
1

Toward an Adaptive Screencast Platform: Measurement and
Optimization

CHIH-FAN HSU, Academia Sinica, Taiwan

CHING-LING FAN, National Tsing Hua University, Taiwan

TSUNG-HAN TSAI, Academia Sinica, Taiwan

CHUN-YING HUANG, National Chiao Tung University, Taiwan

CHENG-HSIN HSU, National Tsing Hua University, Taiwan

KUAN-TA CHEN, Academia Sinica, Taiwan

The binding between computing devices and displays is becoming dynamic and adaptive, and screencast
technologies enable such binding over wireless networks. In this article, we design and conduct the first
detailed measurement study on the performance of the state-of-the-art screencast technologies. Several
commercial and one open-source screencast technologies are considered in our detailed analysis, which

leads to several insights: (i) there is no single winning screencast technology, indicating room to further
enhance the screencast technologies, (ii) hardware video encoders significantly reduce the CPU usage at
the expense of slightly higher GPU usage and end-to-end delay, and should be adopted in future screencast

technologies, (iii) comprehensive error resilience tools are needed as wireless communication is vulnerable
to packet loss, (iv) emerging video codecs designed for screen contents lead to better Quality of Experience
(QoE) of screencast, and (v) rate adaptation mechanisms are critical to avoiding degraded QoE due to
network dynamics. As a case study, we propose a non-intrusive yet accurate available bandwidth estimation

mechanism. Real experiments demonstrate the practicality and efficiency of our proposed solution. Our
measurement methodology, open-source screencast platform, and case study allow researchers and developers
to quantitatively evaluate other design considerations, which will lead to optimized screencast technologies.

Categories and Subject Descriptors: H.5 [Information Systems Applications]: Multimedia Information
Systems

General Terms: Design, Measurement

Additional Key Words and Phrases: Live video streaming, real-time encoding, performance evaluation, per-
formance optimization

ACM Reference Format:

C. Hsu, 2015. Toward an Adaptive Screencast Platform: Measurement and Optimization ACM Trans. Mul-

timedia Comput. Commun. Appl. 7, 3, Article 1 (August 2015), 23 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Wide adoption of heterogeneous computing devices, such as PCs, tablets, smart TVs,
and smartphones, urges diverse ways for people to share photos, watch videos, and
play games with their family and friends. Most people prefer to use larger or even

Author’s address: C.-F Hsu, T.-H Tsai, K.-T. Chen, 128 Academia Road, Section 2, Nankang, Taipei
11574; email:hsuchihfan@gmail.com, zark912@iis.sinica.edu.tw, swc@iis.sinica.edu.tw; C.-F Fan, C.-H.
Hsu, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013; email: yyytr7180@hotmail.com,
chsu@cs.nthu.edu.tw; C.-Y. Huang, 1001 University Road Hsinchu, Taiwan 30010; email:
chuang@cs.nctu.edu.tw. This work was supported in part by the Ministry of Science and Technology
of Taiwan under the grants 103-2221-E-001-023-MY2, 102-2221-E-007-062-MY3, and 103-2221-E-019-033-
MY2.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2015 ACM. 1551-6857/2015/08-ART1 $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:2 C. Hsu et al.

multiple screens to share contents instead of limiting to a single screen. Ubiquitous
displays are therefore gradually deployed in homes, schools, offices, shops, and even
outdoor squares for experience sharing, educations, presentations,and advertisements.
According to market research reports, the global flexible display market is expected
to worth $3.89 billion by 2020, growing with high Compound Annual Growth Rate
(CAGR) from 2014 to 2020 [Markets 2014]. Moreover, wireless networks have surged
in popularity. Featuring displaying screen contents without cable connections to com-
puting devices, wireless displays are expected to grow at a CAGR of 28.03% from 2012
to 2017 [Markets 2012]. These reports show that the binding between computing de-
vices and displays becomes more dynamic, leading to flexible and diverse displaying
experience.

