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Abstract—Fuzzing is a common technique used to perform
automated vulnerability discovery. Fuzzing performance could be
improved by various means. In this paper, we discuss the impacts
of seed scheduling, and propose differential seed scheduling
to maximize fuzzing performance by increasing the number
of crashes identified within a limited time. Differential seed
scheduling works for grey-box fuzzers that generate seeds based
on runtime code coverage measurement. It attempts to evaluate
the value of fuzzing seeds and selectively pick the best one
to achieve balance between fuzzing effectiveness and efficiency.
Our contribution is four-fold. First, we proposed differential
seed scheduling to improve overall fuzzing performance. Sec-
ond, we implemented AFLExplorer by integrating differential
seed scheduling with the open-source American Fuzzy Lop
(AFL) fuzzer. Third, we conducted in-depth experiments with
AFLExplorer to show the effectiveness and the efficiency of
seed scheduling. Our evaluations showed that AFLExplorer can
discover up to 90% more unique crashes compared with a
vanilla fuzzer. Last, we reported newly identified vulnerabilities
to the authors of the tested applications, had them fixed, and
15 common vulnerabilities and exposures (CVE) numbers were
assigned as of writing of this paper.

Index Terms—Fuzz testing; greybox fuzzing; hamming dis-
tance; software security

I. INTRODUCTION

Managing vulnerabilities is the most critical work for secu-
rity engineers. According to statistics, the percentage of critical
vulnerabilities has been increasing since 1988 [1]. Thus far,
the computer security resource center of NIST' has collected
more than 90K vulnerabilities in the national vulnerability
database [2]. Statistics obtained by Flexera Software [3] show
that 17,147 vulnerabilities were discovered in 2,136 applica-
tions from 246 vendors in 2016. This number represents a
33% increase in the past five years and a 6% increase from
2015 to 2016. These observations also reflect the fact that
managing vulnerabilities could be increasing tough for security
engineers, especially when attackers relentlessly attempt to
discover new vulnerabilities.

Automated discovery of vulnerabilities could be very help-
ful for security engineers. It is obvious that discovering
vulnerabilities manually would cost too much time and human
resources. Therefore, many techniques have been developed
for automated discovery of vulnerabilities. Among all the
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techniques, fuzz testing (or fuzzing) and symbolic execution
are two of the most commonly used techniques. Initially,
fuzzing [4] was used as an automatic testing approach used
to understand the reliability of UNIX tools [5]. A tool was
said to be more reliable if fewer software bugs were identified
in it. Since then, fuzzing has been developed as a general-
purpose technique for discovering bugs in software programs.
For simplicity, we call a tool based on fuzzing techniques a
fuzzer. A fuzzer usually starts with generating test inputs by
mutating a set of given inputs [6]. The generated inputs are
then fed to a program under testing and the interaction of
the program with the inputs is monitored. The basic idea of
fuzzing is that feeding different inputs to a program would
trigger different execution paths inside the program. When
many execution paths are triggered, the paths containing a
bug could lead to a crash, which can be used as an indication
of a possible vulnerability>. As a result, the effectiveness of
a fuzzer relies hugely on the generated inputs. One drawback
of fuzzers is that they trigger only shallow paths in a program
under testing. This is because fuzzers might be unaware of
program designs, and the inputs are mutated blindly based on
the strategies implemented in fuzzers. These blindly generated
inputs may be useful for finding shallow paths (and shallow
bugs), but finding deep paths inside a program could be very
arduous.

The other commonly used technique for automated vul-
nerability discovery is symbolic execution [7], [8], [9], [10],
[11], [12]. Symbolic execution attempts to explore different
execution paths that a program could take for different inputs.
Instead of blindly mutating the inputs, symbolic execution
analyzes the variables and statements of a program and then
enumerates the inputs that would explore all possible paths in
a program. Despite the effectiveness of this method, exploring
all the paths could result in path explosion, which would make
infeasible the application of this method to large programs.
Researchers [13], therefore, suggested limiting the execution
time of path exploration to achieve a balance between ef-
ficiency and effectiveness for symbolic-execution-based pro-
gram testing. Compared with symbolic execution, fuzzing

2A vulnerability is often caused by a bug, but a bug does not always lead
to a vulnerability.



offers a significant advantage in terms of testing speed because
it does not require solving constraints and, therefore, runs
much faster in general. Many recent vulnerabilities have been
exposed using fuzzers instead of symbolic-execution-based
tools. Although fuzzers are efficient, programs nowadays tend
to be increasingly complex, and fuzzers would require smart
inputs to test a program thoroughly. Hence, recent fuzzers
remain incapable of dealing with complex programs, which
means there is considerable scope for improvement regardless
of whether the focus is on efficiency or effectiveness.

