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ABSTRACT
Motion estimation in a 3D point cloud sequence is a fundamental
operation with many applications, including compression, error
concealment, and temporal upscaling. While there have been mul-
tiple research contributions toward estimating the motion vector
of points between frames, there is a lack of a dynamic 3D point
cloud dataset with motion ground truth to benchmark against. In
this paper, we present an open dynamic 3D point cloud dataset to
fill this gap. Our dataset consists of synthetically generated objects
with pre-determined motion patterns, allowing us to generate the
motion vectors for the points. Our dataset contains nine objects
in three categories (shape, avatar, and textile) with different ani-
mation patterns. We also provide semantic segmentation of each
avatar object in the dataset. Our dataset can be used by researchers
who need temporal information across frames. As an example, we
present an evaluation of two motion estimation methods using our
dataset.
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• Computing methodologies→ Volumetric models; Virtual re-
ality; • Human-centered computing → Virtual reality; • In-
formation systems→Multimedia streaming.

KEYWORDS
Point cloud, dataset, immersive applications, point matching, regis-
ter, interpolation, error concealment

ACM Reference Format:
Yuan-Chun Sun, I-Chun Huang, Yuang Shi, Wei Tsang Ooi, Chun-Ying
Huang, and Cheng-Hsin Hsu. 2023. A Dynamic 3D Point Cloud Dataset for
Immersive Applications. In Proceedings of the 14th ACM Multimedia Systems
Conference (MMSys ’23), June 7–10, 2023, Vancouver, BC, Canada. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3587819.3592546

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0148-1/23/06. . . $15.00
https://doi.org/10.1145/3587819.3592546

1 INTRODUCTION
Dynamic 3D point clouds are sequences of point cloud frames along
the temporal domain. Each point cloud frame is composed of many
unordered points with 𝑥 ,𝑦, and 𝑧 coordinates and attributes, such as
color components and material reflectance. 3D point clouds can be
cost-effectively and reliably captured by emerging sensors, includ-
ing RGBD cameras, 3D scanners, and LiDAR, without: (i) relying on
computationally-demanding algorithms or (ii) incurring excessive
network traffic. Therefore, different from other 3D representations,
like 3D meshes and light field videos, dynamic 3D point clouds have
a better chance to be captured, encoded, streamed, and rendered
in real-time. The potential of dynamic 3D point clouds has been
well-recognized by academia and industry for multiple emerging
applications, like Virtual/Augmented Reality (VR/AR), telepresence,
heritage digitization, and autonomous driving [23]. The market
shares of these applications have grown significantly in the past
few years. Such a trend shows no indication of slowing down, e.g.,
recent market research projects that the VR market will grow from
6.9 billion USD in 2021 to 451 billion in 2030 [37].

To enable and optimize the abovementioned applications, dy-
namic 3D point clouds need to be analyzed and processed through
various algorithms to extract semantic data. These algorithms can
be based on traditional signal processing techniques or modern
machine learning approaches [43]. Popular algorithms for semantic
data include, but are not limited to:

• Flow estimation algorithms [8, 23] compute 3D motion vec-
tors for individual points, which can be used for dynamic
point cloud compression and streaming.

• Segmentation algorithms [49] give one or more class labels to
each point of dynamic point clouds. For example, an avatar’s
head, trunk, and limbs can be segmented for optimization
purposes in a telepresence session.

• Prediction algorithms [21] generate future point cloud frames
based on historical frames, in order to reduce the response
time or lower the network traffic amount.

One of the unique challenges when designing the algorithms
is the point matching problem among the unordered points across
multiple point cloud frames. Existing dynamic 3D point cloud
datasets [13, 17] do not provide the ground truth of matched points
between two distinct frames of the same sequence. This, in turn,
makes quantifying the performance of the point matching and
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semantic data extraction algorithms difficult. In fact, multiple re-
search groups resorted to creating synthetic sequences with the
ground truth of matched points themselves [22, 42]. Unfortunately,
to our best knowledge, their datasets are not public, which ren-
ders quickly reproducing and fairly comparing different algorithms
tedious, time-consuming, and error-prone, if possible at all.

