Note: 20 points for each problem. Partial grades will be given even for incomplete solutions so please do not leave blanks.

1. Solve the following initial value problem: $x y^{\prime}=\left(x^{3} e^{x}+\ln (y)\right) y, y(1)=1$. (Hint: try the method of substitution by $u=\ln y$).

[Solution]

The D.E. can be written as: $x \frac{y^{\prime}}{y}=x^{3} e^{x}+\ln y, y \neq 0$.
Let $u=\ln y$, we have $\frac{d u}{d x}=\frac{d u}{d y} \cdot \frac{d y}{d x}=\frac{y^{\prime}}{y} \rightarrow \frac{d u}{d x}-\frac{1}{x} u=x^{2} e^{x}$.
The integrating factor is $e^{-\int d x / x}=\frac{1}{x}$.
$\frac{d}{d x}\left[\frac{1}{x} u\right]=\frac{1}{x} \cdot x^{2} e^{x}=x e^{x} \rightarrow \frac{u}{x}=(x-1) e^{x}+c$.
$\ln y=x(x-1) e^{x}+c x, y(1)=1 \rightarrow c=0$.
Therefore, the solution to the IVP is $\ln y=x(x-1) e^{x}$ or $y=e^{x(x-1) e^{x}} . ~ \#$
2. Solve the initial value problem: $3 y^{2} y^{\prime}-\left(x y^{\prime}+y\right) \sin (x y)+2 x=0, y(0)=2$.
[Solution]
The differential equation can be written as $(2 x-y \sin x y) d x+\left(3 y^{2}-x \sin x y\right) d y=0$.
Thus, $M(x, y)=2 x-y \sin x y$, and $N(x, y)=3 y^{2}-x \sin x y$.
Since $\frac{\partial M}{\partial y}=-\sin x y-x y \cos x y=\frac{\partial N}{\partial x}$, the D.E. is an exact equation.

$$
\begin{aligned}
& f(x, y)=\int M(x, y) d x+g(y) \rightarrow f(x, y)=x^{2}+\cos x y+g(y) \\
& \begin{aligned}
N(x, y)=f_{y}(x, y)=-x \sin x y+g^{\prime}(y) & \rightarrow g^{\prime}(y)=N(x, y)+x \sin x y \\
& \rightarrow g(y)=\int\left(3 y^{2}-x \sin x y+x \sin x y\right) d y=y^{3} .
\end{aligned}
\end{aligned}
$$

Therefore, $f(x, y)=x^{2}+\cos x y+y^{3}$ and the implicit solution is $x^{2}+\cos x y+y^{3}=C$.
The solution to the IVP is then $x^{2}+\cos x y+y^{3}=9$ because $y(0)=2$.
3. Find the general solution of the differential equation $3 y^{\prime \prime}-6 y^{\prime}+6 y=x+e^{x} \sec x$. (Hint: $\left.\int \tan x d x=-\ln |\cos x|+C\right)$.

[Solution]

The auxiliary equation is $3 m^{2}-6 m+6=0$, so $y_{c}=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)$. We can use the superposition principle to divide the DE into two subsystems.

1) For $y^{\prime \prime}-2 y^{\prime}+2 y=(1 / 3) x$, use the method of undetermined coefficients to solve for the first particular solution $y_{p_{1}}$:
$y_{p_{1}}=A x+B, y_{p_{1}}=A$, and $y^{\prime \prime} p_{p_{1}}=0$.
$\rightarrow-2 A+(2 A x+2 B)=(1 / 3) x$.
$\rightarrow A=(1 / 6), B=(1 / 6)$. Therefore, $y_{p_{1}}(x)=(1 / 6) x+(1 / 6)$.
2) For $y^{\prime \prime}-2 y^{\prime}+2 y=(1 / 3) e^{x} \sec x$, use the variations of parameters to solve for the second particular solution $y_{p_{2}}$:

$$
W=\left|\begin{array}{cc}
e^{x} \cos x & e^{x} \sin x \\
e^{x} \cos x-e^{x} \sin x & e^{x} \cos x+e^{x} \sin x
\end{array}\right|=e^{2 x} .
$$

Since $f(x)=(1 / 3) e^{x} \sec x$, we obtain

$$
u_{1}^{\prime}=\frac{\left(e^{x} \sin x\right)\left(e^{x} \sec x\right) / 3}{e^{2 x}}=-\frac{1}{3} \tan x, \quad u_{2}^{\prime}=\frac{\left(e^{x} \cos x\right)\left(e^{x} \sec x\right) / 3}{e^{2 x}}=\frac{1}{3} .
$$

