1. (a) Use Laplace transform to solve the IVP: $x^{\prime \prime}+4 x^{\prime}+5 x=\delta(t-\pi)+\delta(t-2 \pi), x(0)=0, x^{\prime}(0)=2$.
(b) Use Laplace transform to find a nontrivial family of solution of $t x^{\prime \prime}-2 x^{\prime}+t x=0, x(0)=0$. Hint: $\sin A \sin B=[\cos (A-B)-\cos (A+B)] / 2$.

[Solution]

(a) Transform the D.E. into Laplace domain:

$$
\begin{aligned}
& {\left[s^{2} X(s)-s x(0)-x^{\prime}(0)\right]+4 s X(s)-x(0)+5 X(s)=e^{-\pi s}+e^{-2 \pi s}} \\
& {\left[s^{2} X(s)-2\right]+4 s X(s)+5 X(s)=e^{-\pi s}+e^{-2 \pi s}} \\
& X(s)=\frac{2+e^{-\pi s}+e^{-2 \pi s}}{(s+2)^{2}+1} \\
& X(s)=\left.\frac{2}{s^{2}+1}\right|_{s \rightarrow s+2}+\left.\frac{e^{-\pi(s-2)}}{s^{2}+1}\right|_{s \rightarrow s+2}+\left.\frac{e^{-2 \pi(s-2)}}{s^{2}+1}\right|_{s \rightarrow s+2}
\end{aligned}
$$

Since $\mathscr{L}^{-1}\left\{\left.\frac{e^{-\pi(s-2)}}{s^{2}+1}\right|_{s \rightarrow s+2}\right\}=e^{2 \pi} \cdot \mathscr{L}^{-1}\left\{\left.\frac{e^{-\pi s}}{s^{2}+1}\right|_{s \rightarrow s+2}\right\}=e^{2 \pi} e^{-2 t} \sin (t-\pi) u(t-\pi)$, we have

$$
x(t)=2 e^{-2 t} \sin (t)+e^{-2(t-\pi)} \sin (t-\pi) u(t-\pi)+e^{-2(t-2 \pi)} \sin (t-2 \pi) u(t-2 \pi)
$$

$$
=\left[2-e^{2 \pi} u(t-\pi)+e^{4 \pi} u(t-2 \pi)\right] e^{-2 t} \sin t
$$

(b) Transform the D.E. into Laplace domain:

$$
\begin{align*}
& -\frac{d}{d s}\left[s^{2} X(s)-s x(0)-x^{\prime}(0)\right]-2[s X(s)-x(0)]-\frac{d}{d s} X(s)=0 . \\
& -\left[2 s X(s)+s^{2} X^{\prime}(s)\right]-2 s X(s)-X^{\prime}(s)=0 . \\
& \left(s^{2}+1\right) X^{\prime}(s)+4 s X(s)=0 . \\
& \frac{d X(s)}{X(s)}=-\frac{4 s}{s^{2}+1} d s \rightarrow \ln |X(s)|=-2 \ln \left|s^{2}+1\right| . \\
& X(s)=c_{1} /\left(s^{2}+1\right)^{2}, c_{1} \neq 0 \rightarrow x(t)=c_{1} \mathscr{L}^{-1}\left\{1 /\left(s^{2}+1\right)^{2}\right\}=c_{1} \int_{0}^{t} \sin (\tau) \sin (t-\tau) d \tau . \\
& x(t)=c_{1} \int_{0}^{t} \frac{1}{2}[\cos (2 \tau-t)-\cos (t)] d \tau=c(\sin (t)-t \cos (t)), c \neq 0 .
\end{align*}
$$

2. Find the fundamental matrix $\Phi(t)$ of the system $\left\{\begin{array}{ll}x_{1}{ }_{1}= & x_{2}+x_{3} \\ x^{\prime}{ }_{2}= & x_{1}+x_{3} \\ x^{\prime}{ }_{3}= & x_{1}+x_{2}\end{array}\right.$ with the initial condition $\Phi(0)=\mathbf{I}$, where \mathbf{I} is the identity matrix. Hint: the characteristic equation is $(\lambda+1)^{2}(\lambda-2)=0$. [Solution]
The system matrix $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$ and the characteristic eq. is $(\lambda+1)^{2}(\lambda-2)=0$.
For $\lambda=-1,\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Two eigen vectors are $(1,0,-1)^{T}$ and $(0,1,-1)^{T}$.
For $\lambda=2,\left(\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right)$. One eigen vector is $(1,1,1)^{T}$.