To cope with the above challenge, we systematically synthesize
the very first 3D dynamic point cloud dataset with the ground truth
of matched points, which can be downloaded at http://snoopy.cs.
nthu.edu.tw/datasets/PointCloudMMSys23.tar.bz2. To make our
own dataset applicable to a wide range of applications, we generate
sequences of dense 3D point clouds at high frame rates. We then
provide scripts for researchers to downsample our dynamic 3D
point cloud sequences in both temporal and spatial domains. To
cover heterogeneous 3D scenarios, we consider three object classes:
shape, avatar, and textile with diverse characteristics. Each object
class comprises three objects. Each object is programmed to move
in three movement patterns. In total, the dataset consists of 54
dynamic 3D point cloud sequences, covering both rigid and non-
rigid transforms, and 151968 point cloud files.

The resulting dataset can be used to evaluate and compare mul-
tiple algorithms, including:

• Point cloud register [20, 25, 26] that computes the optimal
geometric transformation (e.g., in rotation and translation)
to align points in a point cloud frame to another frame. Such
problems are critical in domains like robotics and computer
vision, where multiple point cloud scans need to be com-
pared and aligned to create a 3D model of a complete envi-
ronment. Algorithms for registering point clouds are useful
to: (i) create virtual worlds in VR/AR applications and (ii)
more reliably understand road intersections for autonomous
driving.

• Interpolation [2, 5, 42, 46] that upsamples dynamic 3D point
cloud sequence in the temporal or spatial domain (or both)
in order to create more smooth 3D objects or scenes. Al-
gorithms for interpolating 3D point clouds are useful in
heritage digitization and autonomous driving.

• Error concealment [14, 24, 27] that conceals the distorted
point cloud frames after transmission due to lost or late
packets in networks. By doing so, the received sequences can
be rendered to users at a higher visual quality. Algorithms to
conceal transmission errors are useful for distributed VR/AR
applications, including telepresence.

The rest of the paper is organized as follows. Sec. 2 surveys
relevant media datasets. This is followed by the methodology in
Sec. 3. We present the resulting dataset in Sec. 4. Sec. 5 gives sample
usages of our dataset. We conclude the paper in Sec. 6.

2 RELATEDWORK
We build a dense point cloud dataset for immersive applications.
Hence, the current dataset is orthogonal to point cloud datasets
collected by LiDAR for autonomous driving [4, 7, 12, 19, 35]. We
survey public media datasets related to immersive applications in
this section. We classify them into three categories: 2D images, 3D
meshes, and 3D point clouds in the following.

2D image datasets can be further classified into natural or
synthesized datasets. For natural datasets, Ofli et al. [33] constructed
a multi-modal human dataset consisting of 2D images, multi-view
videos, depth videos, human skeletons, acceleration traces, and
audio clips of multiple human subjects performing different actions.
Similarly, Ganapathi et al. [18] generated a small human dataset of
depth videos and human skeletons, while Dai et al. [16] captured a
large RGBD image dataset of various scenes with semantic labels.
For synthesized datasets, Mayer et al. [31] generated a dataset of
flying objects, animated short films, and driving scenarios. Their
dataset consists of images, segmentations, and motions. Ros et
al. [38] created a dataset of diverse urban images and videos with
labels. They simulated different seasons and weather conditions in
Unity. Different from the above dataset [16, 18, 31, 33, 38], there are
some studies [36, 39, 41] that provided datasets of RGBD images,
which can be converted into point clouds. For example, Pumarola
et al. [36] constructed a 3D human dataset, which covers a wide
array of humans and actions in 3D meshes and textures. Their
3D humans are from Adobe Fuse [1] and MakeHuman [30] and
human actions from Mixamo [32]. The resulting 2D videos are
rendered in Blender [15]. Varol et al. [41] generated a human action
dataset under different lighting conditions, which also contains
depth and normals. Shafaei and Little [39] built an RGBD dataset
with multiple human poses, which contains point cloud segments.
The aforementioned datasets [16, 18, 31, 33, 36, 38, 39, 41] only contain
2D images, which are different from our dynamic 3D point cloud
dataset.

3D mesh datasets. 3D meshes are widely used in computer
graphics, and there exist quite a few public 3D mesh datasets. For
example, ShapeNet [11] is a large-scale 3D mesh dataset, which
groups 3D models into four categories: single 3D models, 3D scenes,
billboards, and big ground planes. These 3D models are classi-
fied into 3,135 categories. Xu et al. [45] provided a dynamic hu-
man textured mesh sequence dataset. There are four sequences
in the dataset, known as "basketball player", "dancer", "exercise",
and "model". CLOTH3D [6] is a dataset containing sequences of
synthetic 3D human models with cloths. These datasets [6, 11, 45]
contain 3D meshes, which are heavier than 3D point clouds considered
by us.