One major challenge in fuzzing is selecting the best input
to perform fuzzing. A fuzzer keeps generating new inputs
from initial inputs or existing inputs when performing tests. In
fuzzing, an input is often called a seed® because it is often used
to generate other possible inputs by using various mutation
strategies. This means a fuzzer often must maintain a pool of
inputs. The size of the pool keeps growing, and a fuzzer must
select inputs iteratively from the pool to perform tests. The
selected seeds could greatly affect fuzzing performance. For
example, consider two seeds s; and sy, and a simple program
that contains a main function (program entry point) and two
functions F' and G. Suppose the main function calls F, and
F calls G. Given that s; triggers a path that only traverses
the main function, and s triggers a path that traverses both
the main function and function F'. It is trivial that selecting s
would be better because this selection would lead to a higher
coverage on both the main function and the function F. A
bug in the main function would be detected by both s; or ss.
However, a bug in function ' would be detected only by so,
regardless of the number of times s; is fuzzed. Furthermore,
suppose inputs s} and s}, are generated by mutating s; and
s9, respectively. It might be easier for s/, to reach G compared
with s}. If a fuzzer randomly selects a seed from a pool of
seeds, it could perform many meaningless and redundant tests
for s; and inputs similar to s;. Sometimes, it could be even
worse if a fuzzer always selects a seed based on the seeds’
sequence number. In real-world test cases, there could be
thousands of seeds in a pool, and the selected seeds, therefore,
becomes much more critical to fuzzing performance. Based on
the observations, a smarter strategy is required to determine the
seed that would be the best to perform fuzzing and mutation.

In this paper, we propose differential seed scheduling, a
novel approach to seed rescheduling. Differential seed schedul-
ing aims to maximize the number of unique crashes discovered
in fuzzing. It can be applied to grey-box fuzzers. Differential
seed scheduling attempts to increase testing coverage by
selecting proper inputs from a pool of currently available seeds
and, therefore, discover more possible vulnerabilities while
satisfying a given time constraint. In this manner, redundant
fuzzing workloads can be eliminated, and fuzzing performance
can be improved. Our contribution is four-fold. First, we
propose differential seed scheduling to improve the overall
fuzzing performance. Second, we implement AFLExplorer by
integrating the proposed differential seed scheduling with the

3We use the terms “input” and “seed” interchangeably in this paper.

open-source American Fuzzy Lop (AFL) fuzzer. Third, we use
AFLExplorer to perform fuzzing on several applications and
show its effectiveness by discovering more unique crashes.
Finally, we report a number of identified new vulnerabilities
to the authors of the tested applications. Our evaluations
show that AFLExplorer can discover about 90% more unique
crashes compared with previous improvements [14], [15].

The remainder of this paper is organized as follows. The
detailed design of differential seed scheduling is introduced in
Section III. Section IV introduces AFLExplorer, an implemen-
tation of differential seed scheduling. In addition, the effects
of system parameters are discussed and the evaluation results
are presented. Research works relevant to differential seed
scheduling are discussed in Section II. Finally, our concluding
remarks are given in Section V.

II. RELATED WORK
A. Type of Fuzzing

Fuzz-testing tools can be classified into two groups: mu-
tational fuzzing [16] and grammar-based fuzzing [17]. Muta-
tional fuzzing often generates new inputs by mutating seeds
with various strategies such as bit flipping, byte flipping, subtly
increasing or decreasing integer values in seeds, and even
randomly generating a new seed by mixing two existing seeds.
Grammar-based fuzzing generates seeds from a specification,
which means it obeys the format of the application strictly.
Details of the two classes are as follows.

Mutational Fuzzing. Godefroid et.al [18] implemented
SAGE, a white-box fuzzed with a novel directed-search al-
gorithm to maximize the number of new test inputs generated
from each symbolic execution. SAGE boosts performance by
systematically negating the constraints in a given path one
by one, in conjunction with the prefix of the path constraint
leading to it, and attempts to be solved by a constraint solver.
In this manner, a single symbolic execution can generate
multiple test inputs.

Haller et.al [19] combined taint tracking, program analysis,
and symbolic execution to find buffer overflow and underflow.
Their method focuses on arrays in a loop to decrease complex-
ity and uses taint analysis to determine which bytes influence
the array index and then executes the program symbolically.
This leads to finding two previous undocumented buffer over-
flow bugs.

