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Machine learning has been widely used for solving challenging problems in diverse areas. However, to the best of our
knowledge, seldom literature has discussed in-depth how machine learning approaches can be used effectively to “hunt"
(identify) threats, especially advanced persistent threats (APTs), in a monitored environment. In this study, we share our
past experiences in building machine learning-based threat-hunting models. Several challenges must be considered when
a security team attempts to build such models. These challenges include 1) weak signal, 2) imbalanced data sets, 3) lack of
high-quality labels, and 4) no storyline. In this study, we propose Fuchikoma and APTEmu to demonstrate how we tackle
the above-mentioned challenges. The former is a proof of concept system for demonstrating the ideas behind autonomous
threat-hunting. It is a machine learning-based anomaly detection and threat hunting system which leverages natural language
processing (NLP) and graph algorithms. The latter is an APT emulator, which emulates the behavior of a well-knownAPT called
APT3, which is the target used in the first round of MITRE ATT&CK Evaluations. APTEmu generates attacks on Windows
machines in a virtualized environment, and the captured system events can be further used to train and enhance Fuchikoma’s
capabilities. We illustrate the steps and experiments we used to build the models, discuss each model’s effectiveness and
limitations of each model, and propose countermeasures and solutions to improve the models. Our evaluation results show
that machine learning algorithms can effectively assist threat hunting processes and significantly reduce security analysts’
efforts. Fuchikoma correctly identifies malicious commands and achieves high performance in terms of over 80% True Positive
Rate and True Negative Rate and over 60% F3. We believe our proposed approaches provide valuable experiences in the area
and shed light on automated threat-hunting research.
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agement; Software and application security.
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1 INTRODUCTION
Advanced persistent threat (APT) is one of the most sophisticated threats. According to the consensus definition
quoted from Wikipedia 1 and NIST 2, an APT is a secret threat actor with sophisticated levels of expertise and
significant resources, usually a nation-state or state-sponsored group, that intrudes a system without authorization
and remains undetected for an extended period. While firewall and anti-virus solutions are still useful, modern
threats such as APTs are known to bypass them with ease. These solutions could be evaded by utilizing living-
off-the-land (LoL) binaries, abusing digital certificates, and using trusted command and control (C2) domains,
exploiting a zero-day vulnerability, or a good old-fashioned socially engineered spear-phishing campaign. As a
result, cybersecurity vendors have been developing new “next-generation" solutions capable of detecting APT
attacks.

Unfortunately, the meantime to detect (MTTD) a breach is still 197 days, Ponemon Institute & SANS reported
in June 2019 [27]. In order to reduce MTTD, many cybersecurity vendors are developing AI-integrated solutions.
To let security researchers and practitioners understand how to build threat hunting models, we lift the curtain
behind one of our design processes on overcoming the design challenges of a machine learning model for threat
hunting, a possible solution to reducing MTTD.

This study systematically summarizes the obstacles we have encountered into four challenges, namely 1) weak
signal, 2) imbalanced data sets, 3) lack of high-quality labels, and 4) no storyline. We start from a baseline model,
which suffers from all the challenges, and then we propose complementary approaches to solve the challenges
step-by-step. The challenges are introduced as follows.
Challenge One: Weak Signal. A single event in isolation does not contain enough information to determine if
it is a threat or not. Data needs to be contextual in order for it to be useful. A systems analyst or a cybercriminal
could use window commands such as “whoami" or “netstat." Without linking preceding and proceeding contextual
data to this command, a classifier will have trouble labeling this individual event as benign or malicious.
Challenge Two: Imbalanced Data Sets. A typical workday in an organization’s environment could see billions
of diverse events. However, only a very tiny portion of the events would be related to an actual attack. This
massive imbalance in data sets (normal versus malicious) creates three problems. First, the imbalanced data
makes supervised learning approaches ineffective. A model may also prefer to decide on the larger classes. As
malicious events only appear few times, it is difficult to differentiate malicious events from noisy events. Not to
mention that sometimes labels might not be perfect, which could introduce more noise. Second, there are too
few malicious events to properly train or create a classifier as, in general, machine learning classifiers need a
minimum of 50 samples [22] (with many more preferred); otherwise, you will not be able to produce meaningful
results. Finally, labeling becomes incredibly inefficient as practitioners label benign events more than 98 percent
of the time, according to a common data set. However, mislabelling malicious events as benign (false negatives)
could be catastrophic; this is not an option in cybersecurity.
Challenge Three: Lack of High-Quality Labels. Machine learning algorithms can be generally classified into
supervised and unsupervised learning algorithms. Each event in a collected data set has to be correctly labeled
as benign or malicious in supervised learning. The quality of labeling dramatically affects the performance of

1https://en.wikipedia.org/wiki/Advanced_persistent_threat
2https://csrc.nist.gov/glossary/term/advanced_persistent_threat
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machine learning algorithms. However, correctly labeling is not an easy task when performed against system
events due to the size of the volume and the data’s imbalance property. An enterprise organization could have
collected billions of events, but only a tiny portion of them are relevant to threats. It would take a considerable
amount of time to create high-quality labels for the events. Even worse, labeled data may not be migrated to
other data sets. Whether the event is malicious highly depends on the contextual information. An event could be
malicious in one data set but not malicious in another data set. For example, using samba to transfer files is a
typical usage and could be abused by adversaries.
Challenge Four: No Storyline. Seeing one event in isolation is not enough to fully understand what malicious
activity occurs on a protected network from a forensic perspective. Worse still, security analysts might miss
something when presented with a smattering of isolated events. Ideally, a classifier should also link similar alerts
together; thus, creating fewer alerts and constructing an attack storyline that narrates the attack path back to its
actual root cause. Our goal is to leverage machine learning to expeditiously remove a considerable amount of
false positive alerts and benign events. It would then leave only the most worthy incidents to be analyzed by
human security analysts and do so in a way that makes sense from a forensic perspective.
We propose Fuchikoma3 and APTEmu to demonstrate how we tackle the challenges mentioned above.

Fuchikoma is a proof of concept system for demonstrating the ideas behind autonomous threat-hunting. It
is a machine learning-based anomaly detection and threat hunting system which leverages natural language
processing (NLP) and graph algorithms. To ensure that the proposed approaches can be adapted to real-world
cases, we emulate a well-known APT3 by using APTEmu to generate attack behavior and logs. We can feed
generated logs to our proposed approaches and determine if a built model can successfully “hunt" (identify)
the threats. Our contribution is three-fold. First, we discuss how different properties, i.e., suspicious activities,
anomaly behavior, and connectivity, can be leveraged to design threat hunting solutions. Second, we illustrate
how to use open-source software to build a machine learning model for threat hunting. Third, we evaluate our
proposed approaches thoroughly and discuss our proposed approaches’ performances and limitations in-depth.
The rest of this paper is organized as follows. We survey related works and discuss the state-of-the-art approaches
in current literature in Section 2. Background knowledge for readers is introduced in Section 3. Our proposed
approaches for tackling each challenge are presented in Section 4. The effectiveness of each proposed approach is
evaluated in Section 5. Finally, a concluding remark is given in Section 6.