Therefore, a fundamental matrix of the system is:

$$
\Psi(t)=\left(\begin{array}{ccc}
e^{-t} & 0 & e^{2 t} \\
0 & e^{-t} & e^{2 t} \\
-e^{-t} & -e^{-t} & e^{2 t}
\end{array}\right) \text { and we have } \Psi(0)=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right) \neq \mathbf{I}
$$

This fundamental matrix does not satisfy the initial condition $\Phi(0)=\mathbf{I}$. However, any fundamental matrix is related to Ψ by $\Phi=\Psi \mathbf{C}$, where \mathbf{C} is some constant matrix.
We must solve for the \mathbf{C} matrix such that $\Phi(0)=\Psi(0) \mathbf{C}=I$. That is $\mathbf{C}=\Psi^{-1}(0)$.
Since $\mathbf{C}=\Psi^{-1}(0)=\frac{1}{3}\left(\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ 1 & 1 & 1\end{array}\right)$, and $\Phi=\Psi \mathbf{C}, \Phi(t)=$
$\frac{1}{3}\left(\begin{array}{ccc}2 e^{-t}+e^{2 t} & -e^{t}+e^{2 t} & -e^{t}+e^{2 t} \\ -e^{t}+e^{2 t} & 2 e^{-t}+e^{2 t} & -e^{t}+e^{2 t} \\ -e^{t}+e^{2 t} & -e^{t}+e^{2 t} & 2 e^{-t}+e^{2 t}\end{array}\right)$.
3. Find the general solution of the differential equation $2 x^{2} y^{\prime \prime}-x y^{\prime}+(1+x) y=0$ using the Frobenius' method. Note: you must solve the recurrence relations to express c_{n} as a function of n.

[Solution]

Let $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}, y^{\prime}=\sum_{n=0}^{\infty} c_{n}(n+r) x^{n+r-1}, y^{\prime \prime}=\sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1) x^{n+r-2}$, $2 x^{2} y^{\prime \prime}-x y^{\prime}+(1+x) y=$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} 2 c_{n}(n+r)(n+r-1) x^{n+r-1}-\sum_{n=0}^{\infty} c_{n}(n+r) x^{n+r}+\sum_{n=0}^{\infty} c_{n} x^{n+r}+\sum_{n=0}^{\infty} c_{n} x^{n+r+1} \\
= & c_{0}[2 r(r-1)-r+1] x^{r}+\sum_{n=1}^{\infty}\left\{[2(n+r)(n+r-1)-(n+r)+1] c_{n}+c_{n-1}\right\} x^{n+r}=0 .
\end{aligned}
$$

The indicial equation is $(r-1)(2 r-1)=0 \rightarrow r=1,1 / 2$.

$$
c_{n}=-\frac{c_{n-1}}{2(n+r)^{2}-3(n+r)+1}=-\frac{c_{n-1}}{[(n+r)-1][2(n+r)-1]}, \quad n \geq 1
$$

For $r=1$,

$$
c_{n}=-\frac{c_{n-1}}{(2 n+1) n}=\frac{(-1)^{n}}{[3 \cdot 5 \cdot 7 \cdots(2 n+1)] n!} c_{0}, \quad n \geq 1 .
$$

Since $2 \cdot 4 \cdot 6 \ldots 2 n=2^{n} n$!, we have

$$
c_{n}=\frac{(-1)^{n} 2^{n}}{(2 n+1)!} c_{0}, \quad n \geq 1
$$

For $r=1 / 2$,

$$
\begin{gathered}
c_{n}=-\frac{c_{n-1}}{(2 n-1) n}=\frac{(-1)^{n}}{[1 \cdot 3 \cdot 5 \cdots(2 n-1)] n!} c_{0}, n \geq 1 . \\
c_{n}=\frac{(-1)^{n} 2^{n}}{(2 n)!} c_{0}, n \geq 1 .
\end{gathered}
$$

Therefore, the general solution is:

$$
y=C_{0}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{(2 n+1)!} x^{n+1}\right]+C_{1}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{(2 n)!} x^{n+\frac{1}{2}}\right]
$$

4. Find a particular solution of the equation $\frac{1}{4} \frac{d^{2} x}{d t^{2}}+12 x=f(t)$ using Fourier series, where the driving force is defined by $f(t)=\left\{\begin{array}{rl}t, & 0 \leq t<1 / 2 \\ 1-t, & 1 / 2<t<1\end{array} ; f(t+1)=f(t)\right.$ for all $t \in R$.
[Solution]
We have

$$
a_{0}=\frac{2}{(1 / 2)} \int_{0}^{1 / 2} t d t=\frac{1}{2}, \quad a_{n}=\frac{2}{(1 / 2)} \int_{0}^{1 / 2} t \cos 2 n \pi t d t=\frac{1}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right] .
$$