Grammar-Based Fuzzing. Research on grammar-based
fuzzing started in the 1970s [20], and it can be divided into two
categories, random [21], [22] and exhaustive generation [23].

Godefroid et.al [24] enhanced white-box fuzzing of complex
structured input applications with a grammar-based specifica-
tion of their valid inputs. A novel dynamic test generation
algorithm in which symbolic execution directly generates
grammar-based constraints is presented. Their result shows
that compared with other white-box fuzzers, their grammar-
based white-box fuzzing provides 28% additional code cov-
erage to their dataset. A few grammar-based fuzzing schemes
use other methods. Dewey et al. [25] used constraint logic
programming (CLP) for program generation. Using CLP,



testers can write declarative predicates specifying interesting
programs, including syntactic features and semantic behaviors.
The results show that the CLP-based approach performs better
than stochastic grammars for generating interesting programs.

B. Seed Selection

Improving the efficiency of fuzzing has been an issue for
decades. Several research works have been devoted to im-
proving fuzzing performance based on different seed selection
approaches. One optimization approach [26], [27] is to pre-
compute the value of seeds before fuzzing and select the
top-notch seeds. According to Miller’s report [28], a 1%
increment in code coverage leads to a 0.92% increment in the
number of bugs found. Robert et al. [26] evaluated six seed-
selection algorithms, and the algorithm that outperformed the
other algorithms selected seeds by maximizing code coverage.
Different from these works, differential seed scheduling does
not select a specific portion of seeds before fuzzing, but it
progressively selects a proper seed from the existing seeds
during fuzzing.

Another seed-selection improvement in AFLFast [15] is
seed selection based on the number of times a seed is fuzzed
before and the one that exerciser lower-frequency paths. The
concept of AFLFast is to focus on low-frequency paths to
discover more paths and thus increase efficiency.

Woo et al. [29] investigated how to schedule the fuzzing of
program-seed pairs and maximize the number of unique bugs
found within a limited time. They constructed a mathematical
model of the problem by using multi-armed bandit algorithms
and evaluated 26 existing online scheduling algorithms. In
addition, they computed a seed’s energy and ends up having
the tendency towards generating more crashing inputs for
already known errors.

C. Fuzzing Boosting

In addition to seed scheduling, several other techniques have
been proposed to improve fuzzing performance. AFLFast [15]
evaluates several power strategies to control the number of
inputs generated from a seed. The objective is to limit the
amount of fuzzing in each round to a reasonable number.
Compared with the original AFL, AFLFast introduced two
constant and four monotonous power schedules instead of
always assigning a constant high amount of energy in each
round. Hence, AFLFast is more likely to distribute correct
energy to seeds in order to trigger crashes.

VUzzer [30] argues that most grey- and black-box fuzzers
tend to be application-agnostic, which makes them unavailable
to explore bugs that lie in deeper levels. Hence, VUzzer
improves fuzzing performance by analyzing the control and
data-flow features of the application to obtain interesting
properties of the input. Angora [31] attempts to improve
fuzzing performance without solving constraints. Instead, the
authors propose to perform several program analyses including
taint-tracking, context-sensitive branch counting, searching
based on gradient descent, and input length exploration. It
then performed seed mutations based on the analyzed results.

Driller [32] combines fuzzing and concolic execution to over-
come the difficulty of finding deeper bugs while avoiding path
explosion. The core idea of Driller is that inexpensive fuzzing
is used for exercising the compartments of an application, and
concolic execution is used for generating inputs that satisfy
the complex checks required for separating the compartments.
Within Diriller, fuzzing focuses on exploring interesting pro-
gram activities. If fuzzing fails to find new paths, Driller
switches to concolic execution for the loops and inner checks,
and then switches back to fuzzing. Wang et al. [27] targeted
programs that take highly structured files as input. Usually,
they are processed in the following stages: syntax parsing,
semantic checking, and application execution. Deep bugs are
often hidden in the application execution stage, and most seeds
will be rejected at the syntax parsing stage, which makes it
difficult to trigger bugs. Wang et al. [27] implemented a novel
data-driven seed generation approach called Skyfire. Skyfire
cooperates with AFL to overcome this difficulty. The seeds
generated by Skyfire are fuzzed by AFL, and the results show
improvements of 20% and 15% in line coverage and function
coverage, respectively.