2 RELATED WORK
Advanced persistent threat (APT) has now become more sophisticated and common. Even non-APT attacks, such
as ransomware, start employing APT-relevant techniques to lurk themselves in victims’ environments. Therefore,
detecting APT activities has become a crucial issue.

Instead of targeting a single user, recent APT or similar attacks start targeting various organizations, including
government and enterprises. As a result, traditional pattern-based or rule-based defense approaches such as
anti-virus software and intrusion detection/prevention systems do not capture APT attacks. Besides, many
ambiguous probing activities used when an APT attack propagates itself might not be easily recognized as
malicious activities.

To better defend against APT attacks, the defensive strategy has been changed from single points to collaborative
components deployed in a protected environment, including endpoint defense and response (EDR), security
information and event management (SIEM), and security operating center (SOC). These collaborative components
aim to correlate the activities and recognize the intrusion by leveraging more wide-ranging activity monitors. In
this section, we summarize research works that have attempted to conquer APT attacks. We classify these works

3Our approach name comes from Fuchikoma, an AI robot who always helps investigators solve challenging criminal cases in the Japanese
manga "Ghost in the Shell."
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into three categories, namely 1) anomaly detection approaches, 2) provenance graph-based approaches, and 3)
approaches based on specific attack patterns.

2.1 Anomaly Detection Approach
Anomaly detection approaches identify anomaly data points that deviate from benign data points. It has been
applied to detect intrusion for decades. Xiong et al. propose CONAN [30], which detects APTs under real-
world scenarios with high accuracy and efficient memory and CPU usage by focusing on leading phases during
processing and consuming stream-like events and finite state automata (FSA)-like entities. Bai et al. [5] propose
an approach for detecting malicious Remote Desktop Protocol (RDP) sessions. Leveraging Windows RDP event
logs, they evaluate various supervised machine learning techniques for classifying RDP sessions.
Some approaches use deep learning models such as LSTM to process sequences of log data and perform

anomaly detection. Du et al. propose DeepLog [11], which models a system log as a natural language sequence
and trains an LSTM-based model by regular execution logs; therefore, it can detect anomaly log patterns when
the model deviates. Yuan et al. propose ADA [32], an unsupervised online deep neural network framework that
leverages LSTM networks. An adaptive model selection strategy and a dynamic threshold algorithm are proposed
in the study to utilize resources efficiently and improve detection accuracy.
For gaining more information from the log data, several works construct a correlation graph and use graph-

based machine learning approaches to detect anomalies. Bowman et al. [9] propose an approach that consists
of an authentication graph and an unsupervised graph-based machine learning pipeline that learns latent
representations and performs anomaly detection to detect lateral movement. Leichtnam et al. [16] obtain rich
activity information from various log files in the security objects’ graphs. The obtained information is then used
for the auto-encoder-based unsupervised learning approach to detect newly formed attacks. Schindler [24] applies
graph-based approaches and machine learning techniques to detect attacks in a simulated computer network and
real-world data through log data analysis, which fastens the detecting and reacting time to new threats.
Although these works show excellent results in finding intrusions, they may not distinguish malicious or

novelty activities, e.g., activities triggered by a newly installed software. Thus false alerts may sometimes occur.

2.2 Provenance Graph-Based Approach
Log analysis is essential for catching malicious and suspicious activities. A log may contain randomly ordered
malicious and benign entries. It could not be easy to analyze without considering the causality of collected
log entries. One promising approach for representing log entry causality in a system-wide scope is to create
provenance graphs for the entries. A provenance graph can reconstruct information flow between objects,
e.g., files, processes, and network connections. It can even be used to create finer-grained object relationships,
including API calls and system calls.

Several research works attempt to defend against APT by constructing provenance graphs. Barre et al. [6] use
machine learning techniques to detect APTs within hosts in a network by mining the data provenance graph
with a high detection rate and low false-positive rates (< 4%). Milajerdi et al. propose POIROT [19], which models
threat-hunting as a graph pattern matching problem and calculates the similarity between the cyber threat
intelligence (CTI) correlations graph constructed by security analysts manually and the provenance graph of
kernel audit logs. Hassan et al. propose RapSheet [14], which uses Tactical Provenance Graphs to generate causal
dependencies and visualize multi-stage attacks. It ranks threat to score and reduces the long-term burden of log
retention by up to 87%. Han et al. proposed UNICORN [13], which applies provenance graphs analysis, graph
sketching technique, and novel modeling approach to detect APTs. Yu et al. propose NeedleHunter [31], which
constructs a version-based provenance graph and detects specific rules’ attacks. It then compresses the scale
graph and generates attack paths by correlating the information flows.

Digit. Threat. Res. Pract., Vol. 5, No. 1, Article 111. Publication date: March 2021.
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Some conditions need to be considered when designing, implementing and deploying a provenance graph-based
approach in a real-world enterprise environment containing more than tens of thousands of endpoints. First, the
logging mechanism must be sufficiently lightweight because endpoints could have intensive daily tasks. Second,
in many cases, only built-in systems logs are available for constructing the graphs. It is because an enterprise
always has some legacy systems, which is challenging to deploy modern agents. Even if the deployment is
possible, the compatibility and reliability of running modern agents in a legacy system could be a problem.
Third, an investigation often starts after an incident is reported. As a result, only forensic-based approaches are
applicable.

Our proposed approach assumes that all the involved endpoints in a protected environment can turn on their
system’s native logging mechanisms, which we believe is the most lightweight mechanism for collecting logs.
The provenance graph is then built based on the collected system logs to ensure that the proposed approach
applies to most environments.

2.3 Specific Attack Pattern Approach
Building a classifier would be a straightforward approach to detecting intrusions by collecting and training attack
and non-attack data sets. For example, Alsaheel et al. proposed ATLAS [1], which uses causality analysis, natural
language processing, and machine learning techniques to build a sequence-based model to classify the attack
and non-attack behaviors based on the observations that there are similar abstract attack strategies in different
attacks.
However, the volumes for attack and non-attack data sets are always imbalanced. It is because attacks rarely

occur compared to benign activities. Besides, a single event without contextual information could lead a classifier
to a wrong decision. For instance, the psexec command may be benign in an environment if its administrators
regularly use it to manage the IT infrastructure, but possibly be a malicious one if psexec command is rarely
used.
Since it is infeasible to create an Oracle detector that never produces false positives, it is essential to help

security analysts further diagnose identified cases by recognizing attack patterns and providing additional
information. Several works have focused on producing meaningful or explainable information to assist diagnoses,
such as prioritizing threats and understanding attacks.
Many research works apply manual or semi-auto-generated specifications, represented as graphs indicating

a specific tactic, technique, or procedure (TTP), to recognize attacks. For example, Shu et al. [26] and Sinno
and Cervantes [20] apply TTP specification as one kind of pattern to detect intrusion activities. Afterward, the
sub-graph matching algorithms can be used to recognize these TTPs in the provenance graph. Inspired by these
works, our proposed approach attempts to utilize Sigma [23] to detect the TTP of threat actors and then annotate
the suspicious activities with the MITRE ATT&CK matrix tags.

