Exercise 1.1

12. Hint: computing $d y / d t$.
13. Possible interval of definitions: $(\pi / 2,5 \pi / 2),(5 \pi / 2,9 \pi / 2), \ldots$, etc.
14. Hint: check the continuity of $y(x)$ at $x=0$.
15. Hint: check your calculus book. Each question has a family of solutions.
16. Solution: $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$.
17. Solution (a) $y=5(b)(-\infty, 5)$ and $(5, \infty)$.

Exercise 1.2

7. Solution: $x=-\cos t+8 \sin t$.
8. Solution: any region where $y \neq-1$.
9. Solution:
(b) Solving $y(0)=\tan C=0$, we have $C=0$ and $y=\tan x$. Since $\tan \mathrm{x}$ is discontinuous at $x= \pm \pi / 2$, the solution is not defined on $(-2,2)$ because it contains $\pm \pi / 2$.
(c) The largest interval of definition on which the solution can exist is $(-\pi / 2, \pi / 2)$.
10. Solution: $y=2 x^{3}-x^{2}-5 x+8$.
11. If the solution is tangent to the x-axis at $\left(x_{0}, 0\right)$, then $y^{\prime}=0$ when $x=x_{0}$ and $y=0$. Substituting these values into $y^{\prime}+2 y=3 x_{0}-6$ we get $0+0=3 x_{0}-6$ or $x_{0}=2$.
