Exercise 2.2

- 8. Hint: By integration by parts, we have $ye^{y} e^{y} + e^{-x} + \frac{1}{3}e^{-3x} = c$.
- 11. Hint: $\cos^2 x = (1 + \cos 2x)/2$. The solution is $4 \cos y = 2x + \sin 2x + c$.
- 24. Solution: y = x.
- 29. Solution: $y(x) = e^{\int_{4}^{x} e^{-t^2} dt}$.

46. Hint: Let $u = \sqrt{x}$. The solution is $y = 3^{2/3} \left(-\sqrt{x} \cos \sqrt{x} + \sin \sqrt{x} + c \right)$.

55. Hint: Use the table of integration. The solution is $y = \pm \sin(x + c)$ and $y = \pm 1$.

Exercise 2.3

- 6. Solution: $y = \frac{1}{2}x^2 \frac{1}{2} + ce^{-x^2}$ for $-\infty < x < \infty$. The transient tern is ce^{-x^2} .
- 24. Solution: y = [(x + c)(x + 1)]/(x 1). The largest interval of definition can be $(-\infty, -1)$, (-1, 1), or $(0, \infty)$, depending on where your initial condition is. There is no transient term.

34. Solution:
$$y = \frac{\ln x}{x+1} + \frac{e}{x+1}$$
, for $I = (0, \infty)$.

- 49. Solution: y' = 4 y.
- 53. Solution: The left-hand derivative of the function at x = 1 is 1 = e and the right-hand derivative at x = 1 is 1 1/e. Thus, y is not differentiable at x = 1.

Exercise 2.4

- 4. Solution: $x \sin y + y \cos x \frac{1}{2} y^2 = c$.
- 14. Solution: $x + y + xy 3 \ln |xy| = c$.
- 26. Hint: use the integration table for $1/(1 + y^2)$. Solution: $xy^2 y \cos x \tan^{-1} y = -1 \pi/4$.
- 35. Solution: $\frac{10}{3}e^{3x} 2ye^{3x} + x = c$.
- 40. No. For the interval where the integrating factor $\mu = 0$, the second equation may have a solution y(x) that is not a solution of the first equation.
- 43. Hint: $dF(x, y) = F_x(x, y)dx + F_y(x, y)dy$. Try to compute $d(\sqrt{x^2 + y^2})$.

Solution: $\sqrt{x^2 + y^2} = x + c$.