Cha et al. [33] focused on optimizing the mutation ratio in
mutational fuzzing to maximize the probability of finding bugs
in black-box fuzzing given a seed and an application. They
derived a mathematical framework to model their approaches.
Their tool, called SYMFUZZ, found an average of 37.2%
more crashes than other black-box fuzzers in eight applications
within the same time. Kargén et al. [34] worked on program
mutation at the binary-code level. They presented a novel
approach to automatic test case generation by adding to and
subtracting from the result of a computation and switching
bitwise AND/OR operators. Their approach found a total of 16
crashing inputs and 8 unique bugs among them.

III. DIFFERENTIAL SEED SCHEDULING
A. Design

This section explains the design of differential seed schedul-
ing. For ease of computation and implementation, runtime
code coverage is preserved in a bit string of length n initialized
to all zeros. Visited blocks or tuples are marked in the bit string
based on the involved block identifiers. In AFL, a fixed size
character array called “trace bits” is used as the bit string to
maintain runtime code coverage in a shared memory region.

Once runtime code coverage is preserved in the bit string,
the effectiveness of each seed can be justified based on the
bit string generated by it. The assumptions of differential seed
scheduling are as follows:

1) A seed producing higher runtime code coverage would
mark more bits in the bit string; and

2) Seeds traversing different paths in the same program
would produce different bit strings.

Based on these assumptions, differential seed scheduling mea-
sures the hamming distances between bit strings produced
by different seeds. It then assigns priorities to seeds based
on the differences in the measurement results. Differential



Algorithm 1 ChooseNext function for differential seed
scheduling.

Input: All available seeds in queue Q, Q = {s1,52,...,8n}
Input: Queue B stores the corresponding bit string for each
seed in Q, B = {by,ba,...,b,}
cH=¢
: for i =1 to |Q] do
for j =1 to |Q| except i do
hij = hamming_distance(b;, b;)
add hL] to H
end for
end for
: t = choose_best(Q, H, F, S)
Output: Recommended seed ¢

A o

seed scheduling replaces the ChooseNext function introduced
in AFL [15] with its own implementation, described in Al-
gorithm 1. Instead of the single parameter input @ used
in the ChooseNext function, the ChooseNext function used
in differential seed scheduling takes two inputs @@ and B,
which store all currently available seeds and the corresponding
coverage bit strings of each seed in @), respectively. The bit
string is available after an input in Q is fuzzed. Therefore,
the bit string for each fuzzed seed can be preserved in B by
slightly modifying the core Algorithm of the AFL fuzzer.The
for-loop in Algorithm 1 computes the hamming distance for
all possible pairs of bit strings and stores the results in H. At
the end of the algorithm, the choose_best function is called
to pick the recommended seed from queue () based on the
hamming distances stored in H. Algorithm 1 is the simplified
ChooseNext function for illustration. Although it looks like
the complexity involved in computing H is O(|Q|?), several
methods can be used to minimize the computation cost. For
example, the values of h;; and h;; would be identical, and
therefore, half of the hamming distance computations can
be eliminated. Alternatively, I may be implemented with
global scope and pairwise hamming distances can be updated
incrementally without computing everything from scratch.

The key function in Algorithm 1 is the choose_best function.
In addition to the seed queue @ and seed coverage bitmaps H,
the choose_best function requires a scoring function F and a
seed selector S for making recommendations. The details of
F and S are covered in Sections III-B and III-C, respectively.

B. Scoring Function

Differential seed scheduling uses two scoring functions for
the choose_best function. One is based on the average ham-
ming distance (avg) and the other on the maximum hamming
distance (max). The details are as follows.

1) Scoring based on Average Hamming Distance (avg):
The avg scoring function is defined as follows. Given inputs )
and H from Algorithm 1, the choose_max function computes

S Initial seed

uonpINW

Q¢

¢S ,
B:b; =001101, b, =001100, b; = 000001, b, =001101, bs= 110011;
avg=2 avg=2.75 avg=25 avg=2 avg =4.75
max =5 max =6 max=3 max =5 max =6

Fig. 1: Simple example to demonstrate how avg and max score
functions are computed.

score v; of each seed s; in () by using the equation

Z‘j(i‘l,j;éi hij

AT .
Once we have v; for all seeds in (), the choose_max function
returns the seed with the highest score. The rationale behind
the equation is that the choose_max function attempts to find
a seed that produces the most dissimilar runtime coverage
compared with the coverages produced by all other existing
seeds.

2) Scoring based on Maximum Hamming Distance (max):
The max scoring function is defined as follows. Given inputs
@ and H from Algorithm 1, the choose_max function com-
putes score v; of each seed s; in () by using the equation

V; = 1max h” (2)

1<5<|Q|
J#i
Once we have v; for all seeds in @, the choose_max function
returns the seed with the highest score. The rationale behind
the equation is that the choose_max function attempts to find
a seed that produces the most dissimilar runtime coverage
compared to the coverage produced by one specific seed.