Such dynamic binding of displays and computing devices can be done via screen-
cast, which refers to capturing and sending the audiovisual streams from computing
devices over networks to displays in real time. Screencast enables many usage sce-
narios, including playing multimedia contents over home networks, sharing desktops
among colleagues over the Internet, and extending the small built-in displays of mo-
bile and wearable devices over short-range wireless networks, such as Wi-Fi networks.
Screencast has attracted serious attention from both the academia and industry be-
cause of its rich usage scenarios. For example, several open-source projects [Huang
et al. 2014; Chandra et al. 2014] have been initiated to support screencast among
wearable and mobile devices as well as desktops, tablets, and laptop computers. There
are also proprietary and closed commercial products, such as AirPlay [AirPlay 2014],
Chromecast [Chromecast Web Page 2014], Miracast [Miracast 2014], MirrorOp [Mir-
rorOp Web Page 2014], and Splashtop [Splashtop 2014]. Although screencast is grad-
ually getting deployed, the performance measurements on the state-of-the-art screen-
cast technologies have not been rigorously considered in the literature. Current and
future developers and researchers, therefore, have to resort to heuristically making
the design decisions when building screencast technologies.

In this article, we first construct a real testbed to conduct the very first set of de-
tailed experiments to quantify the performance of various screencast technologies un-
der diverse conditions. The conditions are captured by several key parameters, includ-
ing resolution, frame rate, bandwidth, packet loss rate, and network delay. The per-
formance metrics include video bitrate, video quality, end-to-end latency, and frame
loss rate. We evaluate five commercial products [AirPlay 2014; Chromecast Web Page
2014; Miracast 2014; MirrorOp Web Page 2014; Splashtop 2014] and an open-source
solution [GamingAnywhere Web Page 2013]. The commercial products are treated as
black boxes and general measurement methodologies are developed to compare their
performance in different aspects. The open-source solution is a cloud gaming platform,
called GamingAnywhere (GA) [Huang et al. 2014; GamingAnywhere Web Page 2013].
GA works for screencast, because cloud gaming is an extreme application of screencast,
which dictates high video quality, high frame rate (in frame-per-second, fps), and low
interaction latency [Chen et al. 2014]. Nevertheless, using GA as a general screencast
technology leaves some room for optimization, e.g., it is well-known that popular video
coding standards, such as H.264 [Wiegand et al. 2003], are designed for natural videos
and may not be suitable to screen contents, also known as compound images, which
are combinations of computer-generated texts and graphics, rendered 3D scenes, and
natural videos [Zhu et al. 2014].

Fortunately, GA [Huang et al. 2014; GamingAnywhere Web Page 2013] is extensi-
ble, portable, configurable, and open. Therefore, developers and researchers are free
to use GA for systematic experiments to make design decisions for optimized screen-
cast. In this article, we design and conduct several such experiments, e.g., we integrate
GA with emerging video codecs [x264 Web Page 2012; HEVC Test Model 2014] in or-

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:3

der to conduct a user study using a real screencast setup to quantify the gain of new
video codecs. Our sample experiments reveal the potential of using GA for screencast
research and developments. More importantly, we demonstrate how to measure the
performance of screencast technologies, and how to quantify the pros/cons of different
screencast technologies. The screencast measurement setup and design are, therefore,
useful on their own rights, because they have not been reported in the literature.
One common weakness of the state-of-the-art open-source screencast technologies,
GA [Huang et al. 2014; GamingAnywhere Web Page 2013], lack of bitrate adaptation
feature, which significantly degrades user experience. To address this limitation, we
develop and implement rate adaptation mechanism in GA, which uses video packets
to estimate the available bandwidth and adjusts the streaming rate accordingly. The
enhanced GA incurs no network estimation overhead and reacts to network dynamic
promptly. Evaluation results show that the proposed rate adaptation mechanism is
effective and efficient.

The preliminary version of the current article was published in Hsu et al. [Hsu et al.
2015], which contains extensive measurement studies leading to various insights on
optimization room of screencast technologies. The main findings are as follows.

— Considering diverse usage conditions and performance metrics, there is no single
winning screencast technology, which indicates that there is still room to optimize
the state-of-the-art screencast technologies in the coming years.