3D point cloud datasets.We are only aware of five 3D point
cloud datasets, which can be categorized into static [3, 29, 40, 44]
and dynamic [13, 17, 28, 34, 47, 48] ones. For static 3D point clouds,
Turk and Levoy [40] started to build the Stanford 3D scanning
repository since 1994. This repository contains six representative
static point cloud objects, such as “Stanford Bunny”, which are
widely used in recent research. Armeni et al. [3] generated a 3D
point cloud dataset of real indoor scenes using a 3D scanner to eval-
uate their semantic parsing algorithms. Su et al. [29] created a 3D
point cloud dataset (WPC Database) of groceries captured by cam-
eras in the real world. The dataset includes 20 objects with diverse
geometric and textural complexity levels, and all of the 3D point
clouds are of high quality and realistic. More recently, Wu et al. [44]
constructed a 3D point cloud dataset using a public 3D mesh dataset
to compare the performance of different point cloud compression
algorithms. Different from these works, we consider more complex
dynamic 3D point clouds. For dynamic point clouds, 8iVFB [17] was
a voxelized human dataset of dynamic 3D point clouds. The dataset
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consists of four moving humans captured by 42 cameras in 14 clus-
ters. Later in 2018, Krivokuća et al. [28] created a voxelized human
dataset (8iVSLF dataset) with much higher resolutions, containing
one 300-frame sequence, as well as six high-resolution single-frame
point clouds. Zerman et al. created two publicly available volumet-
ric video datasets, i.e., vsenseVVDB [47] and vsenseVVDB2 [48].
VsenseVVDB provides two volumetric videos of football players in
colored point cloud format with four different point cloud densi-
ties. VsenseVVDB2 provides four new volumetric videos of human
avatars in both colored point cloud and textured 3D mesh formats.
Pagés et al. [34] introduced the Volograms & V-SENSE Volumet-
ric Video Dataset with three male avatars with varying skin color,
clothing, stature, and range of movements. MVUB [13] is another
voxelized human dataset with only upper bodies from Microsoft.
The dataset is composed of five moving humans, also captured by
RGBD cameras. All the datasets mentioned above focus on humans,
and they do not provide the ground truth of matched points.

3 DATA GENERATION METHODOLOGY

3D Mesh 

Generator

Mesh

Upsampler

Animation

Generator

Renderer

Point Cloud

Writer

3D Meshes

Forces

Physical Laws Dynamic

Point Clouds

2D Texture
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Figure 1: Our data generation pipeline.

In this section, we present our data generation pipeline, which
consists of five stages as summarized in Fig. 1.

3.1 Mesh Generator
We generate dynamic 3D point cloud sequences from 3D mesh
models. Our dataset consists of three object classes: shape, textile,
and avatar. We gather more complex objects from CC0 online
resources, like Mixamo [32] and CGTrader [10]. We create simpler
ones by ourselves. The resulting 3D mesh models are sent to the
next stage.

3.2 Mesh Upsampler
We next upsample 3D mesh models to create dense point clouds.
More specifically, we employ two subdivision methods on 3D mesh
models to increase the number of 3D meshes. The simpler method,
known as the midpoint method, involves connecting the midpoints
of the edges to divide each mesh face into smaller faces. The more
complex method is Catmull-Clark [9], which generates a smooth
surface from a polyhedral mesh of any topology recursively. We
employ midpoint subdivision for simpler meshes, such as shapes;
and Catmull-Clark subdivision for complex meshes, such as human
skins and wrinkled textiles. The upsampled 3D mesh models have
enough meshes for generating dense point clouds.

3.3 Animation Generator
We next create dynamic scenes from static 3D mesh models. In
each scene, we select a main object from the three object classes
(shape, textile, and avatar), along with one or multiple additional
objects (such as ground, wall, and stairs). The animation generator
incorporates physical laws, such as gravity, tension, and elastic
coefficients, as well as forces, such as wind and friction forces, on
the main objects. For avatars, we adopt human actions, such as
walk, kick, and dance, generated by Mixamo [32]. For each scene,
we create up to three animations with diverse complexity levels on
the movement of its main object. For the avatar class, the objects
are segmented based on the semantic of the clothing and the body
parts.

3.4 Renderer
The animated scenes of 3D meshes, along with 2D texture and
lighting conditions, are rendered into sequences of geometry (co-
ordinates) and attribute (colors) data. We chose the open-source
Blender [15] as our 3D mesh model creator, animator, simulator,
and renderer. Blender supports two renderers: Eevee and Cycle. We
adopt Cycle for more photorealistic rendering results, at an expense
of longer running time. We consider two lighting conditions: base,
where points are in their original textures and colors without lights,
and lighted, where points are under lighting conditions. Here, we
manually add up to two sun- or spot-lights for visually appealing
rendered results.