In addition to someworks attempt to understand attacks by using different representations. Shen and Strhinghini
proposed ATTACK2VEC [25], which applies word embeddings to model the attack events. It helps analysts to
understand the attack strategies and improves awareness of defending against potential attacks. Zou et al. [34]
takes log data and configuration files as input and detects APT tactics by synthesized analysis, correlation, and
different identification methods. It automatically generates a ranked list of APT tactics based on completeness
to assist security analysts in knowing the APT tactics. Cao proposes PULSAR [10], which applies the factor
graph to capture the attack evolution based on security events and detects the attack’s statistical significance
and progression. Liu et al. proposed Log2vec [17], which focuses on discovering various relationships between
log entries by building a heterogeneous graph and uses graph embedding techniques to obtain low-dimension
vectors for the detection algorithm to differentiate malicious events.
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Techniques
Step 11 — Initial Compromise

11.A.1 Scripting (T1064) via PowerShell (T1086)
11.B.1 Commonly Used Port (T1043), Standard Application Layer Protocol (T1071), and Standard Cryptographic Protocol (T1032)

Step 12 — Initial Discovery
12.A.1 System Network Configuration Discovery (T1016) via PowerShell (T1086)
12.A.2 System Network Configuration Discovery (T1016) via PowerShell (T1086)
12.B.1 System Owner / User Discovery (T1033) via PowerShell (T1086)
12.C.1 Process Discovery (T1057) via PowerShell (T1086)
12.D.1 System Service Discovery (T1007) via PowerShell (T1086)
12.E.1 Scripting (T1064) via PowerShell (T1086) and Execution through API (T1106)
12.F.1 Permissions Group Discovery (T1069) via PowerShell (T1086)
12.F.2 Permissions Group Discovery (T1069) via PowerShell (T1086)
12.G.1 Account Discovery (T1087) via PowerShell (T1086)
12.G.2 Account Discovery (T1087) via PowerShell (T1086)

Step 13 — Discovery for Lateral Movement
13.A.1 Remote System Discovery (T1018) via PowerShell (T1086)
13.B.1 System Network Connections Discovery (T1049) via PowerShell (T1086)
13.B.2 System Network Connections Discovery (T1049) via PowerShell (T1086)
13.C.1 Query Registry (T1012) via PowerShell (T1086)

Fig. 1. A sample playbook from MITRE’s APT3 operational flow.

Although the specification-based or pattern-basedmechanisms could effectively detect known attack techniques
and tactics, these approaches cannot solely handle new attack techniques and tactics. Anomaly detection ap-
proaches should be integrated to handle unknown threats and complement the capabilities of specification-based
or pattern-based mechanisms.

Our proposed approach takes the complementary advantages from the connectivity of the provenance graph,
suspicious specification, and anomaly detection. To the best of our knowledge, we are the first to combine these
three dimension information to detect APTs.

3 BACKGROUND

3.1 Playbook
A playbook, or a reproducible operational flow, is the list of practitioners’ procedures for reproducing adversaries’
activities. A playbook contains step-by-step instructions or scripts to automate tasks. It can be used as a configu-
ration file to perform the same operations in given environments and minimize impacts caused by environmental
deviations. We use playbooks to design blueprints for simulation attack environments, and everyone can follow
instructions or execute scripts to reproduce identical experiments.

One well-known example is the playbook created based on MITRE’s ATT&CK evaluation. MITRE has deeply
dissected identified threat actors’ tactics and techniques from many published threat reports. A playbook can
then be created by mimicking the actor as close as possible and cover most threat actors’ tactics and techniques.
Afterward, this playbook can be used to evaluate the responses of security products, such as endpoint detection
and response (EDR) and anti-virus solutions, and the capabilities of security teams. A sample playbook is given
in Figure 1

3.2 The APT3 and Classic Playbook
We create playbooks for evaluating our proposed approaches based on the tactics and techniques collected from
real-world attacks. One is the APT3 playbook, and the other is the Classic playbook. APT3 is the first-round
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adversary used in MITRE ATT&CK Evaluations [3]. Known for leveraging zero-day exploits in multiple phishing
campaigns, APT3 is one of the most sophisticated threat groups that we track. The APT3 playbook consists of
data we have collected in the wild and data from shared global threat intelligence.

We use Empire to construct the APT3 playbook. Empire is a PowerShell post-exploitation agent. It has several
custom tools that record keystrokes in encrypted files, enumerate current network connections, establish SOCKS5
connections for an initial command and control (C2), and remove indicators for being compromised. It can
rapidly deploy various post-exploitation modules such as Mimikatz, a famous credential dumping tool, and bypass
network detection by encrypted and secure communication.
Metasploit is a framework that contains many exploits and toolkits for penetration testing. The Metasploit

framework can be used to develop and launch CVE and one-day exploits on remote computers at ease. We use
Metasploit to construct the Classic playbook, which is composed of a classic attack flow simulated by our own
sightings from real-world incidents. We follow MITRE ATT&CK enterprise tactics to perform malicious actions
in each step. With a web shell as initial access, hidden, gain permission by exploiting and secretly gathering
credential information. In addition, explore the network and use valid accounts to move laterally and take control
of other machines time and time again. Specifically, the Metasploit toolkits used to construct the Classic playbook
include Juicy Potato, Mimikatz, web shell, and key logger. Some of these malware components still remain
undetectable for anti-virus systems. More details about the components are introduced in Section 4.1.

4 APPROACH

4.1 APTEmu
The goal of APTEmu is to generate attacks on Windows machines in a virtualized environment. APTEmu
sends two waves of attacks, each utilizing a different pre-constructed playbook. Empire [29] is used to run
the first playbook, which is modeled after APT3. Metasploit [18] is used to run the second playbook, which is
considered the Classic playbook. We use the Classic playbook to describe the power of sophisticated APT attacks
that enterprise faces every day in the wild. A dedicated environment for launching attacks is assigned to each
playbook. To enrich our virtual environment closer to the real world, several normal users use them daily to
create more benign events.
In the first environment dedicated to the APT3 playbook, we attempt to imitate a general office intranet.

Following the MITRE ATT&CK APT3 evaluation specification, the environment comprises five endpoints: one
AD server running Windows Server 2016 Datacenter, one file server running Windows Server 2016 Datacenter,
and three end-users running Windows 10 Pro.
In the second environment dedicated to the Classic playbook, we attempt to imitate an enterprise network’s

environment with exported services, e.g., publicly accessible web applications. The enterprise network is split
into a typical demilitarized zone (DMZ) and an intranet. Meanwhile, the environment contains heterogeneous
operating systems, including Windows and Linux. The environment comprises four endpoints: one public IIS
web server running on Windows Server 2012 R2, two end-users running Windows 10, and one internal server
running Linux Ubuntu 16.04.
Large enterprises and organizations across multiple countries have encountered zero-day exploits, stealthy

tools, and advanced attacks every day. Many of these attacks are included within the Classic playbook. We
commonly found Juicy Potato [2], a weaponized variant of RottenPotatoNG [28] that exploits the way Microsoft
handles tokens, thus allowing attackers to escalate their privileges. The prevalent credential dumping malware,
Mimikatz [7], is also included in the Classic playbook. However, not every Classic playbook entry is as notorious
as Juicy Potato and Mimikatz. We also included a keylogger found in the wild that remains undetectable by
VirusTotal [15]. The Classicplaybook is designed as an any-given-day-in-the-wild playbook, so Fuchikoma could
be trained to handle attacks outside of the APT3 playbook.
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To efficiently model a blue team’s reactions to cyberattacks, we use the open-source Elastic Stack for log
management because of its ability to query massive data sets in a reasonable time. On every Windows endpoint,
Beats is installed and is responsible for sending event log data to Elasticsearch, where the machine learning
pipeline retrieves event data.

