
Exercise 11.1 

8. Hint: show that for m  n, ∫ cos(2𝑛 + 1)𝑥 cos(2𝑚 + 1)𝑥 𝑑𝑥
/

= 0. The norm is 
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25. Hint: For (b), we must show that not all real-value functions can be represented as a linear 

combination of sin nx, n = 1, 2, 3, …, on the interval [–, ]. For example, f(x) = 1 cannot 
be represented as a linear combination of { sin nx } because it is orthogonal to sin nx for 

any n on the interval [–, ]. 

 

Exercise 11.2 

7. Solution: 
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               f(x) is continuous on the interval. 

10. Solution: 
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               f(x) is discontinuous at x = 0 and converges to ½ there. 

21. Hint: Let x = /2 and substitute it into the Fourier series expansion of f(x): 

       = 𝑓 = 𝜋 + ∑ (−1) sin . 

 

Exercise 11.3 

16. Solution:  
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27. Solution: Cosine expansion: 
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                      Sine expansion:     
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44. Solution: 
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