3.5 Point Cloud Writer
The output of the renderers is animated 3D meshes with geometry
and attribute data. We next extract the geometry and attribute data
of individual vertices from each animated frame, and turn them
into points of a sequence point cloud frame. Across the dynamic 3D
point cloud frames, we keep track of point indices, which serve as
the ground truth of matched points.

4 RESULTING DATASET
We present our dataset in this section.

4.1 3D Objects and Animations
We consider three classes of main objects: shape for simple 3D ob-
jects for virtual worlds, avatar for telecommunications, and textile
for more challenging setups. In each class, we select three repre-
sentative mesh objects. For every main object, we generate three
animations with diverse complexity levels in terms of movement
patterns. To achieve that, several additional objects are added to
the animations. Our dataset provides dynamic dense point clouds
of both main and additional objects.

The details on all dynamic 3D point cloud sequences can be
found in Table 1. Fig. 2 gives sample rendered views of our main
objects without and with lights. For shapes (Figs. 2(a)–2(c)), we
choose a golden coin, an unsolved Rubik’s cube, and a colorful
plastic cup. Three animations are selected for these three main
objects, which are: (i) freefall with a ground object as an additional
object, (ii) slide with a 45°slope and a ground as additional objects,
and (iii) stair with stairs as additional objects. When creating the
animations, we empirically select the initial states (positions and
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2: Rendered views of the considered main objects. All main objects without lights: (a)–(i); sample main objects with
lights: (j)–(l).

Table 1: Summary of Dynamic 3D Point Cloud Sequences

Obj. No. Pt. Size (𝑐𝑚3) Animation Total Pt. No. Fme.
Shape

Coin 114336 8×8×2
Freefall 220472 600
Slide 269578 600
Stair 143444 600

Cube 147458 8×8×8
Freefall 212272 600
Slide 261378 600
Stair 135244 600

Cup 115586 8×8×10
Freefall 221722 600
Slide 270828 600
Stair 144694 600

Avatar

Man 106810 200×50×200
Walk 106810 600
Kick 106810 624
Dance 106810 600

Woman 141269 200×50×200
Walk 141269 600
Kick 141269 624
Dance 141269 600

Robot 166150 200×50×200
Walk 166150 600
Kick 166150 624
Dance 166150 600

Textile

Blanket 128018 200×200×0.8
1-Corner 231554 600
2-Corners 231554 600
Drop 231554 600

Curtain 131044 100×90×0.5
Breeze 338028 600
Gale 338028 600
Drop 338028 600

Flag 128018 150×90×0.2
Breeze 267244 600
Raise 267244 600
Wave 267244 600

orientations) of the main objects to create more exciting (complex)
movement patterns due to the physical laws. The length of these
nine sequences is 600 frames.

For avatars (Figs. 2(d)–2(f)), we select amanwho is a construction
worker with a beard wearing a reflective vest and a helmet, awoman

who wears a white T-shirt and blue jeans, and a robot which has
smooth shells and round joints. Three animations are chosen for
these three main objects, while no additional objects are added. The
three animations, from simple to complex, are: (i) walk, in which
an avatar walks in a circle with a swinging right arm and fixed left
arm (as holding an object), (ii) kick, in which an avatar performs
six different kicks, and (iii) dance, in which an avatar dances in a
hip-hop style featuring complex transitions. The length of these
nine sequences is at least 600 frames.

For the most complicated textiles (Figs. 2(g)–2(i)), we pick a red
squared cotton blanket with white grid patterns, window curtains,
and a blue flag. We create diverse animations for different textile
objects, as detailed below.

• Drag a corner of the blanket (1-Corner). We grab a corner
of the blanket, place it on top of a static robot (one of the
avatars above), and drag the blanket in various directions.

• Drag two corners of the blanket (2-Corners).We grab and drag
two adjacent corners of the blanket, also on a static robot.

• Falling blanket (Drop). The blanket falls vertically on a
crouched robot, which then stands up.

• Blowing curtains (Breeze)We add the ground, a wall, and a
window as additional objects for curtains. We open the cur-
tains under a gentle breeze, where random gusts are added
to make the curtains move irregularly.

• Blowing curtains (Gale). Similar to a curtain blowing in a
breeze, but with a wind speed that is five times faster.