A simple example to show how avg and max scores are
computed is given in Figure 1. An initial seed is mutated to
generate five seeds. After fuzzing the five seeds, suppose all
of them are added to @) and the corresponding coverage bit
strings are preserved in B as well. The choose_next function
is then called in the next iteration. Instead of choosing s;
in @, differential seed scheduling evaluates all-pair hamming
distances for all bit strings in B and selects the seed with the
highest score. In this example, the avg score of s; can be
evaluated as (Z?:g hij)/4, which is (1+24+0+5)/4 = 2.
Similarly, the max score of s; can be evaluate as 2121?2(5 hij,
which is max(1,2,0,5) = 5. Once the scores of all seeds in
@ are obtained, differential seed scheduling chooses s; and
5o as the seeds for the next iteration, depending on whether
the avg or the max scoring function is used.

C. Seed Selector

Although computing hamming distances is helpful for rec-
ommending seeds with distinguishable coverage, relying only
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Fig. 2: Growth of seed length in differential seed scheduling
without using a selector.

on hamming distances could seriously degrade fuzzing perfor-
mance. An influential factor governing fuzzing performance is
the length of the selected seeds. In general, a program would
require more time to process a longer seed (input). As a result,
the use of longer seeds could lead to slower fuzzing. Figure 2
shows the maximum length of seeds and the length of selected
seeds for each iteration. The fuzzed program was yaml. The
experimental results were collected from a fuzzing process
that implemented differential seed scheduling with the avg
scoring function but without a selector. Therefore, the fuzzer
always selected the seed with the highest score (coverage)
from the seed queue. There were 37 initial seeds, and the
average length and the maximum length of the initial seeds
were 103 bytes and 413 bytes respectively. The thick black
line in Figure 2 shows that the maximal length of seeds in
the queue increases dramatically from several hundreds of
bytes to several thousands of bytes. However, the dark grey
area indicates that the selected seed lengths are independent
of the maximal length. In addition, the running time for the
first 1000 iterations was approximately 10 minutes on our test
machine, but the running time for the last 500 iterations was
about 1 hour. This result also reflects that working with longer
seeds would greatly affect fuzzing efficiency. Based on the
observations, differential seed scheduling considers two seed
selectors to manage seed selection and attempts to achieve a
balance between fuzzing effectiveness and fuzzing efficiency.

1) Selector based on Length Growth Constraint (\): The
objective of the A-selector is to achieve a balance between
fuzzing efficiency and fuzzing effectiveness. Because of pos-
sible performance degradation due to longer seeds, the -
selector selects a seed with the highest contribution (score)
and fits in an adaptive length constraint. Without a length
growth constraint, it is possible that a fuzzer could always
select longer seeds from the pool, while ignoring the short
but effective seeds. The length growth constraint adaptively
updates the length upper bound for seed selection. The -
selector evaluates the average length p and the standard

deviation o of all seeds in the seed queue () first and then
sets the upper bound to i + Ao. Only the seeds shorter than
u~+ Ao are considered for selection. The upper bound is always
updated when a new seed is appended to (). Because a selected
seed is used for mutating new seeds, the upper bound of length
based on ¢ and o would keep increasing, and the parameter A
can be used to control the preferred seed length growth rate.
Setting a smaller A leads to a smaller length growth rate and
setting a larger \ leads to a higher growth rate.

2) Selector based on Normalized Length Contribution
(norm): The norm-selector selects the seed with the high-
est per-unit contribution than others. Compared with the A-
selector, one benefit of the norm-selector is that users need
not configure any parameter. The obtained score of each seed
in () is normalized by dividing its corresponding seed length.
The seed with the highest normalized score is then selected as
the seed to perform the test in the next iteration. The rationale
behind this design is straightforward. Suppose two seeds have
similar coverage but one is shorter and the other is longer.
Given that mutation strategies are selected randomly, and the
number of mutation operations performed for each of the seeds
is similar, the effect on coverage would be more prominent if
the mutations were to be performed against the shorter seed.

A simple example to show how the norm-selector works is
as follows. Assume the seeds in Figure 1 have lengths of L =
{4,3,1,1,4}. In this example, the avg and the max scores of
5115 0.5 and 1.25, respectively. As a result, instead of selecting
ss and so as the seeds for the next iteration, differential seed
scheduling selects s3 or sy, respectively, depending on whether
the avg or the max function is used.