4.2 Fuchikoma: Overview
Fuchikoma is a proof-of-concept threat-hunting system dedicated to detecting intrusions and APT attacks.
Considering the complicated of the attacks, Fuchikoma is not a fully automatic system. Design as an autopilot,
Fuchikoma is a semi-auto system that interacts with analysts. Fuchikoma has an essential ability to detect
threats automatically, but it works better with analysts’ feedback. Fuchikoma also helps reconstruct the intrusion
storyline to assist manual investigation for understanding the attacks and their root cause.

Fuchikoma intends to demonstrate how machine learning algorithms can be used concretely to automate large
swaths of security operation center (SOC)’s works. One malicious event never provides enough information.
Security analysts in a SOC need to trace malicious activity back to the attack’s root cause to gain the necessary
forensic perspective on the attack’s entirety. Only then, SOC analysts can fully understand an attack and possibly
the threat actors’ motivations.
Storyline reconstruction and root cause identification are pretty critical for security analysts. A single or a

few detected events cannot provide sufficient information for investigating an intrusion. Connecting malicious
events, constructing the storyline, and tracking back to the root cause provides analysts critical perspectives
about the entire intrusion to conduct remediation. Without fully understanding the attack root causes and the
attack vectors from the adversaries’ view, it is impossible to conduct remediation, and attackers could successfully
intrude again by using the same attack vectors.
Several off-the-shelf open-source components are used to construct a machine learning pipeline used by

Fuchikoma. Natural Language Toolkit [8] (NLTK) applies NLP techniques to process Windows logs as a document
for seeking suspicious patterns. Next, the logs are introspected and stored in a graph database called Neo4j [21].
In the end, the data in the graph database is processed and retrieved to the machine learning component, which
is mainly developed with Scikit-learn [22], a Python library for machine learning.

4.3 Fuchikoma v0
We design Fuchikoma v0 to prepare to develop our machine learning pipeline for threat hunting and gain insights
into the challenges. Fuchikoma v0 employs the most straightforward approach, a simple supervised classifier, e.g.,
support vector machines, decision trees, and neural networks. Given the Windows event log as input, Fuchikoma
v0 classifies the event as benign or malicious.

As previously mentioned in Section 4.1, Windows event logs are gathered from endpoints to the ELK Stack.
Fuchikoma v0 then learns to build a classifier based on all the collected information. To ensure the data volume is
manageable and reduce the complexities brought by diverse log types, Fuchikoma v0 focuses only on process
creation events. However, this design can be easily extended to add different types of event logs.
One of Fuchikoma’s many goals is to automate the process of verifying alerts. However, Fuchikoma v0 can

only verify particular attacks – pretty much exact command lines. Attackers could evade detection by using
variants of hacking tools or combinations of specific attacks.

Fuchikoma v0 cannot correctly handle all the challenges mentioned above. For challenge one (weak signal),
since Fuchikoma v0 processes one event at a time, it could not judge ambiguous commands such as ‘netstat’
and ‘whoami’ without contextual information.
Fuchikoma v0 also suffers from challenge two (imbalanced data sets). We use sample event logs collected in

our network to discuss the challenge. The event logs are fed to Fuchikoma v0 for threat hunting. Out of the
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Fig. 2. Architecture overview for Fuchikoma v1.

11,135 events fed to Fuchikoma, only 119 (or 1.1%) are malicious. Although there are many duplicated events
because of regular daily operational tasks, the situation is not better, even if we remove duplicated logs. There
are only 35 (or 1.9%) malicious events out of 1,857 distinct events. The imbalanced data set makes supervised
learning ineffective.
Fuchikoma v0 has nothing to do with challenge three (lack of high-quality labels) and challenge four (no

storyline). For the former one, it is infeasible to label the whole data set manually. Even the sample logs we used
for illustration contain more than ten thousand events. In the meantime, because each event in the sample data
set is processed independently, no context information can be used to assist data labeling. For the latter one,
Fuchikoma v0 cannot construct an attack storyline also because the events are processed independently. The
malicious events could not be correlated together. Analysts have to analyze each identified malicious event, and
therefore it is difficult for them to diagnose the root cause of attacks.

Fuchikoma v0 has successfully revealed the demands and requirements that a right solution must have. Instead
of a single machine learning model, a security analyst would need a machine learning pipeline composed of
several well-established collaborating models. While billions of diverse events could be collected from an extensive
network environment in a typical workday, an ideal solution should efficiently detect intrusions by integrating
anomaly and misuse techniques. Meanwhile, simplifying the investigation processes for security analysts is also
an essential key objective. In the following subsections, we demonstrate steps to build our machine learning
pipeline to address the challenges that the naïve Fuchikoma v0 cannot handle.

4.4 Fuchikoma v1
Fuchikoma v1 is our first attempt to solve the challenges mentioned above. The machine learning pipeline of
Fuchikoma v1 is depicted in Figure 2. The rationale behind the design of Fuchikoma v1 is pretty straightforward.
When a suspicious process is identified in a system, a security analyst often wants to know two facts about the
process. That is 1) the origin of the process and 2) the subsequent operations of the process. The objectives of
Fuchikoma v1 are to shorten security analysts’ investigation time and increase detection accuracy based on event
clustering. Fuchikoma v1 attempts to solve challenge one by introducing analysis units (AUs), which transform
process-relevant events into tree hierarchies. Furthermore, it also attempts to solve challenge two and challenge
three by employing unsupervised learning approaches.
The purpose of an AU is to enrich contextual information. With the AUs, Fuchikoma v1 can systematically

identify the two facts about a suspicious process. An AU is a sub-process tree that links a process against its
parent process and 𝑛 tiers of child processes. Building AUs from logs is simple. We can simply follow all process
creation events in a log data set and then build the corresponding AUs. An example of a single AU created with 𝑛
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cmd 0

cmd 2 cmd 3

cmd 4

cmd 1

Fig. 3. A sample analysis unit (AU) process tree.

set to two is depicted in Figure 3. Once AUs are created, the AUs are passed to the next stage called Unit2Doc in
the pipeline for clustering preparation.
Unit2Doc is designed to transform each AU into a vector form that fits most clustering algorithm’s input

requirements. To keep the AUs’ locality, Unit2Doc first sorts the child processes by creating time and then
generates an AU document by performing a depth-first-search traversal to collect process names and commands.
A sample text-based AU document is given in Figure 4. Afterward, Unit2Doc vectorizes each AU by employing the
TF-IDF algorithm, which is a widely used algorithm for vectorizing documents in the natural language processing
domain. Vectorized results are then sent further down the machine learning pipeline for clustering. Now that
each event has contextual information in the form of an AU vector. Unsupervised clustering algorithms can
group similar AUs into clusters and significantly reduce the workload that security analysts need to perform data
labeling.

