.
Thus, the integrating factor is:

$$
e^{\int \frac{x}{\left(x^{2}-9\right)} d x}=e^{1 / 2 \ln \left|x^{2}-9\right|}=\sqrt{\left|x^{2}-9\right|}, x \neq-3,3 .
$$

Therefore, $\frac{d}{d x}\left[\sqrt{\left|x^{2}-9\right| y}\right]=0$.

$$
\rightarrow \sqrt{\left|x^{2}-9\right|} y=c, x \neq-3,3 .
$$

Example: IVP $y^{\prime}+y=x, y(0)=4$

- Since $P(x)=1$ and $Q(x)=x$ are continuous on $(-\infty, \infty)$, we have integrating factor $e^{\int d x}=e^{x}$:

$$
\begin{aligned}
& \frac{d}{d x}\left[e^{x} y\right]=x e^{x} \\
& \longrightarrow y=(x-1)+c e^{-x},-\infty<x<\infty
\end{aligned}
$$

Example: Discontinuous $f(x)$

- Find a continuous function satisfying

$$
\frac{d y}{d x}+y=f(x), f(x)=\left\{\begin{array}{lr}
1, & 0 \leq x \leq 1 \\
0, & x>1
\end{array} \text { and } y(0)=0 .\right.
$$

Solution:

$$
y=\left\{\begin{array}{cc}
1-e^{-x}, & 0 \leq x \leq 1 \\
c_{2} e^{-x}, & x>1
\end{array}\right.
$$

\rightarrow find c_{2} so that

$$
\lim _{x \rightarrow 1^{+}} y(x)=y(1)
$$

Non-elementary Functions

- Some simple function do not possess antiderivatives that are elementary functions, and integrals of this kind of functions are called non-elementary.
- The integrations of non-elementary functions can only be solved by numerical methods.

Example:

$$
\begin{aligned}
& \int e^{-x^{2}} d x \\
& \int \sin x^{2} d x \\
& \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\end{aligned}
$$

Level Curves and Family of Solutions

- In multivariate calculus, for a function of two variables, $z=G(x, y)$, the curves defined by $G(x, y)=c(c$ is a constant) are called level curves of the function.

Level curves of $e^{y}+y e^{-y}+e^{-y}+2 \cos =c$

Solutions of IVPs

Differentials of Two-Variable Functions

- If $z=f(x, y)$ is a function of two variables with continuous first partial derivatives in a region R of the $x y$-plane, then its total differential is:

$$
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

If $f(x, y)=c$, we have:

$$
\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=0
$$

\rightarrow Given a one-parameter family of curves $f(x, y)=c$, we can derive a first order DE.

Example:

- If $x^{2}-5 x y+y^{3}=c$, then taking the differential gives

$$
(2 x-5 y) d x+\left(-5 x+3 y^{2}\right) d y=0
$$

Question: can we think reversely?

Exact Equations

- A differential expression $M(x, y) d x+N(x, y) d y$ is an exact differential in a region R of the $x y$-plane if it is the total differential of some function $f(x, y)$.
- A first-order differential equation of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be an exact equation if the expression on the left-hand side is an exact differential.

Criterion for an Exact Differential

- Theorem: Let $M(x, y)$ and $N(x, y)$ be continuous and have continuous first partial derivatives in a rectangular region R defined by $a<x<b, c<y<d$.

Then a necessary and sufficient condition that $M(x, y) d x+N(x, y) d y$ be an exact differential is

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} .
$$

Proof of the Necessity

- If $M(x, y) d x+N(x, y) d y$ is exact, there exists some function f such that for all x in R,

$$
M(x, y) d x+N(x, y) d y=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y .
$$

Therefore, $M(x, y)=\partial f / \partial x$, and $N(x, y)=\partial f / \partial y$, and

$$
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial N}{\partial x} .
$$

Proof of the Sufficiency (1/2)

- Note that we have

$$
\frac{\partial f}{\partial x}=M(x, y) \rightarrow f(x, y)=\int M(x, y) d x+g(y),
$$

where $g(y)$, shall be a function of y. Since we want

$$
\frac{\partial f}{\partial y}=N(x, y) \rightarrow N(x, y)=\frac{\partial}{\partial y} \int M(x, y) d x+g^{\prime}(y),
$$

therefore, $\quad g^{\prime}(y)=N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x$
If we can prove that $g^{\prime}(y)$ is a function of y alone, integrating $g^{\prime}(y)$ w.r.t. y, gives us the solution.

