Exercise 2.5

6. Solution: $x^{2} y=c(y+2 x)$.
7. Hint: let $x=v y$. Solution: $y \ln |x / y|=-e$.
8. Solution: $y^{3 / 2}=1+7 e^{-3 x / 2}$.
9. Solution: $(x+y)^{2}=2 x+c$.
10. Hint: since $M(t x, t y)=t^{\alpha} M(x, y)$, let $t=1 / x$.
11. Hint: Let $u=\ln y$. Solution: $y=e^{c x-1} x$.

Exercise 4.1

14. Solution: (a) Not possible (b) Not possible (c) $y=c_{1} x^{2}-\left(c_{1}+3\right) x^{4}+3$ (d) $y=-x^{2}+x^{4}+3$.
15. Solution: Since $1 \cdot \cos 2 x+1 \cdot 1+(-2) \cdot \cos ^{2} x=0$ the set of functions is linearly dependent.
16. Solution: (b) The first solution is $y_{p}=x^{2}+3 x+3 e^{2 x}$, and the second solution is $y_{p}=-2 x^{2}-6 x-(1 / 3) e^{2 x}$.
17. Hint for (a) and (b): discuss the two cases when $x \geq 0$ and $x<0$.

Solution for (e): Neither is the general solution on $(-\infty, \infty)$. They are the general solution on an interval for which $a_{2}(x) \neq 0$ for every x in the interval.