Fuchikoma v1 employs the k-means algorithm to cluster similar events before labeling manually. The number
of labels that needed to be generated by security analysts could be reduced only to label each cluster. Since
the k-means algorithm gives more weight to larger clusters, security analysts know with a higher degree of
confidence that a more extensive cluster would not contain malicious events as most of the events are benign.
With the clusters, security analysts would not need to label each of the billion diverse events individually but
rather label each cluster. It would save a surprising amount of time and resources.

Even though Fuchikoma v1 can solve challenges one, two, and three, it does not entirely solve challenges two
and three. It is because the k-means algorithm prefers to cluster a data point to a larger cluster. In an imbalanced
data set, a malicious event might be incorrectly classified into a benign cluster. As a result, analysts could still
need to investigate every cluster to ensure that processes are correctly clustered together. Besides, it could not
be easy to explain the relationships between the same cluster processes, bringing extra challenges for security
analysts.

4.5 Fuchikoma v2
To better tackle challenge two (imbalanced data sets) and challenge three (lack of high-quality labels), we attempt
to bring Fuchikoma to the next level by introducing anomaly detection approaches. As anomaly detection is
often used for dealing with imbalanced data sets, it is a good fit for solving challenge two. Leveraging anomaly
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(('0x428', 'C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershellexe'),
'powershell -nop -exec bypass -EncodedCommand  SQBFAFgAIAAoAE4AZQB3ACOATwBiAGoAZQBjAHQAIABOAGUAdAAuAFcAZ
 QBiAGMAbABpAGUAbgBOACkALgBEAGBAdwBuAGwAbwBhAGQAUwBOAHIAaQBuAGcAKAAnAGgAdABOAHAAOgAvAC8AMQAyADcALgAwAC4A
 MAAuADEAOgAyADYAMAA3ADIALwAnAcKA;
 "c:\\windows\\syswow64\\windowspowershell\\v1.0\\powershell.exe" -Version 5.1. -s -NoLogo -NoProfile;
 C:\\WINDOWS\\system32\\cmd.exe /C net group "Domain Controllers" /domain;
 C:\\WINDOWS\\system32\\cmd.exe /C net group "Domain Controllers" /domain;
 C:\\WINDOWS\\system32\\cmd.exe /C net group "Domain Computers" /domain;
 C:\\WINDOWS\\system32\\cmd.exe /C net group "Domain Controllers” /domain;
 C:\\WINDOWS\\system32\\cmd.exe /C net group "Domain Controllers" /domain;
 C:\\WINDOWS\\system32\\cmd.exe /C netstat -ano; C;
 C:\\WINDOWS\\system32\\cmd.exe /C reg query "hklm\\system\\currentcontrolset\\control\\terminal server";
 C:\\WINDOWS\\system32\\cmd.exe /C whoami;
 "C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\csc.exe" /noconfig /fullpaths
  @"C:\\Users\\Debbie\\AppData\\Local\\Temp\\bqjai4yk\\bqjai4yk.cmdline";;
 C:\\WINDOWS\\system32\\cmd.exe /C cmd /c echo step3C1cb;
 C:\\WINDOWS\\system32\\cmd.exe /C netsh advfirewall show allprofiles;
 C:\\WINDOWS\\system32\\cmd.exe /C netstat -ano;
 C:\\WINDOWS\\system32\\cmd.exe /C net group “Domain Computers" /domain;
 C:\\WINDOWS\\system32\\cmd.exe /C netsh advfirewall show allprofiles')

Fig. 4. An actual AU consisting of vectorized command lines.
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Fig. 5. Architecture overview for Fuchikoma v2.

detection approaches would further solve challenge three by fine-tuning priorities for identified anomaly samples
and propagating labels to clustered samples.

Fuchikoma v2 adds an anomaly detection stage after Unit2Doc stage. Vectorized AUs are sent to the clustering
stage and the anomaly detection stage at the same time. For each identified anomaly AU, an anomaly tag is
associated with the cluster containing the anomaly. As a result, analysts can analyze clusters with anomaly tags
first and improve the overall efficiency of identifying malicious events.
We implement and evaluate different algorithms in the anomaly detection stage of Fuchikoma v2. The algo-

rithms include Local Outlier Factor (LOF), Isolation Forest (iForest), and Density-Based Spatial Clustering and
Applications with Noise (DBScan) algorithms. LOF (Local Outlier Factor) algorithm essentially outputs a score
that indicates how likely a particular data is an outlier (anomaly or malicious, from Fuchikoma’s perspective).
More specifically, LOF measures the local deviation of a given sample’s density with respect to its neighbors. A
sample is considered an outlier if it has a substantially lower density than its neighbors.
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Fig. 6. Architecture overview for Fuchikoma v3.

iForest (Isolation Forest) algorithm isolates each point in a data set and splits them into outliers or inliers
(anomalous or normal). The rationale behind the algorithm is that anomalies are few and different compared to
benign data. The isolation forest algorithm works similarly to decision tree algorithms. It isolates an outlier by
randomly selecting a feature from all available features and then randomly selecting a split value between the
selected feature’s maximum and minimum values. This random partitioning of features produces smaller paths
in trees for the anomalous data values and distinguishes them from the benign set.
DBScan (Density-Based Spatial Clustering and Applications with Noise) algorithm groups data close to each

other based on distance measurement. DBScan is especially useful for data that contains clusters of similar
density, such as benign clusters. DBScan also highlights outliers in low-density regions, which helps Fuchikoma
locate those pesky malicious events accurately.
A false alert might still happen in Fuchikoma v2, and therefore manual analysis is required. However, larger

groups in a data set, which tend to be the benign clusters as benign activities appear more often, usually need
fewer investigations. It would significantly decrease analysts’ workload and have an additional advantage of
defeating challenge two, as the analysts would now label only a limited number of suspicious data.
Fuchikoma v2 has attempted to show that well-tuned clustering and anomaly detection algorithms would

reduce security analysts’ workload to identify malicious clusters. However, it is still not able to solve challenge
four. Security analysts know that similar events would be grouped together and perform investigations guided
by the clusters. Nevertheless, they may not have sufficient clues to identify the intention of the events grouped in
the same cluster. Other solutions that could provide more information for analysts should be further developed.

4.6 Fuchikoma v3
We further improve Fuchikoma’s capabilities by integrating five additional stages into Fuchikoma v3’s machine
learning pipeline to solve challenge four. The five stages are Graph Construction, Community Detection, Attack
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Score Calculation, Topic Model, and Label Propagation. The new stages introduce graph representations of events
and help analysts to create more precise annotations. We believe integrating these stages would let security
analysts better understand the intentions behind identified malicious events.