• Falling curtains (Drop). Similar to the gale, but detach the
curtains in the middle of the sequence.

• Blowing flag (Breeze).We add the ground and a flag pole as
additional objects. We attach the flag at the top of the pole,
under a breeze with some random gusts.

• Raise the flag (Raise).We raise and then lower the flag.
• Blowing flag (Wave). We emulate the movement pattern of
an invisible hand waving a flag.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3: Sample rendered animations: dancing man: (a)–(f), and dropping blanket: (g)–(l).

Dataset

Shape

Coin

$Ani

base

All

frame$Fme.ply

$Obj

frame$Fme.ply

. . .

lighted

. . .

Cube

Cup

Avatar

. . .

Textile

. . .

Images

Videos

Tools

license.txt

README.md

Figure 4: Directory structure.

Each of these nine animations lasts for 600 frames. We present two
sample animations in Fig. 3: a dancing man and a dropping blanket.

4.2 Dataset Files
The directory structure is shown in Fig. 4. For each animation
$Ani of a main object, we provide two versions of the dynamic
3D point cloud sequences: base and lighted. Each animation may
contain multiple objects, and we provide sequences of individual
objects $Obj, such as coin, slope, and ground. In addition, we merge
these dynamic 3D point clouds into an all dynamic 3D point cloud
sequences for the convenience of dataset users. We save the 3D
point cloud frames in ASCII ply files, frame by frame, where the
filenames have a suffix of their 1-based frame numbers $Fme. Note
that, by providing a separate ply file for each object, our dataset
offers simple labels for semantic segmentation. Such labels could be
particularly useful for avatar objects. Take woman as an example,

its 3D points are labeled with: body, eyelashes, hair, shirt, pants,
and shoes.

We also release the following three tools for researchers and
practitioners to use our dataset:

• Temporal downsampling tool that downsamples the frames
to a specified number of frames by repeatedly skipping a few
consecutive point cloud frames.

• Spatial downsampling tool that downsamples the number of
points from individual 3D point cloud frames. We use an
efficient downsampling method, i.e., random downsampling,
to downsample the point cloud frame without destroying
the ground truth of matched points.

• Object scaling tool that adjusts the size of point cloud objects.
This tool scales the object with the origin (0,0,0) as the center.

The scripts can be found under the "/Tools" folder in our dataset.

4.3 Generating and Rendering Animations
We generated the dataset on a workstation with an Intel Core i9-
9920X CPU at 3.5GHz and NVIDIA GeForce RTX 3080 Ti GPU.
It took us 30+ hours to generate animations of each main object,
which included the following steps: searching for 3D models, pre-
processing the 3D models, adding the animations, setting the light
conditions, and rendering the animations. Take the Curtain object
as an example; it took us at least one hour to simulate the curtain
movement of 600 frames, three hours on average to render each
animation, and six hours on average to convert all intermediate
data files into dynamic 3D point cloud sequences.

5 USEFULNESS OF OUR DATASET: POINT
MATCHING AS A SHOWCASE

Our dataset can be used in multiple applications that temporarily
crunch 3D point cloud frames of a sequence. The crux of optimizing
these applications (see Sec. 1) is the quality of point matching
results. In this section, we employ point matching to showcase
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how researchers and practitioners can use our dataset. In general,
without our dataset, they can first analyze the characteristics of
dynamic point clouds and then design/optimize their algorithms or
models based on the observations.

Point matching problem. Given a previous frame 𝑓𝑝 and a
future frame 𝑓𝑛 with the same number of points, we want to find
the one-to-one matching between points 𝑝 ∈ 𝑓𝑝 and 𝑞 ∈ 𝑓𝑛 . Here, 𝑞
represents the ground-truth mapping in our dataset. Let 𝑞′ denote
thematched point of 𝑝 generated by an algorithm under evaluations,
we can formally define the matching errors of 𝑞′ as:

𝑑𝑔 (𝑞, 𝑞′) =
√︃
(𝑞.𝑥 − 𝑞′ .𝑥)2 + (𝑞.𝑦 − 𝑞′ .𝑦)2 + (𝑞.𝑧 − 𝑞′ .𝑧)2; (1)

𝑑𝑟 (𝑝, 𝑞, 𝑞′) = cos−1
(
(𝑞 − 𝑝) · (𝑞′ − 𝑝)
𝑑𝑔 (𝑞, 𝑝) × 𝑑𝑔 (𝑞′, 𝑝)

)
; (2)

𝑑𝑎 (𝑝, 𝑞, 𝑞′) = (𝑞 − 𝑝) × (𝑞′ − 𝑝), (3)
where 𝑑𝑔 (·), 𝑑𝑟 (·), 𝑑𝑎 (·) are deviations between 𝑞′ and 𝑞 in Eu-
clidean distance, angle, and area, respectively. Although other error
metrics, e.g., those that also take RGB colors into account, can also
be defined, we consider these three error metrics for brevity in this
section. Their units are𝑚, radian, and𝑚2. The goal of the problem
at hand is to minimize the overall error across all 𝑞′ ∈ 𝑓𝑛 .

