Exercise 6.1

30. Solution: $\sum_{k=0}^{\infty}\left[k(k+2) c_{k}+2(k+1)(k+2) c_{k+2}\right] x^{k}$.
31. Solution: $y=c_{0} \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{x^{2}}{2}\right)^{n}$.

Exercise 6.2

10. Solution: $y_{1}=1-x^{2}$ and $y_{2}=x+\sum_{n=1}^{\infty} \frac{-1 \cdot 1 \cdot 3 \cdot 5 \cdots(2 n-3)}{(2 n+1)!} x^{2 n+1}$.
11. Solution: $y=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}$.
12. Hint: you can let $c_{0}=1$ and $c_{1}=0$ first to solve for the first particular solution, then let $c_{0}=0$ and $c_{1}=1$ to solve for the second solution.
Solution: $y_{1}=1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\cdots$ and $y_{2}=x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\cdots$.

Exercise 6.3

16. Hint:

The two lowest degrees of x are as follows:

$$
[2 r(r-1)+5 r] c_{0} x^{r-1}+[2 r(r+1)+5(r+1)] c_{1} x^{r}=0 .
$$

If we assume $c_{0} \neq 0$, then $r=0$ or $-3 / 2$, and $c_{1}=0$.
For $r=0$, we have $c_{n}=-\frac{c_{n-2}}{n(2 n+3)}, \quad n=2,3,4, \ldots$.
For $r=-3 / 2$, we have $c_{n}=-\frac{c_{n-2}}{(2 n-3) n}, \quad n=2,3,4, \ldots$.
In addition, $c_{1}=c_{3}=c_{5}=\ldots=0$.
Solution: $y=a_{0}\left[1+\sum_{k=1}^{\infty} \frac{(-1)^{k}}{2^{k} k![7 \cdot 11 \cdots(4 k+3)]} x^{2 k}\right]+a_{1} x^{-3 / 2}\left[1+\sum_{k=1}^{\infty} \frac{(-1)^{k}}{2^{k} k![1 \cdot 5 \cdot 4 k-3]} x^{2 k}\right]$.
32. Hint: For $r_{2}=0$, we have $-(n-4) c_{n}+(n-3) c_{n-1}=0, n=1,2,3, \ldots$ Solution: $y=c_{0}\left(1+\frac{2}{3} x+\frac{1}{3} x^{2}\right)+c_{4} \sum_{n=4}^{\infty}(n-3) x^{n}$.

Exercise 6.4

11. Hint: The Bessel's equation is $x^{2} v^{\prime \prime}+x v^{\prime}+\left(\alpha^{2} x^{2}-1 / 4\right) v=0$.

Solution: $y=c_{1} x^{-\frac{1}{2}} J_{\frac{1}{2}}(\alpha x)+c_{2} x^{-\frac{1}{2}} J_{-\frac{1}{2}}(\alpha x)$.
35. Hint: $\frac{d x}{d t}=\frac{d x}{d s} \frac{d s}{d t}=\frac{d x}{d s}\left(-\sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right), \frac{d^{2} x}{d t^{2}}=\frac{d x}{d s}\left(\frac{\alpha}{2} \sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right)+\frac{d^{2} x}{d s^{2}}\left(\frac{k}{m} e^{-\alpha t}\right)$.

