Introduction to Differential Equations

National Chiao Tung University Chun-Jen Tsai 9/9/2019

Outline of the Course ${ }^{\dagger}$

- Introduction to differential equations (Chapter 1)
- First-order differential equations (Chapter 2)
- Higher-order differential equations (Chapter 4)
- Modeling with Higher-order differential equations (Chapter 5)
- The Laplace transform (Chapter 7) \leftarrow midterm around this point!
- Systems of linear $1^{\text {stt_order differential equations (Chapter 8) }}$
- Power series methods (Chapter 6)
- Fourier series methods (Chapter 11)
- Partial differential equations (Chapter 12)

Textbook and Grading Policy

－Textbook：
－Dennis G．Zill，Differential Equations with Boundary－Value Problems，9th edition，2018，Cengage Learning．
（高立圖書代理，顔俊杰 0921－456030）
－An alternative textbook：
Dennis G．Zill，Differential Equations with Modeling
Applications，11th edition，2018，Cengage Learning．
（華泰文化，蕭瑀倢 0933－838337）
\square Grading is based on
－Pop Quizzes（25\％）－from homework assignments
－Mid－terms exam（35\％）－on 11／4／2019
－Final exam（ 40% ）－on $1 / 6 / 2020$

Before You Move On ...

- Homework \#0: Check out the following video:

Raffaello D'Andrea's TED talks

The astounding athletic power of quadcopters. Jun 2013

I will be asking you questions on this video in our next class!

Differential Equations

- Definition:

An equation containing the derivatives of one or more dependent variables, with respect to one or more independent variables, is said to be a differential equation (DE).

- Example:

In this course, given a blue equation (behavior of a phenomenon),
you want to find out the red equation (the governing rule) behind it

Why Differential Equations

- For dynamic phenomena, we want to predict their longterm behavior by observing and measuring their shortterm behavior
- Long-term behavior of a dynamic system is defined by its underlying rule \rightarrow hard to measure
- Short-term behavior of a dynamic system is described by its changing characteristics (derivatives) \rightarrow easier to measure

Classification of DE by Type

- Ordinary differential equation (ODE): an equation contains only ordinary derivatives of one or more dependent variables with respect to a single independent variable

$$
\frac{d y}{d x}+5 y=e^{x}
$$

- Partial differential equation (PDE): an equation involving the partial derivatives of one or more dependent variables of two or more independent variables

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}-2 \frac{\partial u}{\partial t}
$$

Classification of DE by Order

- The order of a differential equation is the order of the highest derivative in the equation.

$$
\begin{aligned}
& \text { 2nd order } \quad \text { 1st order } \\
& \frac{d^{2} y}{d x^{2}}+5\left(\frac{d y}{d x}\right)^{3}-4 y=e^{x} .
\end{aligned}
$$

- An $n^{\text {th }}$-order ODE with one dependent variable can be expressed in the general form:

$$
\begin{aligned}
& F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0 \\
& \text { a real-valued function of } n+2 \text { variables }
\end{aligned}
$$

Normal Form of ODE

- $F()$ can be expressed in general in the normal form:

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots ., y^{(n-1)}\right)
$$

where f is a real-valued function with $n+1$ variables.
For example, the normal forms of the first order and the $2^{\text {nd }}-$ order ODEs are:

$$
\begin{aligned}
\frac{d y}{d x} & =f(x, y) \\
\frac{d^{2} y}{d x^{2}} & =f\left(x, y, y^{\prime}\right)
\end{aligned}
$$

Classification of DE by Linearity

- An n th-order ODE, F, is said to be linear if F is linear in $y, y^{\prime}, \ldots, y^{(n)}$. That is, F can be expressed as:

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

where $a_{i}(x), i=0, \ldots, n$ depend on the independent variable x only

- Example:
- $(y-x) d x+4 x d y=0$
- $y^{\prime \prime}-2 y^{\prime}+y=0$
- $\frac{d^{3} y}{d x^{3}}+3 x \frac{d y}{d x}-5 y=e^{x}$