Proof of the Sufficiency (2/2)

- Since

$$
\frac{\partial}{\partial x}\left(N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x\right)=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}
$$

and $\partial M / \partial y=\partial N / \partial x$, we have $\partial / \partial x\left[g^{\prime}(y)\right]=0$.
Thus, $g^{\prime}(y)$ is a function of y alone.
In this case, the solution is

$$
f(x, y)=\int M(x, y) d x+\int\left(N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x\right) d y
$$

Observations

- The solution to an exact eq. $M(x, y) d x+N(x, y) d y=0$ is

$$
f(x, y)=\int M(x, y) d x+\int\left(N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x\right) d y=c
$$

where c is a constant parameter.

- The method of solution can start from $\partial f / \partial y=N(x, y)$ as well. Then, we have

$$
\begin{aligned}
f(x, y) & =\int N(x, y) d y+h(x) \\
h^{\prime}(x) & =M(x, y)-\frac{\partial}{\partial x} \int N(x, y) d y
\end{aligned}
$$

Example: $2 x y d x+\left(x^{2}-1\right) d y=0$

- Solution:

Since $M(x, y)=2 x y, N(x, y)=x^{2}-1$, we have $\partial M / \partial y=2 x=\partial N / \partial x$ so the equation is exact, and there exists $f(x, y)$ such that $\partial f / \partial x=2 x y$ and $\partial f / \partial y=x^{2}-1$.

Integrating the first equation $\rightarrow f(x, y)=x^{2} y+g(y)$
Take the partial derivative of y, equate it with $N(x, y)$, we have $x^{2}+g^{\prime}(y)=x^{2}-1$. Therefore, $g^{\prime}(y)=-1$, and $f(x, y)=x^{2} y-y$. The implicit solution is $x^{2} y-y=c$.

Example: An IVP of Exact Equation

- Solve

$$
\frac{d y}{d x}=\frac{x y^{2}-\cos x \sin x}{y\left(1-x^{2}\right)}, y(0)=2 .
$$

Solution:

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=-2 x y=\frac{\partial N}{\partial x} \\
& \rightarrow \frac{\partial f}{\partial y}=y\left(1-x^{2}\right), f(x, y)=\frac{y^{2}}{2}\left(1-x^{2}\right)+h(x) \\
& \rightarrow \frac{\partial f}{\partial x}=-x y^{2}+h^{\prime}(x)=\cos x \sin x-x y^{2} \\
& \rightarrow h(x)=-\int(\cos x)(-\sin x d x)=-\frac{1}{2} \cos ^{2} x
\end{aligned}
$$

Example: An IVP (cont.)

The implicit solution is $y^{2}\left(1-x^{2}\right)-\cos ^{2} x=c$.
Substitute the initial condition $y(0)=2$ into the implicit solution, we have $c=3$.

Integrating Factors for Exactness

- Can we multiply a non-exact equation by an integrating factors $\mu(x, y)$ to make it exact? That is, can we make

$$
\mu(x, y) M(x, y) d x+\mu(x, y) N(x, y) d y=0
$$

an exact differential equation? To achieve this goal, $\mu(x, y)$ must satisfy

$$
M \mu_{y}-N \mu_{x}+\left(M_{y}-N_{x}\right) \mu=0 .
$$

- In practice, a proper $\mu(x, y)$ is not easy to find unless it happens to be a function of x or y alone. If $\mu(x, y)=\mu(x)$,

$$
\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu \quad \rightarrow \text { Separable equation if }\left(M_{y}-N_{x}\right) / N \text { contains } x \text { alone. }
$$

Solution by Substitutions

- We can substitute $d y / d x=f(x, y)$ with $y=g(x, u)$, where u is a function of x, to solve for the solution.

By chain rule:

$$
\frac{d y}{d x}=g_{x}(x, u)+g_{u}(x, u) \frac{d u}{d x},
$$

then

$$
f(x, g(x, u))=g_{x}(x, u)+g_{u}(x, u) \frac{d u}{d x}
$$

We can then solve for $d u / d x=F(x, u)$. If $u=\phi(x)$ is the solution, then $y=g(x, \phi(x))$.

Homogeneous Equations (1/2)

I If $f(t x, t y)=t^{\alpha} f(x, y)$ for some real number α, then f is said to be a homogeneous equation of degree α.

Example: $f(x, y)=x^{3}+y^{3}$ is a homogeneous equation of degree 3.

- Similarly, a first-order DE in differential form

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be homogeneous if both M and N are homogeneous function of the same degree.