We further performed an experiment to compare the prefer-
ences of the two selectors. Figure 3 shows the seed length
selected by the A-selector with A=0.125 and that selected
by the norm-selector. The fuzzed program was yaml. The
experimental results were collected from a fuzzing process
that implemented differential seed scheduling with the avg
scoring function and the corresponding selectors. For ease of
comparison, the seed lengths selected by the norm-selector
are plotted as negative values in the figure. The plots in
Figure 3 shows that the two evaluated selectors have very
different seed-selection preferences. While the norm-selector
tends to increase the selected seed lengths monotonically, the
A-selector could realize a very diverse selection even when a
relatively smaller A is used.

IV. EVALUATION

To highlight the performance improvements of seed
scheduling, we evaluated the performance of differential seed
scheduling by integrating it with the vanilla open-source grey-
box AFL fuzzer and compared performance against the origi-
nal AFL and one of its variants, AFLFast [15]. Our integrated
fuzzer is called AFLExplorer. We first briefly introduce the
environment setup we used to conduct the experiments in
Section IV-A. We then describe the performance evaluations
of differential seed scheduling and AFLExplorer by designing
various experiments in the rest of the sub-sections.
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Fig. 3: Comparison of seed lengths selected by the \-selector
(A=0.125) and the norm-selector.

TABLE I: List of fuzzed application programs.

[ Program [ Version | Description |
cxxfilt 2.26.1 Decode C++ and Java symbols.
copac2xml | 6.2 Convert a COPAC file to a MODS XML file.
isi2xml 6.2 Convert an ISI file to an XML file.
end2xml 6.2 Convert an EndNote-XML file to a MODS XML file.
yaml 0.5.3 A human-readable data serialization language processor.
abcm2ps 8.13.16 | Convert ABC to music sheet in PostScript or SVG format.
mp3gain 1.5.2 Analyze and adjust the volume of mp3 files.
objdump 2.26.1 Display information from object files.
tcpdump 4.6.2 Capture and dump network traffic.
tcptrace 6.6.7 A TCP connection analysis tool.

A. Experiment Setup

The experiments were performed on a machine with an
Intel® Xeon® E5-2630 v4 CPU and 128GB of memory. The
host operating system was Ubuntu Linux version 16.04. We
implemented AFLExplorer by integrating differential seed
scheduling with AFL version 2.33b. We used the same version
of AFL* for performance comparisons. In addition, we com-
pared the performance of AFLExplorer against AFLFast [15],
which is available on github®. We used version 2.33b to ensure
the comparisons are fair for all the involved experiments. The
programs used for performing the evaluation experiments are
summarized in Table I. Most of the selected programs have
been extensively tested in the past. For example, tcptrace
and tcpdump have been evaluated by Rawat et al. [30];
cxxfilt and objdump have been evaluated by Bohme et
al. [15]; mp3gain has been evaluated by Rebert et al. [26];
and copac2xml, isi2xml, end2xml, and abcm2ps have
been evaluated by Cha et al. [33]. The programs listed in the
first five rows accept text-based inputs. The programs listed in
the last five rows accept binary-based inputs.

B. Is Differential Seed Scheduling Effective?

We evaluated the effectiveness of differential seed schedul-
ing by using the programs listed in Table I. We used the
same set of programs to evaluate AFL and AFLFast on the

“Downloaded from http://lcamtuf.coredump.cx/afl/releases/.
SDownloaded from https://github.com/mboehme/afifast.

TABLE II: Percentage of considered seeds controlled by
parameter .

Estimated % of considered | Actual % of considered
A | seeds (normal distribution) | seeds (yaml)
0.125 | 54.98% 80.80%
0.25 | 59.87% 81.87%
0.50 | 69.15% 83.33%
0.75 | 77.34% 84.13%
1.00 | 84.13% 85.93%
1.25 | 89.44% 87.40%
1.50 | 93.32% 89.67%

same machine. Each selected program was fuzzed using all
available fuzzing configurations (tools and parameters) for
at least six rounds. Each round lasted for 8 hours. The
numbers of identified unique crashes in each round were
collected, averaged, and are presented later in this subsection.
For all programs except tcptrace and end2xml, we used
a single line feed (LF) control character as the input. For
tcptrace and end2xml, we used a small pcap file and
an xml file provided by AFL because the fuzzers failed to
generate new seeds by using a single LF character as the initial
seed for the two programs. We used the default settings of
the AFL fuzzer. No additional parameter was passed to the
afl-fuzz program. For AFLFast, we passed an additional
“~p fast” parameter to the fuzzer. The additional parameter
was recommended by the authors of AFLFast to achieve the
best performance. For AFLExplorer, various combinations of
scoring functions (avg and max) and selectors (the \-selector
with a X ranging from 0.125 to 1.5 and the norm-selector)
were evaluated. In total, there were 16 different configuration
combinations used for AFLExplorer.