— Hardware video encoders significantly reduce the CPU usage at the screencast
senders, and slightly increase the GPU usage and end-to-end latency; hence are suit-
able to screencast technologies.

— One way to better adapt to nonzero packet loss rate is to employ the reliable TCP
protocol, but TCP protocol does not work well when network latency is long, which
is inline with [Calagari et al. 2014]. Therefore, more comprehensive error resilience
tools are desired.

— Screen contents are fairly different from natural videos, and adopting emerging video
codecs designed for screen contents in screencast technologies leads to better Quality
of Experience (QoE).

In the current article, we make the following new contributions on optimizing screen-
cast technologies.

— We design a new, non-intrusive available bandwidth estimator for short-range Wi-Fi
networks, which are the most popular networks used in screencast scenarios.

— We propose, implement, and evaluate a practical bitrate adaptation algorithm based
on the proposed available bandwidth estimation.

— We conduct extensive experiments on the GA platform and the bitrate adaptation
algorithm to show the merits and practicality of the proposed solutions.

The article is organized as follows. We review the literature in Section 2. We cus-
tomize GA to be a more flexible platform for screencast in Section 3. This is followed by
the detailed measurement methodology given in Section 4. We present the GA-based
quantitative evaluations and user studies, and we discuss the design considerations
for future screencast technologies in Section 5. Section 6 details a rate adaptation
mechanism developed by us. Section 7 concludes this paper. In addition, due to the
space limitation, we give the measurement results of the state-of-the-art screencast
technologies in Appendix B.

2. RELATED WORK

In this section, we survey the literature in the following two directions: (i) screen shar-
ing systems and (ii) performance measurements of screencast platforms. We summa-

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:4 C. Hsu et al.

Table I. The Comparisons Among Related Work

Related Systems Work Real-time
Designed for
Screencast

General Wi-Fi
Support

802.11n
Support

Rate
Adaptation

Our Work X X X X X

[Chandra et al. 2014] X X X

[Lin et al. 2012] X X X

[Javadtalab et al. 2015] X X

[Hong et al. 2015] X X

rize the major differences between related work and our current work in Table I. We
also describe prior work on available bandwidth estimation and rate adaptation in
Appendix A (due to the space limitations).

2.1. Screen Sharing Systems

Early screen sharing systems, such as thin clients [Schmidt et al. 1999; Baratto et al.
2005] and remote desktops [Richardson et al. 1998; Cumberland et al. 1999], allow
users to interact with applications running on remote servers. These screen sharing
systems focus on developing protocols that efficiently update changed regions of the
screens, rather than achieving high visual quality and frame rate, and thus are less
suitable to highly-interactive applications, such as computer gaming as reported in
Chang et al. [Chang et al. 2011]. Interested readers are referred to the surveys [Yang
et al. 2002; Lai and Nieh 2006] on these screen sharing systems. To cope with such lim-
itations, several companies offer video streaming based cloud gaming systems, such as
OnLive [OnLive Web Page 2012], GaiKai [GaiKai Web Page 2012], and Ubitus [Ubi-
tus Web Page 2014]. Huang et al. propose GamingAnywhere (GA) [Huang et al. 2014],
which is the first open-source cloud gaming system. These cloud gaming platforms
also work for screencast scenarios, although there are some optimization room to ex-
plore. Chandra et al. [Chandra et al. 2012; Chandra et al. 2014] develop DisplayCast
that shares multiple screens among users in an Intranet, where the networking and
computation resources are abundant. DisplayCast consists of several components, in-
cluding the screen capturer, zlib-based video compression, and service discovery, but it
lacks of rate control mechanisms. Wi-Fi displays are studied more recently, e.g., Zhang
et al. [Zhang et al. 2015] conduct a measurement study on the power consumption of
Wi-Fi displays. They model the power consumption of several components separately,
including network transmission and codec operations. They then propose optimization
mechanisms, such as: (i) adaptive video tail cutting for a better tradeoff between the
graphics quality and energy consumption and (ii) energy efficient channel selection.
Huang et al. [Huang et al. 2015] develop an open-source smart lens that allow users
to preview the captured video on their smartphones via wireless networks. They use
the QoE model to enhance the user experience and propose bandwidth estimation for
single-hop Wi-Fi networks, but the estimation approach assumes (less realistic) static
Wi-Fi networks.

