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Solution Curves without Solving DE

 Sometimes, just by looking at the differential equation, 
we can learn useful information about its solutions:
 The solution curve  y = y(x) of a first order DE

dy/dx = f (x, y) on its interval of definition I must possess a 
tangent line at each point (x, y(x)), and must have no breaks.

 The slope of the tangent line at (x, y(x)) on a solution curve is 
the value of the first derivative dy/dx at this point.

 A (very small) line segment at (x, y(x)) that has the slope f (x, y)
is called lineal element of the solution curve.
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Example of Lineal Element

 Consider dy/dx = f (x, y) = 0.2xy, the slope of the lineal 
element of the solution curve at (2, 3) is f (2, 3) = 1.2.

x

y

Lineal element is tangent to
solution curve passes (2,3)

(2, 3)

solution
curve

tangent

x

y

Lineal element at (2, 3)

(2, 3)

slope = 1.2
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Direction Field

 The collection of the lineal elements on a rectangular 
grid on the xy-plane is called a direction field or a slope 
field of the DE dy/dx = f (x, y).

 A single solution curve on the x–y plane will follow the 
flow pattern of the slope field.
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The slope field of dy/dx = 0.2xy. Solution family:
21.0 xcey 
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Increasing/Decreasing of a Solution

 If dy/dx > 0 for all x on the interval of definition I, then 
the differentiable function y(x) is increasing on I.

 If dy/dx < 0 for all x on the interval of definition I, then 
the differentiable function y(x) is decreasing on I.
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Example: Approximating a Solution

 We can use a slope field to approximate the IVP,
dy/dx = sin y, y(0) =－3/2:
1) Define the direction field around y = 0

2) Constraint 1: the solution must pass (0, –3/2)

3) Constraint 2: the slope of the solution curve must be 0 when y
= 0 and y = –

 the solution curve can be
approximated as in the figure.
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Autonomous First-Order DEs

 A DE in which the independent variable does not 
appear explicitly is said to be autonomous.

 If x is the independent variable, an autonomous DE can 
be written as F(y, y') = 0, or dy/dx = f (y).

 Example: If y(t) is a function of time, then the following 
DE is autonomous and time-independent:

21 y
dt

dy

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Critical Points

 In dy/dx = f (y), if f(c) = 0, then c is called the critical 
point of the autonomous DE.  A critical point is also 
refer to as an equilibrium point or a stationary point.

 If c is a critical point of dy/dx = f (y), then y(x) = c is a 
constant solution of the autonomous equation.  This is 
also called an equilibrium solution.
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Example: Autonomous DE

 The DE, dP/dt = (a－bP)P, a > 0, b > 0, is autonomous.
Let (a－bP)P = 0, we have two critical points: 0 and a/b.

 The sign of f(P) = P(a－bP) can be shown in a phase 
portrait

a/b

0

P-axis
Interval Sign of f(P) P(t) Arrow

(–, 0) minus decreasing down

(0, a/b) plus Increasing Up

(a/b, ) minus decreasing down
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Solution Curve Properties

 The solution space can be divided into several regions 
by equilibrium solutions:
 y(x) is bounded

 f(y) > 0 or f(y) < 0 for all x in a sub region

 y(x) is strictly monotonic

 If y(x) is bounded above or
below by a critical point, y(x)
approaches this point either
as x   or as x  –.

10
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Example: dP/dt = P(a－bP) Revisited

P
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Example: dy/dx = (y – 1)2

1

y y

(0, 2)
y = 1

y

y = 1

(0, –1)
x x

increasing

increasing

(a) Phase line (b) xy-plane, y(0) < 1 (c) xy-plane, y(0) > 1
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Attractors and Repellers

 The solution curve of a first order DE near a critical 
point c exhibits one of the following three behaviors:
 Solution curves approach c from either sides.  c is called 

asymptotically stable or an attractor.

 All solution curves starts near c move away from c. c is called 
unstable critical point or a repeller.

