Exercise 11.1

8. Hint: show that for $m \neq n, \int_{0}^{\pi / 2} \cos (2 n+1) x \cos (2 m+1) x d x=0$. The norm is

$$
\|\cos (2 n+1) x\|=\frac{1}{2} \sqrt{\pi} .
$$

25. Hint: For (b), we must show that not all real-value functions can be represented as a linear combination of $\sin n x, n=1,2,3, \ldots$, on the interval $[-\pi, \pi]$. For example, $f(x)=1$ cannot be represented as a linear combination of $\{\sin n x\}$ because it is orthogonal to $\sin n x$ for any n on the interval $[-\pi, \pi]$.

Exercise 11.2

7. Solution: $f(x)=\pi+\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} \sin n x$.
$f(x)$ is continuous on the interval.
8. Solution: $f(x)=\frac{1}{\pi}+\sum_{n=1}^{\infty}\left[\frac{2(-1)^{n+1}}{\pi\left(4 n^{2}-1\right)} \cos 2 n x+\frac{4 n}{\pi\left(4 n^{2}-1\right)} \sin 2 n x\right]$.
$f(x)$ is discontinuous at $x=0$ and converges to $1 / 2$ there.
9. Hint: Let $x=\pi / 2$ and substitute it into the Fourier series expansion of $f(x)$:

$$
\frac{3 \pi}{2}=f\left(\frac{\pi}{2}\right)=\pi+\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} \sin \frac{n \pi}{2}
$$

Exercise 11.3

16. Solution: $f(x)=\sum_{n=1}^{\infty}\left(\frac{2(-1)^{n+1}}{n \pi}+\frac{4}{n^{3} \pi^{3}}\left[(-1)^{n}-1\right]\right) \sin n \pi x$.
17. Solution: Cosine expansion: $f(x)=\frac{2}{\pi}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{\pi\left(1-4 n^{2}\right)} \cos 2 n x$.

Sine expansion: $\quad f(x)=\sum_{n=1}^{\infty} \frac{8 n}{\pi\left(4 n^{2}-1\right)} \sin 2 n x$
44. Solution: $x_{p}(t)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n\left(10-n^{2} \pi^{2}\right)} \sin n \pi t$.