Nonlinear ODE

- A differential equation with nonlinear functions of the dependent variable or its derivatives.
- Examples: If y is the dependent variable,
- $(1-y) y^{\prime}+2 y=e^{x}$
- $d^{2} y / d x^{2}+\sin y=0$
- $y^{(4)}+y^{2}=0$

Solution of an ODE

- Definition: a solution of an ODE is a function $y(x)$, defined on an interval I and possessing at least n derivatives that are continuous on I, which when substituted into an $n^{\text {th }}$-order ODE reduces the equation to an identity.
- That is, a solution $y(x)$ of F satisfies:

$$
F\left(x, y(x), y^{\prime}(x), y^{\prime \prime}(x), \ldots, y^{(n)}(x)\right)=0, \forall x \in I .
$$

- If an ODE has a solution $y(x)=0, \forall x \in I$, then it is called the trivial solution of the ODE.

All Roads Lead to Rome

- If we have a function y :

$$
y(x)=C e^{x^{2}}, \quad C \in R .
$$

Then,

$$
\frac{d y}{d x}=C\left(2 x e^{x^{2}}\right)=2 x\left(C e^{x^{2}}\right)=2 x y .
$$

Thus, it doesn't matter what the constant C is, $y=C e^{x^{2}}$ is a solution of the $\mathrm{DE} d y / d x=2 x y$.

- Often, a differential equation alone has many solutions; more information is required to resolve ambiguity

Solution is not Guaranteed

- Expressing a phenomenon as a differential equation does not guarantee that it has a solution. Obviously,

$$
\left(y^{\prime}\right)^{2}+y^{2}=-1
$$

has no (real-valued) solution.

Interval of Definition

- A solution of an ODE includes a function $y(x)$ and the interval of definition, I.
- I is usually referred to as the interval of definition, the interval of existence, the interval of validity, or the domain of the solution.
- I can be an open interval (a, b), a closed interval $[a, b]$, an infinite interval (a, ∞), and so on.

Solution Curve

- The graph of a solution $y(x)$ of an ODE is called a solution curve. Since $y(x)$ is a differentiable function, it is continuous on its interval of definition.
- There maybe a difference between the graph of $y(x)$ and the graph of the solution of the ODE.

$y=1 / x, x \neq 0$

$y=1 / x,(0, \infty)$

Explicit and Implicit Solutions

- Definition: A solution in which the dependent variable is expressed solely in terms of the independent variable and constants is called an explicit solution.
- Definition: An equation $G(x, y)=0$ is said to be an implicit solution of an ODE on an interval I provided that there exists at least one function y that satisfies the relation as well as the differential equation on I.

Verification of an Implicit Solution

- Example:

The relation $x^{2}+y^{2}=25$ is the implicit solution of the differential equation $d y / d x=-x / y$ on the interval $-5<x<5$

Verification:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(25) & \longrightarrow \quad 2 x+2 y \frac{d y}{d x}=0 \\
& \longrightarrow \quad \frac{d y}{d x}=-x / y
\end{aligned}
$$

Solving for Explicit Solution

- One can solve an implicit solution for explicit solutions. In the previous example,

Implicit solution
$x^{2}+y^{2}=25$

Explicit solution 1
$y_{1}=\sqrt{25-x^{2}},-5<x<5$

Explicit solution 2
$y_{2}=-\sqrt{25-x^{2}},-5<x<5$

Families of Solutions

- A solution to a $1^{\text {st-}}$-order DE containing an arbitrary constant represents a set $G(x, y, c)=0$ of solutions is called a one-parameter family of solutions.
- For $n^{\text {th }}$-order DE, an n-parameter family of solutions can be represented as

$$
G\left(x, y, c_{1}, c_{2}, \ldots, c_{n}\right)=0
$$

If the parameters $c_{1}, c_{2}, \ldots, c_{n}$ are resolved, then it's called a particular solution of the DE.

- Example:
$y-c x=0$ is a family of solutions of $x y^{\prime}-y=0$.