Then $u_{1}=(1 / 3) \ln |\cos x|, u_{2}=(1 / 3) x$, and $\quad y_{p_{2}}(x)=\left(\ln |\cos x| e^{x} \cos x+x e^{x} \sin x\right) / 3$.
The overall solution of y is: $y(x)=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)+y_{p_{1}}(x)+y_{p_{2}}(x)$. \#
4. Find two linearly independent, piecewise continuous solutions $y_{1}(x)$ and $y_{2}(x)$ of the IVP:

$$
y^{\prime \prime}+(\operatorname{sgn} x) y=0, y_{1}(0)=y_{2}^{\prime}(0)=1 \text { and } y_{1}^{\prime}(0)=y_{2}(0)=0 . \text { Note that } \operatorname{sgn} x=\left\{\begin{aligned}
+1, & x>0 \\
0, & x=0 \\
-1, & x<0
\end{aligned}\right.
$$

Please define the largest interval of definition I.
[Solution]
If $x>0$ the D.E. is $y^{\prime \prime}+y=0$, the general solution is $y=A \cos x+B \sin x$.
If $x<0$, then the D.E. becomes $y^{\prime \prime}-y=0$, the general solution is $y=C e^{x}+D e^{-x}$.
If $x=0$, then the D.E. is $y^{\prime \prime}(0)=0 \rightarrow y$ has curvature 0 at $x=0, y$ could be a non-polynomial function. This is different from $y^{\prime \prime}=0, \forall x$.
To satisfy the initial conditions, $y_{1}(0)=1, y_{1}{ }^{\prime}(0)=0$, we choose $A=1, B=0$, and $C=1 / 2, D=1 / 2$.
But to satisfy $y_{2}(0)=0, y_{2}{ }^{\prime}(0)=1$, we choose $A=0, B=1$, and $C=1 / 2, D=-1 / 2$.
Therefore, we have

$$
y_{1}(x)=\left\{\begin{array}{cc}
\cos x, & x \geq 0 \\
\left(e^{x}+e^{-x}\right) / 2, & <0
\end{array} \quad \text { and } \quad y_{2}(x)=\left\{\begin{array}{cc}
\sin x, & x \geq 0 \\
\left(e^{x}-e^{-x}\right) / 2, & <0
\end{array}\right.\right.
$$

Note that the curvature for both y_{1} and y_{2} at $x=0$ are zero and the curve is continuous at 0 . Therefore, the largest interval of definition that fulfills both initial conditions is $(-\infty, \infty)$. \#
5. For a damped spring-mass system, the vertical offset x from its equilibrium position can be modeled by a $2^{\text {nd }}$-order differential equation $x^{\prime \prime}+2 \lambda x^{\prime}+x=f(t), x(0)=x^{\prime}(0)=0$, where the external force is observed as $f(t)=\left\{\begin{array}{cc}t, & 0 \leq t \leq 1 \\ 0, & t>1\end{array}\right.$.

If the system is a critically damped system, answer the following questions:
(a) What is the unique solution $x(t)$ of the IVP for $t \geq 1$?
(b) At what value would the system pass through the equilibrium position for $t \in(0, \infty)$?

Differential Equations ' $\mathbf{1 9}$ - Midterm

[Solution]

A critically damped system has the DE: $x x^{\prime \prime}+2 \lambda x^{\prime}+\omega 0^{2} x=f(t)$, where $\lambda^{2}=\omega 0^{2}$.
In this problem, $\lambda= \pm 1$, we can set $\lambda=1$ (positive natural frequency), the derivation for $\lambda=-1$ is similar.
Therefore, the system equation is:

$$
\left\{\begin{array}{l}
x^{\prime \prime}+2 x^{\prime}+x=t, \quad 0 \leq t \leq 1 \\
x^{\prime \prime}+2 x^{\prime}+x=0, \quad t>1
\end{array} .\right.
$$

Solving the auxiliary equation, the complementary solution is $x_{c}(t)=e^{-t}\left(c_{1}+c_{2} t\right)$.
By method of undetermined coefficients, $x_{p}(t)=t-2,0 \leq t \leq 1$.
The general solution of the D.E. is $x(t)=e^{-t}\left(c_{1}+c_{2} t\right)+(t-2), 0 \leq t \leq 1$.
Since $x(0)=x^{\prime}(0)=0$, we have the particular solution of the IVP as:

$$
\begin{equation*}
x(t)=e^{-t}(2+t)+(t-2), 0 \leq \mathrm{t} \leq 1 . \tag{1}
\end{equation*}
$$

For the general solution when $t>1$, we must first determine find $x(1)$ and $x^{\prime}(1)$.
At $t=1$, from equation (1), we have $x(1)=3 e^{-1}-1, x^{\prime}(1)=1-2 e^{-1}$.
For $t>1$, the equation becomes an IVP problem of a homogeneous equation:
$x(t)=e^{-t}\left(c_{1}+c_{2} t\right), x(1)=3 e^{-1}-1, x^{\prime}(1)=1-2 e^{-1}$.
(a) Solving for c_{1} and c_{2}, we have the particular solution: $x(t)=e^{-t}(2-e+t)$, for $t>1$.
(b) Since $e^{-t}>0,(2-e+t)=0$ only when $t=e-2<1$, this system will never pass through $x=0$ for $t \in(0, \infty)$.

