Exercise 2.2

8. Hint: By integration by parts, we have $y e^{y}-e^{y}+e^{-x}+\frac{1}{3} e^{-3 x}=c$.
9. Hint: $\cos ^{2} x=(1+\cos 2 x) / 2$. The solution is $4 \cos y=2 x+\sin 2 x+c$.
10. Solution: $y=x$.
11. Solution: $y(x)=e^{\int_{4}^{x} e^{-t^{2}} d t}$.
12. Hint: Let $u=\sqrt{x}$. The solution is $y=3^{2 / 3}(-\sqrt{x} \cos \sqrt{x}+\sin \sqrt{x}+c)$.
13. Hint: Use the table of integration. The solution is $y= \pm \sin (x+c)$ and $y= \pm 1$.

Exercise 2.3

6. Solution: $y=1 / 2 x^{2}-1 / 2+c e^{-x^{2}}$ for $-\infty<x<\infty$. The transient tern is $c e^{-x^{2}}$.
7. Solution: $y=[(x+c)(x+1)] /(x-1)$. The largest interval of definition can be $(-\infty,-1)$, $(-1,1)$, or $(0, \infty)$, depending on where your initial condition is. There is no transient term.
8. Solution: $y=\frac{\ln x}{x+1}+\frac{e}{x+1}$, for $I=(0, \infty)$.
9. Solution: $y^{\prime}=4-y$.
10. Solution: The left-hand derivative of the function at $x=1$ is $1=e$ and the right-hand derivative at $x=1$ is $1-1 / e$. Thus, y is not differentiable at $x=1$.

Exercise 2.4

4. Solution: $x \sin y+y \cos x-1 / 2 y^{2}=c$.
5. Solution: $x+y+x y-3 \ln |x y|=c$.
6. Hint: use the integration table for $1 /\left(1+y^{2}\right)$. Solution: $x y^{2}-y \cos x-\tan ^{-1} y=-1-\pi / 4$.
7. Solution: $\frac{10}{3} e^{3 x}-2 y e^{3 x}+x=c$.
8. No. For the interval where the integrating factor $\mu=0$, the second equation may have a solution $y(x)$ that is not a solution of the first equation.
9. Hint: $d F(x, y)=F_{x}(x, y) d x+F_{y}(x, y) d y$. Try to compute $d\left(\sqrt{x^{2}+y^{2}}\right)$.

Solution: $\sqrt{x^{2}+y^{2}}=x+c$.

