Exercise 7.4

10. Solution: $\mathscr{R}\{y\}=\frac{2}{\left((s-1)^{2}+1\right)^{2}}, y=e^{t} \sin t-t e^{t} \cos t$.
11. Hint: The differential equation will be transformed into another differential equation in the Laplace domain. You can solve the differential equation in the Laplace domain by the first-order differential equation solution techniques. Then, you can transform the solution back to the time domain.

Solution: $y(t)=2 t^{3} / 3+c_{1} t^{2}$.
34. Solution: $\frac{3 s+1}{s^{2}(s+1)^{3}}$.
44. Solution: $f(t)=4 e^{-t}-7 t e^{-t}+4 t^{2} e^{-t}$.

Exercise 7.5

4. Solution: $y(t)=(1 / 4) \sin 4 t \cdot u(t-2 \pi)$.
5. Solution: $y=(t-1) e^{-(t-1)} u(t-1)$.
6. Solution: Disagree. Hint: check the initial conditions. Although the two equations are the same in the Laplace domain, one of the D.E. has no solution to the IVP.

Exercise 8.2

2. Solution: $\mathbf{X}(t)=c_{1}\binom{-2}{1} e^{t}+c_{2}\binom{1}{1} e^{4 t}$.
3. Solution: $\mathbf{X}(t)=c_{1}\binom{3}{2} e^{6 t}+c_{2}\left[\binom{3}{2} t e^{6 t}+\binom{1 / 2}{0} e^{6 t}\right]$.
4. Solution: $\mathbf{X}(t)=2 \cdot\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right) e^{-t}+3 \cdot\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) e^{t}+2 \cdot\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) e^{t}$.

Exercise 8.3

5. Solution: $\mathbf{X}(t)=c_{1}\binom{1}{-3} e^{3 t}+c_{2}\binom{1}{9} e^{7 t}+\binom{55 / 36}{-19 / 4} e^{t}$.
6. Solution: $\mathbf{X}(t)=c_{1}\binom{-\sin t}{\cos t} e^{t}+c_{2}\binom{\cos t}{\sin t} e^{t}+\binom{\cos t}{\sin t} t e^{t}$.
7. Solution: $\mathbf{X}(t)=\binom{3}{3} t-\binom{1}{4}+\binom{1}{1} \ln t$.

Exercise 8.4

10. Hint: $e^{-\mathbf{A} t}=\left(\begin{array}{cc}e^{-t} & 0 \\ 0 & e^{-2 t}\end{array}\right)$. Solution: $\mathbf{X}(t)=c_{1}\binom{1}{0} e^{t}+c_{2}\binom{0}{1} e^{2 t}+\binom{-t-1}{\frac{1}{2} e^{4 t}}$.
11. Hint: $e^{-\mathbf{A} t}=\left(\begin{array}{cc}2 e^{3 t}-e^{2 t} & -2 e^{3 t}+2 e^{2 t} \\ e^{3 t}-e^{2 t} & -e^{3 t}+2 e^{2 t}\end{array}\right)$. Solution: $\mathbf{X}(t)=c_{1}\binom{2}{1} e^{3 t}+c_{2}\binom{1}{1} e^{2 t}$.
