Exercise 1.1

- 12. Hint: computing dy/dt.
- 18. Possible interval of definitions: $(\pi/2, 5\pi/2), (5\pi/2, 9\pi/2), \dots$, etc.
- 30. Hint: check the continuity of y(x) at x = 0.
- 45. Hint: check your calculus book. Each question has a family of solutions.
- 58. Solution: $x^2y'' 2xy' + 2y = 0$.
- 60. Solution (a) y = 5 (b) (- ∞ , 5) and (5, ∞).

Exercise 1.2

- 7. Solution: $x = -\cos t + 8\sin t$.
- 22. Solution: any region where $y \neq -1$.
- 30. Solution:
 - (b) Solving $y(0) = \tan C = 0$, we have C = 0 and $y = \tan x$. Since $\tan x$ is discontinuous at $x = \pm \pi/2$, the solution is not defined on (-2, 2) because it contains $\pm \pi/2$.
 - (c) The largest interval of definition on which the solution can exist is $(-\pi/2, \pi/2)$.
- 46. Solution: $y = 2x^3 x^2 5x + 8$.
- 49. If the solution is tangent to the *x*-axis at $(x_0, 0)$, then y' = 0 when $x = x_0$ and y = 0. Substituting these values into $y' + 2y = 3x_0 - 6$ we get $0 + 0 = 3x_0 - 6$ or $x_0 = 2$.