Singular Solutions

- Definition: A singular solution is a solution that cannot be obtained by specializing any of the parameters in the family of solutions.
- Example:

Both $y=x^{4} / 16$ and $y=0$ are solutions of $d y / d x=x y^{1 / 2}$ on the interval $(-\infty, \infty)$. The ODE possesses the family of solutions $y=\left(x^{2} / 4+c\right)^{2}$. However, $y=0$ is not in the family of solutions.

General Solutions

- Definition: If every solution of an $n^{\text {th }}$-order ODE $F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0$ on an interval I can be obtained from an n-parameter family of equations $G\left(x, y, c_{1}, c_{2}, \ldots, c_{n}\right)=0$ by appropriate choices of the parameters $c_{i}, i=1,2, \ldots, n$, we then say that the n parameter family of equation is the general solution of the D.E.

Example: Two-Parameter Family

- The functions $x=c_{1} \cos 4 t$ and $x=c_{2} \sin 4 t$, where c_{1} and c_{2} are arbitrary constants, are solutions of $x "+16 x=0$.

For $x=c_{1} \cos 4 t$, the first two derivatives w.r.t. t are $x^{\prime}=-4 c_{1} \sin 4 t$ and $x^{\prime \prime}=-16 c_{1} \cos 4 t$.

Substituting x " and x^{\prime} into the DE gives

$$
x^{\prime \prime}+16 x=-16 c_{1} \cos 4 t+16\left(c_{1} \cos 4 t\right)=0 .
$$

Similarly, for $x=c_{2} \sin 4 t$, we have

$$
x^{\prime \prime}+16 x=-16 c_{2} \sin 4 t+16\left(c_{2} \sin 4 t\right)=0 .
$$

Their linear combinations are a family of solutions.

Example: Piecewise Solutions

- One can verify that $y=c x^{4}$ is a solution of $x y^{\prime}-4 y=0$ on the interval $(-\infty, \infty)$. The following piecewise defined solution is a particular solution of the ODE:

$$
y=\left\{\begin{array}{cc}
-x^{4}, & x<0 \\
x^{4}, & x \geq 0
\end{array}\right.
$$

- This particular solution cannot be obtained by a single choice of c.

Initial Value Problem

- Definition:

On some interval I containing x_{0}, the problem:
Solve: $\quad \frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)$
Subject to: $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$,
where $y_{0}, y_{1}, \ldots, y_{n-1}$, are arbitrarily specified real constants, is called an initial value problem (IVP).
The values of $y(x)$ and its first $n-1$ derivatives at x_{0} are called initial conditions.

First Order IVP

- A first order IVP tries to solve $d y / d x=f(x, y)$, subject to $y\left(x_{0}\right)=y_{0}$. In geometric term, we are seeking a solution so that the solution curve passes through the prescribed point $\left(x_{0}, y_{0}\right)$.

Second Order IVP

\square A second order IVP tries to solve $d^{2} y / d x^{2}=f\left(x, y, y^{\prime}\right)$, subject to $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}$. In geometric term, we are seeking a solution so that the solution curve not only passes through the prescribed point (x_{0}, y_{0}), but also with a slope y_{1} at this point.
solutions of the DE

Example: 1st-Order IVPs

- It is easy to verify that $y=c e^{x}$ is a one-parameter family of solutions of the simple first-order equation $y^{\prime}=y$ on the interval $(-\infty, \infty)$. If $y(0)=3$, we have

$$
3=c e^{0}=c
$$

$\rightarrow y=3 e^{x}$ is a solution of IVP:

$$
y^{\prime}=y, y(0)=3 .
$$

Existence of Unique Solution

- Two key questions of solving an IVP are:
- Do solutions exist for the differential equation?
- Given an initial condition, is the solution unique?
- Examples:
- The IVP $y^{\prime}=1 / x, y(0)=0$ has no solution. By integration, we have $y(x)=\ln |x|+c$; but $\ln |x|$ is not defined at 0 !
- The IVP $d y / d x=x y^{1 / 2}, y(0)=0$ has at least two solutions: $y=0$ and $y=x^{4} / 16$.