4.6.1 Graph Construction. While an AU focuses on localized context, the Graph Construction stage compiles all
events collected on an endpoint into one massive graph. It is worth noting that process IDs in Windows align to
multiples of 4, and the system allocates the most recently released ID to a new process. As a result, two irrelevant
processes may be assigned with the same process ID, bringing additional difficulties for constructing process
graphs. The relationships between processes and their corresponding process IDs must be well-managed.
The Graph Construction stage can be further used to build relationships for processes running on multiple

endpoints, thereby expanding the process tree to include and connect process events across endpoints. In this
case, we have to associate the IP address and the hostname with each process. Although the resulted process tree
could be vast and complex, parsing events produced by these processes, such as WMIC (Windows Management
Instrumentation Command-line) processes, would make the possible annotation about lateral movement tactics,
techniques, and procedures (TTPs).
Figure 7 shows a Graph Construction result for one endpoint. The Graph Construction stage maintains the

relations of all the process creation events for each endpoint. Constructed graphs are sent to Graph2AU, Attack
Score Calculation, and Community Detection stages simultaneously. The path for anomaly detection is similar to
Fuchikoma v2. The only difference is that Graph2AU, formerly known as Unit Builder, is used for building AUs
from the event graphs. The built AUs are then fed to Unit2Doc and Anomaly Detection.

4.6.2 Community Detection. It is expected that processes for a particular task may be positively related to each
other. Therefore, partitioning the graph according to its connectivity is possible to group the processes for similar
tasks. Fuchikoma v3 attempts to group nodes in the Community Detection stage to place nodes into high-density
clusters.

Figure 7 demonstrates the process graph containing an intrusion observed on an endpoint. A closer inspection
of the graph would identify process 0x1374 as the root cause of the intrusion. It seems that the user might
download and execute a malicious executable, e.g., an attachment embedded in a phishing email or an executable
downloaded by a browser. Seven malicious child processes are generated by that entry process (0x1374). Each
child process then creates an additional one to five malicious processes. We can also find that the user-triggered
process group (enclosed by the red rectangle) has a high density. The nodes in the group have similar activities,
such as WMIC and PSExec.exe. It is because the adversaries tend to finish similar tasks in a short time.
Fuchikoma v3 leverages community detection algorithms such as the Louvain Modularity algorithm [33] to

detects community structures in an event graph. The Louvain Modularity algorithm is a hierarchical clustering
algorithm on graphs that, based on its modularity, recursively combines groups into a single node, which may be
a group from a previous iteration. With the community detection stage, the malicious processes and the benign
processes also exhibit high density and form a community. In contrast to the clustering stage, groups identified
in the community detection stage contain contextual information, which can be used to clarify the predecessor
and successor activities. It is a crucial step toward the SOC alert verification process and the reconstruction of
the attack storyline.

4.6.3 Attack Score Calculation. The Attack Score Calculation stage reads process creation graphs and calculates
each process node’s attack score in three steps. First, we associate the most commonly used MITRE ATT&CK
techniques to each process node. The associations are done by performing rule-based matching against process
names, parent process names, command-line arguments, and other enabled fields for process creation events.
Second, we configure the weight of ATT&CK techniques based on their severity and initialize the score of
a process node to the sum of the weights of each marked technique. Finally, we add the square root of the
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Fig. 7. A sample Graph Construction result for one endpoint.

summation of the child nodes’ attack scores to each process node. We perform this operation starting from leaf
nodes towards root nodes in a process tree. We repeat the operation𝑚 times to ensure that the malicious scores
can be propagated to appropriate parent nodes.
A threshold is then defined to determine suspicious nodes. A process node is determined as suspicious if its

score is greater than the threshold. Node triage information is passed to the next stage for counting the number of
suspicious nodes in a community. It is further used in the Label Propagation stage for comprehensive assessments
based on both suspicious information and anomaly information.

4.6.4 Topic Model. Provide more information for investigation is equally essential compared to detecting threats.
The Topic Model stage enriches the contextual data for each community. The objective of this stage is to attribute
the most critical keywords to each community. Once it is done, the keywords, the anomaly AUs, and a preliminary
label are sent to the next Label Propagation stage.
The Topic Model stage considers each AU in the community as a document and then performs keyword

analyses against the AUs to find critical keywords across the documents. The analyses provide analysts contextual
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1. cmd.exe, net command
2. powershell.exe, bypass
3. whoami, ARP
4. netsh advfirewall, allprofiles, nets

Fig. 8. Examples of keyword analysis results.

information at a glance for each community. The keyword may also reflect the crucial activities conducted in the
community. Figure 8 shows a sample list of retrieved keywords. Other possible keywords include leaked admin
passwords, target IP addresses and hostnames, and involved hacking tools.

4.6.5 Label Propagation. Fuchikoma v3 now has the anomaly information, suspicious information, and connec-
tivity information from the Anomaly Detection, Attack Score Calculation, and Community Detection stages,
respectively. The Label Propagation stage aims to generate a preliminary label (benign or malicious) for manual
review based on the collected information. Given the anomaly AU count 𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 and suspicious count 𝐶𝑠𝑢𝑠𝑝 ,
the following equation is used to generate a preliminary label 𝑝𝑙𝑎𝑏𝑒𝑙 for each community:

𝑝𝑙𝑎𝑏𝑒𝑙 =

{
𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 if 𝑊𝑎𝑛𝑜𝑚𝑎𝑙𝑦 ·𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 +𝑊𝑠𝑢𝑠𝑝 ·𝐶𝑠𝑢𝑠𝑝 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑏𝑒𝑛𝑖𝑔𝑛 otherwise,

where𝑊𝑎𝑛𝑜𝑚𝑎𝑙𝑦 ,𝑊𝑠𝑢𝑠𝑝 , and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are customizable parameters. In our experiments, we set𝑊𝑎𝑛𝑜𝑚𝑎𝑙𝑦 ,𝑊𝑠𝑢𝑠𝑝 ,
and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to 0.7, 0.3, and 50, respectively. It shows that both anomaly information and malicious information
have a considerable ratio, but anomaly information counts more.

Once the Label Propagation is done, the Label Propagation stage results are sent to analysts for manual reviews.
Even though false positives still occur, analysts can utilize the communities that contain the causality to guide the
analysis process. Instead of marking each event, the analysts can review and mark all events in a community at a
time, which significantly reduces the number of reviews because of the rich contextual information. In addition,
the MITRE ATT&CK TTP tags generated from Attack Score Calculation as well as keywords from Topic Model
would further assist analysts for quick triage.

To summarize Fuchikoma v3, the Community Detection, Attack Score Calculation, Topic Model stages give
more information to depict the storyline. All four challenges can be addressed in Fuchikoma v3 by leveraging the
rich contextual information associated with communities. As manual analyses are still indispensable, the machine
learning pipeline enriches the information for analysts to judge and significantly reduces analysts’ workload.

5 EVALUATION
The goal of Fuchikoma is to automate the alert verification process. We discuss how different versions of
Fuchikoma can tackle the four challenges and help analysts to complete their jobs.