We note that we choose GA [Huang et al. 2014] over DisplayCast [Chandra et al.
2012; Chandra et al. 2014] as the tool to assist design decisions for several rea-
sons, including: (i) GA focuses on the more challenging audiovisual streaming, (ii)
GA is arguably more extensible and portable, and (iii) GA has a more active com-
munity [GamingAnywhere Web Page 2013]. Nonetheless, readers who prefer to start
from DisplayCast [Chandra et al. 2012; Chandra et al. 2014] can apply the lessons
learned in this article to DisplayCast as well. Last, a preliminary version of the article
is published in Hsu et al. [Hsu et al. 2015]. The current article contains elaborated
discussion, additional experiments, and a new rate adaptation mechanism.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:5

2.2. Performance Measurement of Screencast Platforms

The performance measurements of screen sharing and cloud gaming systems have
been done in the literature. For example, Tolia et al. [Tolia et al. 2006] and Lagar-
Cavilla et al. [Lagar-Cavilla et al. 2007] analyze the performance of VNC (Virtual Net-
work Computing), and Claypool et al. [Claypool et al. 2012] and Chen et al. [Chen et al.
2014] study the performance of cloud games. The performance measurements on the
state-of-the-art screencast technologies, however, have not received enough attention
in the research community. He et al. [He et al. 2014] conduct a user study on Chrome-
cast [Chromecast Web Page 2014] with about 20 participants to determine the user
tolerance thresholds on video quality (in PSNR [Wang et al. 2001]), rendering quality
(in frame loss rate), freeze time ratio, and rate of freeze events. The user study is done
using a Chromecast emulator. Their work is different from ours in several ways: (i)
we also consider the objective performance metrics, (ii) we use real setups for exper-
iments, (iii) we consider multiple screencast technologies [AirPlay 2014; Chromecast
Web Page 2014; Miracast 2014; MirrorOp Web Page 2014; Splashtop 2014; Huang et al.
2014], and (iv) our evaluation results reveal some insights on how to further optimize
the screencast technologies. Moreover, following the methodologies presented in this
paper, researchers and developers can leverage GA to intelligently make design deci-
sions based on quantitative studies.

3. GAMINGANYWHERE AS A SCREENCAST PLATFORM

We investigate the key factors for implementing a successful screencast technology
using GamingAnywhere (GA). GA may not be tailored for screencast yet, e.g., un-
like powerful cloud gaming servers, the computing devices used for screencast may
be resource-constrained low-end PCs or mobile/wearable devices, and thus screencast
senders must be lightweight. Moreover, the screen contents of screencast are quite di-
verse, compared to cloud gaming: text-based contents in word processing, slide editing,
and Web browsing applications are common in screencast scenarios. In this section,
we discuss the customization of GA for screencast, which also enables researchers and
developers to employ GA in performance evaluations to systematically make design
decisions.

3.1. Support of More Codecs

GA adopts H.264 as its default codec. Currently the implementation is based on
libx264 and is accessed via the ffmpeg/libav APIs. However, we found that it is dif-
ficult to integrate other codec implementations into GA following the current design.
For example, if we plan to use another H.264 implementation from Cisco [OpenH264
Web Page 2015], we have to first implement it as an ffmpeg/libav module, whereas inte-
grating a new codec into ffmpeg/libav brings extra workload. In addition, ffmpeg/libav’s
framework limits a user to access advanced features of a codec. For example, libx264
allows a user to dynamically reconfigure the codec in terms of, e.g., frame rates, but
currently it is not supported by ffmpeg/libav’s framework. Therefore, we revise the
module design of GA to allow implementing a codec without integrating the codec into
the ffmpeg/libav framework. At the same time, we also migrate the RTSP server from
ffmpeg to live555. As a result, GA now supports a wide range of video codecs that
provide the required Session Description Protocol (SDP) parameters at the codec ini-
tialization phase. A summary of currently supported codecs and the associated SDP
parameters are shown in Table II.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:6 C. Hsu et al.