We did not evaluate AFLExplorer with a large A parameter
because a large A would have led to inclusion of too many
seeds for consideration, thus negating the benefits of using
the A-selector. For example, assuming normal distribution of
seed lengths, A=1.5 would lead to the inclusion of 93.32% of
seeds in the queue for consideration. For a rough estimate of
the number of seeds included for consideration, refer to the
numbers presented in Table II. In addition, we compared the
estimated ratio against real-world cases. We fuzzed yaml for a
period and counted the ratio of seeds that would be considered
for selection based on the given A value. There were total
2600 seeds in the queue after 1500 seeds were fuzzed. Even
if a small X\ value of 0.125 were to be used, differential seed
scheduling would still consider more than 80% of the seeds
in the queue.

Table III summarizes the measured average unique crashes
in the effectiveness evaluations. For each fuzzed program,
the top five results are highlighted with an asterisk. In most
cases, AFLExplorer outperforms AFL and AFLFast. In addi-
tion, AFLExplorer can discover 1700% more unique crashes
compared with AFL and AFLFast. The number was obtained
from end2xml, where AFLFast identified 1.4 unique crashes
and AFLExplorer (a/0.125) identified 26 unique crashes. If
we omit the test cases in which fewer than 50 unique crashes
were identified, AFLExplorer can discover 90% more unique



TABLE III: Summary of effectiveness evaluations.

AFLExplorer (Differential seed scheduling)** ‘

‘ AFL ‘ AFLFast |

[m0.125  m0.25  m/050  m/0.75  m/I.00  m/1.25  m/I1.50 | a/0.125 a/0.25 _ al0.50  a/0.75 _ a/1.00 /125 &/1.50 | a/norm _ m/norm |

cxxfilt | 271 570% 310 359% 155 246 155 367* 201 442% 305 301 331 175 219 251 207 399%
copac2xml | 27 62 86+ 78% 11 30 15 33 14 23 39 34 47 41 27 28 120%* 98+
isizxml | 21 91* 24 3 30 20 12 13 23 15 10 5 12 2 5 4 171% 125%
end2xml | 0.2F 1.4t 19% 44 6 15 5 15 8 26+ 20% 15 7 4 19% 8 6 12
yaml | 130 125 171% 153 137 117 109 89 100 203* 180* 158 130 130 140 147 217% 208*
abcm2ps | 413 527 706 741 876 825 842 968 1163 1471%  1439%  1374*  1263* 1174 1297 1176 706 968
mp3gain | 125 136 146 136 134 82 133 143% 83 126 145% 134 132 135 111 1425 141% 136
objudmp | 15 43 40 58+ 57+ 21 52% 68+ 70% 25 24 33 17 14 7 11 47 51
tepdump | 70 114 223% 146* 167+ 73 127 58 84 97 170 59 12 218 42 108 132 131
tcptrace | 301% 280 290 304% 297 291% 276 271 278 290 274 249 249 248 258 280 293 269

* Top 5 players. *
A-selector; and /norm=norme-selector. T

crashes compared with AFL and AFLFast. The number was
obtained from copac2xml, where AFLFast identified 62
unique crashes and AFLExplorer (a/norm) identified 120
unique crashes. Furthermore, the following observations were
made based on the numbers presented in Table III.

1) The max scoring function has equivalent or slightly better
performance than the avg scoring function. The numbers
presented in the table show that there is no remarkable
performance difference between the two scoring functions.
Therefore, we recommend users to start with the one they
prefer.

2) The use of a larger X\ negatively impacts fuzzing effec-
tiveness. As mentioned before, a larger A\ could negate
the benefits of using the selector. For most of the cases
presented in the table, setting a large A does not help
in terms of the number of identified unique crashes. The
best cases are usually observed when a A=0.125 or 0.25.
If a user plans to work with the A-selector, we would
recommend starting with a smaller \.

3) The performance of the norm-selector is comparable with
the best cases of using the A-selector. The numbers pre-
sented in the last two configurations in the table show
that working with the norm-selector helps achieve com-
petitive performance. The two configurations have similar
performance to m/0.125 and a/0.125, and outperform
AFL and AFLFast in most cases. If there are resource
constraints in terms of performing fuzz testing, we would
recommend generic users to start with either the a/norm
or the m/norm configuration.