So that

$$
f(t)=\frac{1}{4}+\sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{2} \pi^{2}} \cos 2 n \pi t .
$$

Substituting the assumption

$$
x_{p}(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos 2 n \pi t .
$$

Into the differential equation then gives

$$
\frac{1}{4} x^{\prime \prime}{ }_{p}+12 x_{p}=6 A_{0}+\sum_{n=1}^{\infty} A_{n}\left(12-n^{2} \pi^{2}\right) \cos 2 n \pi t=\frac{1}{4}+\sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{2} \pi^{2}} \cos 2 n \pi t
$$

and $A_{0}=\frac{1}{24}, \quad A_{n}=\frac{(-1)^{n}-1}{n^{2} \pi^{2}\left(12-n^{2} \pi^{2}\right)}$.
Thus

$$
x_{p}(t)=\frac{1}{48}+\frac{1}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{2}\left(12-n^{2} \pi^{2}\right)} \cos 2 n \pi t .
$$

5. Derive the solution $y(x, t), 0 \leq x \leq 2, t \geq 0$, of the following boundary value problem: $\frac{\partial^{2} y}{\partial t^{2}}=4 \frac{\partial^{2} y}{\partial x^{2}}, y(0, t)=y(2, t)=0, y(x, 0)=(x-1)^{2}-1$, and $y_{t}(x, 0)=0$. Note: you must derive the solution using separable function assumption. You cannot use the wave equation formula to find the solution.

[Solution]

By separation of variables, substitution of $y(x, t)=X(x) T(t)$ in $y_{t t}=4 y_{x x}$ yields $X T^{\prime \prime}=4 X^{\prime \prime} T$ for all x and t. Therefore, assume that $\frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{2^{2} T}=-\lambda$, for some λ.

We have a system of ODE that must satisfy $y_{t}(x, 0)=0$:

$$
\left\{\begin{array}{lc}
X^{\prime \prime}+\lambda X=0, & X(0)=X(2)=0 \\
T^{\prime \prime}+2^{2} \lambda T=0, & T^{\prime}(0)=0
\end{array}\right.
$$

The first equation has non-trivial solution when $\lambda_{n}=n^{2} \pi^{2} / 2^{2}, n=1,2,3, \ldots$ and $X_{n}(x)=\sin (n \pi x / 2), n=1,2,3, \ldots$. Substitute λ_{n} into the $2^{\text {nd }}$ eq. we have: $T_{n}^{\prime \prime}+n^{2} \pi^{2} T_{n}=0, \quad T_{n}^{\prime}(0)=0$.
The solution for $T_{n}(t)=A_{n} \cos (n \pi t), \quad n=1,2,3, \ldots$
Thus, we have $y(x, t)=\sum_{n=1}^{\infty} y_{n}(x, t)=\sum_{n=1}^{\infty} X_{n}(x) T_{n}(t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{2}\right) \cos (n \pi t)$.

The boundary condition says: $y(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{2}\right)=f(x), 0<x<2$.
The Fourier transform of $f(x)$ is

$$
\begin{aligned}
A_{n} & =\int_{0}^{2} x(x-2) \sin \left(\frac{n \pi x}{2}\right) d x \\
& =\left.\left(-\frac{2}{n \pi}\right) x^{2} \cos \frac{n \pi x}{2}\right|_{0} ^{2}-\int_{0}^{2} 2 x\left(-\frac{2}{n \pi}\right) \cos \frac{n \pi x}{2} d x-\int_{0}^{2} 2 x \sin \frac{n \pi x}{2} d x \\
& =\frac{(-1)^{n+1} \cdot 8}{n \pi}+\left[\frac{16}{(n \pi)^{3}}\left((-1)^{n}-1\right)\right]-\left[\frac{(-1)^{n+1.8}}{n \pi}\right] \\
& =\frac{16}{(n \pi)^{3}}\left((-1)^{n}-1\right)
\end{aligned}
$$

The solution is: $y(x, t)=\sum_{n=1}^{\infty}\left(\frac{16}{(n \pi)^{3}}\left((-1)^{n}-1\right)\right) \sin \left(\frac{n \pi x}{2}\right) \cos (n \pi t)$.