 Solution curves approach c from one side and move away 
from c from the other side.  c is called semistable.
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Solution by Integration

 If the DE can be expressed in normal form, f(x, y) = g(x), 
the equation can be solved by integration.

Since,

Integrating both sides, we have:

where G(x) is the indefinite integral of g(x).

 xg
dx

dy


    cxGdxxgy  
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Example: Solution by Integration

 Solving the initial value problem

By integrating both sides, we have

.3)32()( 2 cxxdxxxy  

.2)1(,32  yx
dx

dy
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-10
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-2

0
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4

C = 2

C = 0

C = –2

C = –6

C = –4

Solution that passes through
the initial condition (1, 2) is
the curve with C = –2

Family of solution curves
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2nd-Order Solution by Integration

 If we have a second-order DE of the special form:

we have

where G is an anti-derivative of g and C1 is an arbitrary 
constant. Therefore,

where C2 is a second arbitrary constant.

),(
2

2

xg
dx

yd


,)()()( 1CxGdxxgdxxy  

  ,)()()()( 211 CxCdxxGdxCxGdxxyxy  

y
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Separable Equations (1/2)

 A first order DE of the form

is said to be separable or to have separable variables.
Divide both side by h(y), the DE becomes

Integrating both sides w.r.t. x, we have

        )(/1)(where, yhyfyfxgyhxg
dx

dy


   xg
dx

dy
yf 

    .)( Cdxxgdx
dx

dy
xyf  
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Separable Equations (2/2)

Cancelling the differential term dx, we have

If the two anti-derivatives

can be found, we have the family of equations

F(y(x)) = G(x) + C

that conforms to the differential equation.

    .Cdxxgdyyf  

     dxxgxGdyyfyF )(and)(
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Example: dy/dx ＝ –6xy, y(0) = 7

 Rearranging the equation, we have dy/y = –6xdx, 
therefore,

Thus |y| = e–3x2 eC1 or y = ±eC1 e–3x2.
We have, y = C2e–3x2, C2 = ±eC1 R.
However, y = 0 is also a solution.
Note that as C2  0, y  0.

Since y(0) = 7, the particular solution is y = 7e–3x2
.

.3ln

6/

1
2 Cxy

xdxydy



 
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Example: dy/dx ＝ –x/y, y(4) = –3

 Since  ydy = – xdx, we have y2/2 = –x2/2 + c1.

The solution must pass (4, –3), thus, c1 = 25/2.
 the solution is the lower half-circle of radius 5

centered at (0, 0).

x

y

(4, –3)

family of solutions:
x2 + y2 = C

A particular solution:
x2 + y2 = 25
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Losing a Solution

 Some care should be exercised when separating 
variables, since the variable divisors could be zero in 
some cases.

 If r is a zero of h(y), then y = r is a constant solution of 
the DE.  However, y = r may not show up in the family 
of solutions.  Recall that this is called a singular 
solution.

21
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Example: dy/dx = y2－4

 Since y2－4 is separable

 
dx

y

dy

42  












dxdy
yy 2

4/1

2

4/1

12ln
4
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4

1
cxyy 
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2

2
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2

2
ln 4

2
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y
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y

y




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

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Note: The solutions y = ±2 have been excluded in the first step!
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Example: (e2y – y)cos x = ey sin 2x, y(0) = 0

 Solve the IVP by dividing both sides by ey cos x, then 
multiply both sides by dx, we have

dx
x

x
dy

e

ye
y

y

cos

2sin2




    dxxdyyee yy sin2

0)0(,cos2   ycxeyee yyy

c = 4
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Linear First Order DE

 A first-order differential equation of the form:

(1)

is said to be a linear equation.  When g(x) = 0, the 
linear equation is said to be homogeneous, otherwise 
it is non-homogeneous.

 Dividing both side of (1) by the leading coefficient a1(x), 
we have the standard form:

)()()( 01 xgyxa
dx

dy
xa 

)()( xfyxP
dx

dy

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Solving the 1st-Order Standard Form

 The solution of dy/dx + P(x)y = f(x) can be derived by 
multiplying both sides of the equation by a special 
function (x). We want the function (x) to satisfy the 
property:

Thus d/dx = P(x)   = eP(x)dx.