Example: Multiple IVP Solutions (1/2)

- Consider the IVP $d y / d x=x y^{1 / 2}, y(0)=0$:

The DE has a constant solution $y=0$ and a family of solution

$$
y=\left(\frac{x^{2}}{4}+c\right)^{2} .
$$

The IVP has infinite solutions:
For any $a \geq 0$,

$$
y= \begin{cases}0, & x<a \\ \left(x^{2}-a^{2}\right)^{2} / 16, & x \geq a\end{cases}
$$

Example: Multiple IVP Solutions (2/2)

- Consider only the case $c \leq 0$, let $c=-b, b \geq 0$:

$$
y=\left(\frac{x^{2}}{4}+c\right)^{2}
$$

$$
\begin{aligned}
y & =\left(\frac{x^{2}}{4}-\frac{4 b}{4}\right)^{2} \\
& =\left(\frac{x^{2}-(2 \sqrt{b})^{2}}{4}\right)^{2} \\
& =\left(x^{2}-a^{2}\right)^{2} / 16, \quad a=2 \sqrt{b}
\end{aligned}
$$

Existence and Uniqueness Theorem

- Theorem: Let R be a rectangular region in the $x y$-plane defined by $a \leq x \leq b, c \leq y \leq d$, that contains the point $\left(x_{0}, y_{0}\right)$ in its interior. If $f(x, y)$ and $\partial f / \partial y$ are continuous on R, there exist some interval $I_{0}: x_{0}-h<x<x_{0}+h, h>0$, contained in $a \leq x \leq b$, and a unique function $y(x)$ defined on I_{0} that is a solution of the first-order initialvalue problem:

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} .
$$

Example:

- Again, let's revisit the IVP: $d y / d x=x y^{1 / 2}, y(0)=0$. Since

$$
f(x, y)=x y^{1 / 2}
$$

and

$$
\partial f / \partial y=x /\left(2 y^{1 / 2}\right),
$$

they are continuous in the upper half-plane defined by $y>0$. Therefore, for any $\left(x_{0}, y_{0}\right), y_{0}>0$, there is an interval centered at x_{0} on which the given DE has a unique solution.

However, There is no unique solution for the IVP since $\partial f / \partial y$ is undefined at $(0,0)$.

DE as Mathematical Models

Natural Growth and Decay Models

- The differential equation

$$
\frac{d x}{d t}=k x, \text { where } k \text { is a constant. }
$$

is a widely used model for natural phenomena whose rate of change over time is proportional to its current population \rightarrow what is the solution?

- If a population has birth and death rates β and δ, respectively. The differential change in size $P(t)$ of the population changes is

$$
\frac{d P}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\beta P(t) \Delta t-\delta P(t) \Delta t}{\Delta t}=(\beta-\delta) P .
$$

Falling Bodies

- Newton's second law of motion: $F=m a$
- Question: what is the position $s(t)$ of the rock relative to the ground at time t ?

Acceleration of the rock: $d^{2} s / d t^{2}$
$\rightarrow m \frac{d^{2} s}{d t^{2}}=-m g \rightarrow \frac{d^{2} s}{d t^{2}}=-g$
Model: $d^{2} s / d t^{2}=-g, s(0)=s_{0}, s^{\prime}(0)=v_{0}$.
Solution: $s(t)=-g t^{2} / 2+v_{0} t+s_{0}$

ground

Torricelli's Model of a Draining Tank

- Torricelli's Law of draining tank:

$$
\frac{d V}{d t}=-a c \sqrt{2 g y} .
$$

Derivation: Torricelli assumes that a drop of water from the surface escapes the hole at the speed

$$
v=c \sqrt{2 g y} .
$$

Series Circuit

- If $i(t)=d q / d t$ is the electric current across the circuit, the voltage drops across different electric components are:
- Inductor: $v=L \frac{d i}{d t}$
- Resister: $v=R i$
- Capacitor: $v=\frac{1}{C} q$

- Kirchhoff's second law of circuits:

Voltage drop = Impressed Voltage, that is:

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=E(t)
$$