Homogeneous Equations (2/2)

- The meaning of "homogeneous" here is different from the "homogeneous" in Sec. 2.3.
- If M and N are homogeneous functions of degree α, we have:

$$
M(x, y)=x^{\alpha} M(1, u) \text { and } N(x, y)=x^{\alpha} N(1, u), u=y / x
$$ and

$$
M(x, y)=y^{\alpha} M(v, 1) \text { and } N(x, y)=y^{\alpha} N(v, 1), v=x / y
$$

- We can turn a homogeneous equation into a separable first order DE using substitution with either $y=u x$ or $x=$ νy.

Example: $\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$

- Solution:
M and N are $2^{\text {nd }}$-order homogeneous equation.
Let $y=u x$, then $d y=u d x+x d u$.
After substitution, we have

$$
\begin{aligned}
& \rightarrow\left(x^{2}+u^{2} x^{2}\right) d x+\left(x^{2}-u x^{2}\right)[u d x+x d u]=0 \\
& \rightarrow x^{2}(1+u) d x+x^{3}(1-u) d u=0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{1-u}{1+u} d u+\frac{d x}{x}=0 \rightarrow\left[-1+\frac{2}{1+u}\right] d u+\frac{d x}{x}=0 \\
& -u+2 \ln |1+u|+\ln |x|=\ln |c|
\end{aligned}
$$

Bernoulli's Equation

- The DE

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

where n is any real number, is called Bernoulli's equation. Note that for $n=0$ and $n=1$, it is linear. For any other n, the substitution $u=y^{1-n}$ reduces any equation of this form to a linear equation.

Example: $x d y / d x+y=x^{2} y^{2}$

- Solution:

$$
\frac{d y}{d x}+\frac{1}{x} y=x y^{2}
$$

substitute with $y=u^{-1}$ and $d y / d x=-u^{-2} d u / d x$.
$\rightarrow \frac{d u}{d x}-\frac{1}{x} u=-x$, the integrating factor on $(0, \infty)$
is $e^{-\int d x / x}=x^{-1}$, we have $\frac{d}{d x}\left[x^{-1} u\right]=-1$
$x^{-1} u=-x+c \rightarrow y=1 /\left(-x^{2}+c x\right)$.

Another Reduction to Separation

- ADE of the form

$$
\frac{d y}{d x}=f(A x+B y+C)
$$

can always be reduced to an equation with separable variables by means of the substitution $u=A x+B y+C, B \neq 0$.

Example: $d y / d x=(-2 x+y)^{2}-7, y(0)=0$

- Solution:

Let $u=-2 x+y$, then $d u / d x=-2+d y / d x$.
The DE can be reduced to $d u / d x=u^{2}-9$.

$$
\begin{aligned}
& \rightarrow \frac{d u}{(u-3)(u+3)}=d x \rightarrow \frac{1}{6}\left[\frac{1}{u-3}-\frac{1}{u+3}\right] d u=d x \\
& \rightarrow \frac{1}{6} \ln \left|\frac{u-3}{u+3}\right|=x+c_{1} \rightarrow \frac{u-3}{u+3}=c e^{6 x}, c=e^{6 c_{1}} \\
& \rightarrow y=2 x+\frac{3\left(1+c e^{6 x}\right)}{1-c e^{6 x}} \\
& \rightarrow y(0)=0, c=-1 .
\end{aligned}
$$

Numerical Methods

- The solution of a DE can be approximated using a tangent line:

Euler's Method

- One can solve the IVP: $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$, numerically using the following procedure:

1. Linearization of $y(x)$ at $x=x_{0}: L(x)=f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+y_{0}$
2. Replace x in the above equation with $x_{1}=x_{0}+h$, we have $L\left(x_{1}\right)=f\left(x_{0}, y_{0}\right)\left(x_{0}+h-x_{0}\right)+y_{0}$ or $y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right)$, where $y_{1}=L\left(x_{1}\right)$
3. If $h \rightarrow 0$ then $y_{1} \sim y\left(x_{1}\right)$
4. Use $\left(x_{1}, y_{1}\right)$ as a new starting point, we have $x_{2}=x_{1}+h=x_{0}+2 h$, and $y\left(x_{2}\right)=y_{1}+h f\left(x_{1}, y_{1}\right)$
5. Recursively, we have $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$, where $x_{n}=x_{0}+n h, n=0,1,2, \ldots$

Error Accumulations

- Numerical solutions are approximations to the exact solution of a DE \rightarrow approximation errors may become large when x is far away from the initial condition.