The function (x) is called the integrating factor.

  ).()()( xfyxP
dx

dy
y

dx

d

dx

dy
yx

dx

d  





 
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Solution by Integrating Factors

 We can solve the DE by multiplying both sides of the 
standard form by eP(x)dx, thus:

 dxxPdxxPdxxP
exfyexP

dx

dy
e

)()()(
)()(





  dxxPdxxP

exfye
dx

d )()(
)(

cdxexfye
dxxPdxxP

 
)()(

)(
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Dropping Integrating Factor Constant

 Note that you do not need to keep the constant when 
computing the anti-derivative of the integrating factor.
Assume that G(x) is the anti-derivative of P(x), since

eP(x)dx = eG(x) + c = c1eG(x),

The constant c1 = ec will simply be cancelled out on 
both side of the differential equation.
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Example: Solve dy/dx – 3y = 6

 Solution:

xdx
ee 3)3( 



  xx eye
dx

d 33 6  

xxx eye
dx

dy
e 333 63  

ceye xx   33 2

 xcey x ,2 3
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General Solution on I

 If P(x) and f(x) in the standard form are continuous on 
an open interval I, then

is a general solution of dy/dx + P(x)y = f(x).

That is, every solutions on I has the form. In other 
words, there is no singular solution for the linear 1st

order differential equation on I.

 


dxxfeecey
dxxPdxxPdxxP

)(
)()()(
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Particular Solution on I

 Given an initial condition y(x0) = y0 to the linear first 
order DE dy/dx + P(x)y = Q(x) on I where P(x) and Q(x)
are continuous, the particular solution of the DE has 
the form:

Note that it is easy to verify that y(x0) = y0.











  
 x

x

duuPdttP

dttQeyexy
t

x

x

x

0

00 )()(
)(

0

)(
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Example: (x2–9)dy/dx + xy = 0

 Solution:

P(x) is continuous on (–, –3), (–3, 3), and (3, ).
Thus, the integrating factor is:

Therefore,

)9(
)(,0

9 22 





x

x
xPy

x

x

dx

dy

.3,3,929ln2/1)9(
22


  xxee

xdx
x

x

.092 



  yx

dx

d

.3,3,92  xcyx
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Example: IVP y' + y = x, y(0) = 4

 Since P(x) = 1 and Q(x) = x are continuous on (–, ), 
we have integrating factor edx = ex:

  xx xeye
dx

d


  xcexy x ,)1(

4

2

0

- 4

- 2

- 4 - 2 0 2 4

x

c = 0

y

c > 0

c < 0

0

32
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Example: Discontinuous f(x)

 Find a continuous function satisfying

and y(0) = 0.

Solution:

 find c2 so that









1,0

10,1
)(),(

x

x
xfxfy

dx

dy













1,

10,1

2 xec

xe
y

x

x

)1()(lim
1

yxy
x



f(x)

x

y

x
1
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Non-elementary Functions

 Some simple function do not possess antiderivatives 
that are elementary functions, and integrals of this kind 
of functions are called non-elementary.

 The integrations of non-elementary functions can only 
be solved by numerical methods.

Example:

dxe x  2

 dxx2sin

 
x t dtex

0

22
)(erf


34



/58

Level Curves and Family of Solutions

 In multivariate calculus, for a function of two variables, 
z = G(x, y), the curves defined by G(x, y) = c (c is a 
constant) are called level curves of the function.

Level curves of ey+ye–y+e–y+2cos = c Solutions of IVPs

x

y

2

1

-1

-2

-2 -1 1 2

-1

-2

x

y

2

1

-2 -1 1 2

c = 2

c = 4

(0, 0)

( /2, 0)
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Differentials of Two-Variable Functions

 If z = f (x, y) is a function of two variables with 
continuous first partial derivatives in a region R of the 
xy-plane, then its total differential is:

If f (x, y) = c, we have:

 Given a one-parameter family of curves f (x, y) = c,
we can derive a first order DE.