In conclusion, the performance improvement brought about
by differential seed scheduling is because AFL and AFLFast
do not take cautious while selecting seeds. Hence, there remain
chances that they keep fuzzing seeds with low diversity, that is,
selecting seeds in the pool with only minor coverage changes.
In the case of AFLFast, it has been proven that changing
the energy would improve the performance by reducing re-
dundant tests on invaluable seeds. By contrast, AFLExplorer
can traverse more paths earlier. This is advantageous because
the generated seeds are valuable and fuzzers can devote more
resources to fuzz valuable seeds.

C. Does AFLExplorer Find Any Real-World Issues?

Commonly, many crashes are reported by a fuzzer, but it
is not clear if the identified crashes have real impacts on the

For AFLExplorer, the configuration annotations are: m=max scoring function; a=avg scoring function; /{number }=X value of the
The numbers presented in this table are the averaged numbers from multiple repetitive benchmarks.

TABLE IV: Summary of new issues identified by AFLEx-
plorer.
Program | Issue Reported | Fixed CVE ID
ncurses Null pointer deref yes yes CVE-2018-10754
exiv2 Integer underflow yes pending | CVE-2018-10772
abem2ps Stack buffer overflow (x2) yes yes CVE-2018-10753,10771
abcm2ps Memory access violation (x3) | yes yes no
mp3gain Integer overflow yes yes CVE-2018-10776
mp3gain Memory access violation yes yes CVE-2018-10777
mp3gain Buffer overflow yes yes CVE-2018-10778
bibutils Memory access violation (x3) | yes yes CVE-2018-10773,10774,10775
avconv Memory access violation (x2) | yes pending | CVE-2018-11102,11224
libming Buffer overflow yes yes CVE-2018-11226
liblouis Use after free yes yes CVE-2018-11410
libtiff Memory access violation yes yes CVE-2018-10963

community. In this subsection, we perform crash triage analy-
sis against the crashes reported by AFLExplorer and determine
whether there is any new finding reported by AFLExplorer
in a shorter time. All the results presented in this section
were found by AFLExplorer within one week. The crash
triage analysis was performed for all selected programs in this
study. In addition, we performed additional fuzz testings for
several popular open-source programs including exiv2 and
tools from ncurses library. We collected thousands crashes
reported by both AFLExplorer (avg/norm) and AFLExplorer
(max/norm) fuzzers. For all reported crashes, we leveraged
the open-source exploitable gdb plugin to perform the
initial categorization. exploitable uses several heuristics
to assess exploitability based on crash location, memory opera-
tion, and signals triggered by the input. It then categorizes each
crash into classes including exploitable, probably exploitable,
or unknown. Although the analysis result may be not accurate,
it is fast, simple, and informative.

Based on the initial categorization, we further analyzed
crashes that were classified as exploitable and probably ex-
ploitable. For these critical crashes, we manually checked each
crash to see whether it matches an entry in existing common
vulnerabilities and exposures (CVE). We attempted to report
an issue to the authors of the program if a crash did not belong
to a known CVE entry. Although the selected programs have
been well-evaluated in past research works, Table IV lists new
issues identified by AFLExplorer, types of these issues, and
status of these issues. All listed issues have been reported to
the authors, and many of them have been fixed by the authors.
At the time of writing this paper, 18 issues were reported,
of which 15 of them were fixed and 15 CVE numbers were
assigned in 2018. The corresponding CVE numbers can be
also found in the table.



V. CONCLUSION

In this paper, we proposed differential seed scheduling, a
novel approach to schedule the order of seeds for improving
fuzzing performance. Differential seed scheduling selects a
seed based on the coverage differences between seeds. The
run-time code coverage of each seed is marked in a bit string
and evaluated by measuring distances between all available
seeds in the current pool. Differential seed scheduling further
adaptively controls the length growth rate of the selected
seeds to balance effectiveness and efficiency. We implemented
AFLExplorer by integrating differential seed scheduling with
the vanilla grey-box fuzzer AFL and compared the per-
formance of AFLExplorer against AFL and AFLFast. The
evaluatins showed that a good seed scheduling algorithm could
dramatically improve the overall fuzzing performance. It also
showed that AFLExplorer discovers up to 90% more unique
crashes compared with AFL and AFLFast under the same
constraints. Last, we identified several new issues in the fuzzed
programs, reported the issues to the authors of these programs,
and had them fixed.
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