5.1 Evaluation Metrics and the Data Set
We use several commonly used metrics [12] to evaluate the performance of discussed solutions. The performance
evaluation metrics include

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (1)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝑎𝑛𝑑 (2)
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Table 1. Profiles for the two data sets used for evaluation.

Playbook Generated Data Set # of events # of benign events # of malicious events
APT3 playbook the APT3 data set 8329 8069 (96.87%) 260 (3.12%)

Classic playbook the Classic data set 13867 13802 (99.53%) 65 (0.47%)

F𝛽 − score =
(1 + 𝛽2) Precision × Recall

𝛽2 Precision + Recall
(3)

The true-positive (TP) and true-negative (TN) used in the equations are defined as when a solution correctly
classifies a malicious and benign event, respectively. In contrast, the false-positive (FP) and false-negative (FN) are
defined as when a solution incorrectly classifies a malicious and benign event, respectively. As to 𝐹𝛽-score, the 𝛽
parameter specifies how to weigh the balance between precision and recall. F1-score considers well-balanced
between precision and recall, which is equivalent to calculate the Harmonic mean. F3-score considers more about
the recall, and we will discuss the results in the following experiments.
We use two data sets to evaluate the performance of Fuchikoma. The APT3 playbook generates one data set

called the APT3 data set, and the Classic playbook generates the other one called the Classic data set. Several
workers perform their daily work in the victim environment to produce real-world activities. Thus many benign
operations are also included in the two data sets. The profiles of the two data sets are given in Table 1. Both the
two data sets are pretty imbalanced, where benign events are 30 times more than malicious events. As a result,
even a low false-positive rate could considerably reduce the precision rate with the imbalanced data set and
therefore influence F1 and F3 scores. Note that the data sets contain a few ambiguous events, which can be labeled
as either benign or malicious. For example, conhost.exe is a process dedicated to managing the console since
Windows 7. Every process utilizing the command line contains conhost.exe as its child process. While a process
is malicious, marking the responding conhost.exe as malicious is reasonable. However, as it is automatically
invoked by the OS, regarding it as benign is also acceptable.

5.2 Fuchikoma v1
Fuchikoma v1 can properly handle challenge one. Because a single event does not contain enough information to
determine whether it is a threat, data needs to be contextual in order for it to be useful. Analysis units containing
contextual child and parent process information are added into the machine learning pipeline and then used for
clustering and labeling later in the machine learning pipeline. It means Fuchikoma can correlate everything it
sees adequately.

However, it could not properly handle the rest of the challenges because of inefficient labeling and insufficient
information. For challenge two, Fuchikoma v1 attempts to leverage k-means, but it is not good enough as defining
𝑘 in advance is difficult. Besides, k-means still suffered from imbalanced data sets. Clustering is still useful.
However, other algorithms such as DBScan or Isolation Forest need to be leveraged for anomaly detection to
boost the signal further.

For challenge three, working with Fuchikoma v1 is less distracted as it does not need to generate many labels
compared to the baseline, Fuchikoma v0. However, finding APTEmu out of all the noise still proved too much
to handle. It could still verify particular attacks – pretty much exact command lines. As attackers tend to use
variants of hacking tools and mutated string combinations of specific attacks together, clustering is a move in the
right direction. However, it does not get us all the way there without its own issues. Fuchikoma v1 had more
high-quality labels than Fuchikoma v0; however, there are still too many and too internally diverse clusters that
needed manual analyses, most of which are benign.
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Fig. 9. Event-based performance evaluation for Fuchikoma v2 performing against the APT3 playbook.

For challenge four, this is not so much a flaw in the model as the forensic analyst needs to use it. Detecting
one piece of malware in isolation is not enough to fully understand from a forensic perspective what malicious
activity is occurring on a protected network. Worse yet, security analysts might miss something when presented
with a smattering of isolated events. What is demanded by security engineers running a SOC is an automated
attack storyline to increase their SOC efficiency.

5.3 Fuchikoma v2
The evaluation for Fuchikoma v2 looks encouraging. As we introduced in Section 4.1, APTEmu generates two
waves of attacks on virtualized Windows machines. Each utilizes a different pre-constructed playbook. Empire
is used to run the first playbook, modeled after APT3. Metasploit is used to run the second playbook, which
we called Classic. DBScan outperformed LOF and iForest in the APT3 playbook, but how would DBScan prove
against the Classic playbook? We employ a confusion matrix to evaluate the performance of the DBScan-based
model.

Isolation Forest (iForest) and Local Outlier Factor (LOF) algorithms calculate each sample’s anomaly score. The
Contamination parameter used in the two algorithms specifies the portion of outliers in the data set. In contrast,
the DBScan algorithm forms a cluster with a high density of samples. The Min Samples parameter specifies the
minimum number of samples in a cluster. We use different Contamination parameter values ranging from 0 to 0.5
for the iForest and LOF algorithms. Meanwhile, we use different Min Samples parameter values ranging from 0 to
20 for the DBScan algorithm.
We use F-score, also known as F-beta-score or F-measure, to evaluate the performance of Fuchikoma. The

F-score considers recall and precision in one metric. Not identifying malicious activity (false negatives) could
be disastrous for an organization and, at worst, could cost hundreds of millions in breach recovery and fines.
Simultaneously, we do not want to overwhelm our security analyst team with false positives, as spending time
on false positives could also be disastrous when facing an attack.

In F-score, we calculate both the F1-score and F3-score. While the F1-score is usually used, it is used to evaluate
machine learning models whose goals are to keep false positives and false negatives to a minimum, if not zero.
F1-scores range from one to zero, where one means a model with perfect precision and recall performance, and
zero means a model with the worst performance. Fuchikoma v2’s best score on the Classic data set is 0.26 and is
0.38 on the APT3 data set (depicted in Figure 9 and Figure 10.)

The F1-score gives equal weights to recall and precision. However, we believe catching intrusion is considered
more critical than not producing false alerts in our proposed approach. Therefore, we prefer to give higher
weights to recall and tolerate an allowable number of failures affecting precision. Consequently, we choose F3
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Fig. 10. Event-based performance evaluation for Fuchikoma v2 performing against the Classic playbook.
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Fig. 11. Event-based performance evaluation for Fuchikoma v3 performing against the APT3 playbook.

instead of F1 as the measurement matrix. Fuchikoma v2 achieves the best score of 0.50 on the Classic data set and
0.56 on the APT3 data set (depicted in Figure 9 and Figure 10).
Fuchikoma v2 further solves challenge two compared to Fuchikoma v1. It can now finally eliminate most

“benign noise" and focus solely on the remaining tiny portion of malicious activity. However, some malicious
activity still goes unseen as it is identical to benign activity (e.g., “netstat" or “whoami"), and some false positives
still occur. However, it does not handle challenges three and four properly. For challenge three, while the
addition of anomaly detection in Fuchikoma v2 does not entirely resolve this challenge, anomaly detection does
dramatically reduce the number of events to be analyzed. However, Fuchikoma v2 is far more focused than its
predecessors. While similar attacks could land, Fuchikoma should see most of the attacks and less of the noise.
For challenge four, it is important to note that Fuchikoma v2 does not directly detect attacks but accurately
detects abnormal events, which attacks would generate. An external intelligence (e.g., a SOC team) would still
need to analyze these abnormal groups to determine if an attack occurred.