.dy
y

f
dx

x

f
dz










.0







dy
y

f
dx

x

f
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Example:

 If x2 – 5xy + y3 = c, then taking the differential gives

(2x – 5y) dx + (–5x + 3y2) dy = 0.

Question: can we think reversely?

37



/58

Exact Equations

 A differential expression M(x, y) dx + N(x, y) dy is an 
exact differential in a region R of the xy-plane if it is 
the total differential of some function f(x, y).

 A first-order differential equation of the form

M(x, y) dx + N(x, y) dy = 0

is said to be an exact equation if the expression on 
the left-hand side is an exact differential.
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Criterion for an Exact Differential

 Theorem: Let M(x, y) and N(x, y) be continuous and 
have continuous first partial derivatives in a rectangular 
region R defined by a < x < b, c < y < d.

Then a necessary and sufficient condition that
M(x, y) dx + N(x, y) dy be an exact differential is

.
x

N

y

M







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Proof of the Necessity

 If M(x, y) dx + N(x, y) dy is exact, there exists some 
function f such that for all x in R,

Therefore, M(x, y) = f/x, and N(x, y) = f/y, and 

.),(),( dy
y

f
dx

x

f
dyyxNdxyxM










.
2

x

N

y

f

xxy

f

x

f

yy

M








































40

#



/58

Proof of the Sufficiency (1/2)

 Note that we have

where g(y), shall be a function of y. Since we want

therefore,

If we can prove that g'(y) is a function of y alone, 
integrating g'(y) w.r.t. y, gives us the solution.

41

),(),(),(),( ygdxyxMyxfyxM
x

f







),(),(),(),( ygdxyxM
y

yxNyxN
y

f 












 dxyxM
y

yxNyg ),(),()(
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Proof of the Sufficiency (2/2)

 Since

and M/y = N/x, we have /x[g'(y)] = 0.
Thus, g'(y) is a function of y alone.

In this case, the solution is

42

y

M

x

N
dxyxM

y
yxN

x 





















 ),(),(

.),(),(),(),(   










 dydxyxM
y

yxNdxyxMyxf
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Observations

 The solution to an exact eq. M(x, y) dx + N(x, y) dy = 0 is

where c is a constant parameter.

 The method of solution can start from f/ y = N(x, y) as 
well.  Then, we have

  )(),(),( xhdyyxNyxf




 dyyxN
x

yxMxh ),(),()(
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Example: 2xy dx＋(x2 – 1)dy = 0

 Solution:
Since M(x, y) = 2xy, N(x, y) = x2 – 1, we have
M/y = 2x = N/x so the equation is exact,
and there exists f(x, y) such that f/x = 2xy and
f/y = x2 – 1.

Integrating the first equation f(x, y) = x2y + g(y)
Take the partial derivative of y, equate it with N(x, y),
we have x2 + g(y) = x2 – 1. Therefore, g(y) = –1, and
f (x, y) = x2y – y.  The implicit solution is x2y – y = c.

44



/58

Example: An IVP of Exact Equation

 Solve

Solution:

.2)0(,
)1(

sincos
2

2





 y

xy

xxxy

dx

dy

xxdxxxh 2
2
1 cos)sin)((cos)(  

x

N
xy

y

M








2

22 sincos)( xyxxxhxy
x

f







)()1(
2

),(),1( 2
2

2 xhx
y

yxfxy
y

f






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Example: An IVP (cont.)

The implicit solution is y2(1 – x2) – cos2x = c.
Substitute the initial condition y(0) = 2 into the implicit 
solution, we have c = 3.

y

x
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Integrating Factors for Exactness

 Can we multiply a non-exact equation by an integrating 
factors (x, y) to make it exact? That is, can we make

(x, y)M(x, y) dx + (x, y)N(x, y) dy = 0

an exact differential equation? To achieve this goal,
(x, y) must satisfy

My – Nx + (My – Nx) = 0.