(a) (b) (c)

Figure 5: Matched points of kicking woman, where lines
connect the matched points in 𝑓𝑝 and 𝑓𝑛 : (a) ground truth, (b)
NN, and (c) QR. Only 2% of lines are shown for clarity.

Qualitative comparison. In our earlier work [27], we developed
several algorithms to conceal a missing point cloud frame based
on a previous and a future frame: 𝑓𝑝 and 𝑓𝑛 . Two point matching
approaches were proposed: (i) Nearest Neighbor (NN), in which the
point 𝑞′ ∈ 𝑓𝑛 that has the smallest Euclidean distance to 𝑝 ∈ 𝑓𝑝 is
selected, and (ii) Query Radius (QR), in which a point 𝑞′ ∈ 𝑓𝑛 with
the highest similarity function value is chosen from all candidate
points within a radius 𝜏 to 𝑝 ∈ 𝑓𝑝 . Upon points in the previous
and future frames being matched, the missing point cloud frame
is concealed with a suite of tools in our proposed pipeline. To
qualitatively compare the matching quality of NN and QR, we
randomly drop a frame from the kicking woman sequence and
execute NN and QR to match points in the preceding and following
frames. We connect the matched points in Fig. 5 based on the
ground truth and results from NN and QR. Compared to Fig. 5(a),
NN and QR result in multiple mismatched points in both direction
and magnitude. Fig. 5(b) shows that NN matches the woman’s left
calf and foot with her left thigh; and her fingertips with palms.
Fig. 5(c) reveals that QR occasionally matches points from her left

foot to her right thigh, which may be caused by a rather large 𝜏
value.
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Figure 6: Error comparison between NN and QR under differ-
ent numbers of consecutive drops: (a) distance, (b) angle, and
(c) area. Sample results from the dancing man are shown.

Quantitative comparison. Next, we quantify the performance
of NN and QR using the error metrics in Eqs. (1)–(3). We select
50 consecutive frames from the dancing man sequence for the
experiments. We vary the number of consecutive frame drops from
1 to 16 and repeatedly drop the frames. We then run NN and QR1
to match points between 𝑓𝑝 and 𝑓𝑛 . We report the average errors
with 95% confidence intervals in Fig. 6. Figs. 6(a) and 6(c) show
that NN and QR perform equally well in distance and area if the
number of consecutive drops is small (e.g., under good network
conditions), while their gaps dramatically increase as the number
of consecutive drops increases (e.g., under network congestion). In
contrast, Fig. 6(b) reveals that the difference between NN and QR
in angle is rather stable across different numbers of consecutive
drops.

We emphasize that Figs. 5 and 6 along with qualitative and quanti-
tative comparisons would not be possible without the point matching
ground truth provided by our dataset.Multiple recommendations for
Hung et al. [27] can be drawn, e.g., the search radius 𝜏 should be
adaptive in both temporal and spatial domains; and point matching
algorithms can be optimized given specific movement patterns. Last,
we emphasize that point matching algorithms are critical to error
concealment of dynamic 3D point clouds as well as other machine
learning algorithms. Developers of those algorithms will find our
dataset valuable.

6 CONCLUSION
In this paper, we presented the first 3D dynamic point cloud dataset
with the point-matching ground truth. In this dataset, we selected
three object classes that contain a total of nine objects and 27
animations to generate the high-resolution and high frame-rate
point cloud sequences. We also made some extra efforts to provide
point cloud sequences under some lighting conditions and perform
simple semantic segmentation, labeling the avatars’ clothing and
body parts. We show how our dataset can benefit the previous
research, which lacks ground truth point-matching. The generated
dataset can be utilized by a wide range of individuals, including
researchers, engineers, and hobbyists, throughout various stages of
development, such as design, fine-tuning, and evaluations. Not only
the temporal information (motion estimation) can be studied, the
semantic segmentation can also be explored in our future work.
1A grid search on the best 𝜏 value is carried out. Detail is omitted for brevity.
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