5.4 Fuchikoma v3
Fuchikoma v3’s performance results against APTEmu are promising. DBScan with Community Detection initially
performed worse than without Community Detection. However, once the threshold count of abnormal AUs is
increased to 50 percent, there is a remarkable improvement with both the True Positive Rate and F3-score and a
marginal improvement in the True Positive Rate. As shown in Figure 13, DBScan’s True Positive Rate is increased
by 15.38%, and the F3-score is increased by 10.38% on the Classic data set, with the addition of Community
Detection.
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Fig. 12. Community-based performance evaluation for Fuchikoma v3 performing against the APT3 playbook.
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Fig. 13. Event-based performance evaluation for Fuchikoma v3 performing against the Classic playbook.
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Fig. 14. Community-based performance evaluation for Fuchikoma v3 performing against the Classic playbook.

Besides the improvement in the True Positive Rate, F1- and F3-score, by labeling communities instead of
individual events, Fuchikoma decreases the analysts’ workload, as analysts need to only examine communities
instead of each event and provide more contextual information to analysts. Not to mention the MITRE ATT&CK
tags, which help analysts realize the storyline.
Fuchikoma v3 has no considerable improvement in performance compared with Fuchikoma v2. However,

Fuchikoma v3 provides more information for analysts to dig into the events and figure out the malicious
behavior. Figure 9 shows that the best True Positive Rate, True Negative Rate, F1-, and F3-score for Fuchikoma
v2 performing against the APT3 data set are 0.8423, 0.8787, 0.30, and 0.61, respectively. In contrast, Figure 11
shows that Fuchikoma v3 improves the True Positive Rate, True Negative Rate, F1-, and F3-score to 0.8846, 0.9121,
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0.38, and 0.70, respectively. The improvements are attributed to the introduction of the Community Detection
stage. Similar improvements can also be observed in experiments with Isolation Forest and Local Outlier Factor
algorithms.
We further perform a community-based performance evaluation for Fuchikoma v3 and plot the results in

Figures 12 and 14. In the APT3 data set, where 8,329 process creation events are collected, Fuchikoma generates
540 communities (clusters with high density), of which only 220 communities contain abnormal AUs. Thanks to
the Community Detection stage that generates communities of a high density in connectivity and similarity. It
leaves 320 benign communities without anomalies that would not need to be investigated further. As a result,
instead of investigating all 8,329 process events individually, security analysts now only have to investigate 220
flagged communities. There are 60 of the 220 communities having more than 50 percent malicious (abnormal) AUs.
The precision rate is about 0.25, which means that every four communities investigated by an analyst contain a
real malicious community. It shows that Fuchikoma has successfully reduced the security analysts’ workload to
a feasible amount of required investigations with acceptable precision. In the meantime, the MITRE ATT&CK
tags associated with the communities also provide insightful information for security analysts to accelerate the
investigation process.
The most significant advance in criminology nowadays is the collection and analysis of fingerprints. The

attack storyline, in essence, is the digital fingerprint of the attack but much more. The attack storyline also allows
analysts to drill down into one event and monitor for lateral movement, thus connecting all the graph constructs
generated and seeing the complete picture of the malicious activity across the entire network.
In summary, the attack storyline reveals the adversarial techniques used in the attack and sheds light on the

motivations behind why these particular adversarial techniques are used. Analyzing the entirety of the attack
gives the analysts a clear perspective into their motivations and informs the analysts of any missing links in the
chain of adversarial techniques used. We see here that the attackers gained initial access through the phishing
email link, performed lateral movement to escalate their access, and eventually set up a command and control
executable.
Fuchikoma v3 also successfully tackles challenges there and four. Fuchikoma v3’s use of anomaly detection

and community analysis to pre-analyze events dramatically reduces the number of labels needed. Each event
(or, in Fuchikoma’s view, analysis unit) contains a significant amount of contextual data that is now mapped
out in its entirety in the graph. Fuchikoma does not need to know all possible attacks. It only needs to see all
the adversarial techniques used in the current attack and correlate them together. This means that Fuchikoma
now can view the attack in its entirety, read APTEmu’s motivations, and respond accordingly. Each malicious
technique has been demystified, eliminating all guesswork.
For challenge four, EDR vendors mention “root cause detection," but it is typically in terms of the endpoint

and not the actual root cause from the compromised network’s perspective. Detecting one piece of malware in
isolation is not enough to fully understand from a forensic perspective what malicious activity is occurring on
a protected network. Worse yet, security analysts might miss something when presented with a smattering of
isolated events.

Being able to see the chronological progression of an attack is paramount to response and recovery. It means
being able to trace one process creation event (what Fuchikoma tracks) back to its original parent (initial access).
At the same time, it can also trace all the child events created as a result of the original process creation event.

5.5 Comparison against Related Works
As most of the related research works do not share their source code and the assumptions, the collected data,
and the target scenarios differ from case to case, it is not fair to directly compare the performance. Furthermore,
every work may use a different metric to evaluate its performance. Even a centralized evaluation project such as
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Table 2. Feature comparisons between our proposed solutions and similar research works.

Anomaly Detection Classification Graph Analysis Malicious Behavior Attack Reconstruction Community Detection
ATLAS [1] v

Barre et al. [5] v
Barre et al. [6] v v

Bowman et al. [9] v
Cao [10] v v

Deeplog [11]. v v
Unicorn [13] v v

Hassan et al. [14] v v
Sec2graph [16] v v
Log2vec [17] v v
Poirot [19] v v

Holmes [20] v v
Schindler [24] v v

Attack2vec [25] v
CONAN [30] v v v

Ours v v v v

the MITRE ATT&CK Evaluations [4] that evaluates solutions with the same data set cannot score a solution and
identify which one is the winner. Therefore, we compare the applied scenarios of our proposed approach against
related research works presented in previous literature and summarize the differences in Table 2. The compared
items are summarized based on the focus of corresponding works.
According to Table 2, most research works focus on anomaly detection and graph analysis. However, most

of them do not provide further information for analysts to triage the alerts. CONAN [30] is the work closest
to our system, which provides extracted contextual information for further investigation. The main difference
between CONAN and Fuchikoma is that Fuchikoma integrates both rule-based and anomaly detection to discover
attacker’s activities and group communities based on activity similarities.

6 CONCLUSION
We demonstrate how machine learning can assist threat-hunting and reduce security analysts’ workload through
developing Fuchikoma. Fuchikoma can handle weak signal log data with imbalanced distribution and low-
quality labels by solving the discussed challenges. It is a highly usable threat-hunting proof-of-concept system
constructed through open-source tools, graph algorithms, and anomaly detection and can accurately identify
malicious commands and communities. Our evaluations show that Fuchikoma has successfully reduced the
security analysts’ workload to a feasible amount of required investigations with acceptable precision. In the
meantime, the MITRE ATT&CK tags associated with the communities also provide insightful information for
security analysts to accelerate the investigation process.
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