 In practice, a proper (x, y) is not easy to find unless it 
happens to be a function of x or y alone. If (x, y) = (x),

47


N

NM

dx

d xy   Separable equation if (My – Nx)/N contains x alone.
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Solution by Substitutions

 We can substitute dy/dx = f (x, y) with y = g(x, u), where u
is a function of x, to solve for the solution.

By chain rule:

then

We can then solve for du/dx = F(x, u).
If u = (x) is the solution, then y = g(x, (x)).

,),(),(
dx

du
uxguxg

dx

dy
ux 

.),(),()),(,(
dx

du
uxguxguxgxf ux 
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Homogeneous Equations (1/2)

 If f(tx, ty) = tf(x, y) for some real number , then f is 
said to be a homogeneous equation of degree .

Example: f (x, y) = x3＋y3 is a homogeneous equation of 
degree 3.

 Similarly, a first-order DE in differential form

M(x, y)dx＋N(x, y)dy = 0

is said to be homogeneous if both M and N are 
homogeneous function of the same degree.

49



/58

Homogeneous Equations (2/2)

 The meaning of “homogeneous” here is different from 
the “homogeneous” in Sec. 2.3.

 If M and N are homogeneous functions of degree , we 
have:
M(x, y) = xM(1, u) and N(x, y) = xN(1, u), u = y/x
and
M(x, y) = yM(v, 1) and N(x, y) = yN(v, 1), v = x/y

 We can turn a homogeneous equation into a separable 
first order DE using substitution with either y = ux or x = 
vy.
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Example: (x2＋y2)dx＋(x2－xy)dy = 0

 Solution:
M and N are 2nd-order homogeneous equation.
Let y = ux, then dy = u dx＋x du.
After substitution, we have

 (x2＋u2x2)dx＋(x2－ux2)[u dx＋x du] = 0
 x2 (1＋u)dx＋x3 (1－u) du = 0

Therefore

0
1

2
10

1

1












x

dx
du

ux

dx
du

u

u

cxuu lnln1ln2 
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Bernoulli’s Equation

 The DE

where n is any real number, is called Bernoulli’s 
equation.  Note that for n = 0 and n = 1, it is linear.  For 
any other n, the substitution  u = y1–n reduces any 
equation of this form to a linear equation.

nyxfyxP
dx

dy
)()( 
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Example: x dy/dx + y = x2y2

 Solution:

,

substitute with y = u–1 and dy/dx = –u–2du/dx.

, the integrating factor on (0, )

is e–dx/x = x–1, we have 

x–1u = –x + c  y = 1/(– x2 + cx).

21
xyy

xdx

dy


xu
xdx

du


1

  11  ux
dx

d

53



/58

Another Reduction to Separation

 A DE of the form

can always be reduced to an equation with separable 
variables by means of the substitution
u = Ax＋By＋C,  B ≠ 0.

)( CByAxf
dx

dy

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Example: dy/dx = (–2x + y)2 – 7, y(0) = 0

 Solution:
Let u =－2x＋y, then du/dx =－2＋dy/dx.
The DE can be reduced to du/dx = u2－9.

dxdu
uu

dx
uu

du

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Numerical Methods

 The solution of a DE can be approximated using a 
tangent line:
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Euler’s Method

 One can solve the IVP: y’ = f(x, y), y(x0) = y0,
numerically using the following procedure:

1. Linearization of y(x) at x = x0: L(x) = f(x0, y0)(x – x0) + y0

2. Replace x in the above equation with x1 = x0 + h, we have
L(x1) = f (x0, y0)(x0 + h – x0) + y0 or y1 = y0 + hf (x0, y0),
where y1 = L(x1)

3. If h  0 then y1 ~ y(x1)

4. Use (x1, y1) as a new starting point, we have
x2 = x1 + h = x0 + 2h, and y(x2) = y1 + hf(x1, y1)

5. Recursively, we have yn+1 = yn + hf(xn, yn), where
xn = x0 + nh, n = 0, 1, 2, …
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Error Accumulations

 Numerical solutions are approximations to the exact 
solution of a DE  approximation errors may become 
large when x is far away from the initial condition.
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