Table II. Supported codecs and the required SDP parameters

Codec SDP Parameter Description

Vorbis configuration Codec-specific configurations, such as
codebooks

Theora width Video width
height Video height
configuration Codec-specific configurations, such as

codebooks
H.264 sprop-parameter-sets SPS (Sequence Parameter Set) and

PPS (Picture Parameter Set)
H.265 sprop-vps VPS (Video Parameter Set)

sprop-sps SPS (Sequence Parameter Set)
sprop-pps PPS (Picture Parameter Set)

3.2. Hardware Encoder

Screencast servers may be CPU-constrained, and thus we integrate a hardware en-
coder with GA as a reference implementation. We choose a popular hardware plat-
form, Intel’s Media SDK framework [Intel Web Page 2015], to access the hardware
encoder. The hardware encoder is available on machines equipped with both an Intel
i-series CPU (2nd or later generations) and an Intel HD Graphics video adapter. To
integrate the Intel hardware encoder into GA, we have to provide the sprop-parameter-
sets, which contains the SPS (Sequence Parameter Set) and PPS (Picture Parame-
ter Set) configurations of the codec. After the codec is initialized, we can obtain the
parameters from the encoder context by retrieving SPS and PPS as codec param-
eters, i.e., calling MFXVideoENCODE GetVideoParam function with a buffer of type
MFX EXTBUFF CODING OPTION SPSPPS.

The Intel hardware encoder does not support many options. In addition to the setup
of bitrate, frame rate, and GoP size, we use the following default configurations for the
codec: main profile, best quality, VBR rate control, no B-frame, single decoded frame
buffering, and sliced encoding. We also tried to enable intra-refresh feature, but un-
fortunately this feature is not supported on all of our Intel PCs. We notice that Intel’s
video encoder only supports the NV12 pixel format. Fortunately, it also provides a
hardware-accelerated color space converter. Thus, we can still take video sources with
RGBA, BGRA, and YUV420 formats; the video processing engine first converts the in-
put frames into the NV12 pixel format and then passes the converted frames to the
encoder. The CPU load reduction due to the hardware encoder is significant, which we
will show in the experiments in Section 5.

3.3. Emerging Video Codecs

The revised GA design supports the emerging H.265 coding standard. To be integrated
with GA, an H.265 codec implementation has to provide all the three required parame-
ters (VPS, SPS, and PPS, as shown in Table II). We have integrated libx265 [x265 Web
Page 2014] and HEVC Test Model (HM) [HEVC Test Model 2014] with GA. HEVC sup-
ports several emerging extensions like Range Extension (REXT) and Screen Content
Coding (SCC) [Zhu et al. 2014], which are designed for screencast or similar applica-
tions. We note that neither libx265 nor HM are optimized for real-time applications
in our experiments. Longer encoding time, however, is not a huge concern for now, as
both implementations are emerging and we consider that the implementations will be
optimized before actual deployments. Therefore, in Section 5, we evaluate these emerg-
ing codecs, and we focus on their achieved user experience (e.g., graphics quality) by
encoding screen contents without considering their running time.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:7

4. MEASUREMENT METHODOLOGY

In this section, we present the measurement methodology to systematically compare
the state-of-the-art screencast technologies.

4.1. Screencast Technologies

The following five commercial screencast technologies are considered in our experi-
ments.

— AirPlay is a proprietary protocol designed by Apple. AirPlay supports streaming au-
dio, video, photos, and meta-data over wireless channels. Computers running iTunes
and devices running iOS 4.2+ can be AirPlay senders, while AirPort Express and
Apple TV can be AirPlay receivers. With iOS 4.3+, third-party apps may send com-
patible audiovisual streams over AirPlay. Besides, there is an open-source imple-
mentation [open-airplay: A collection of libraries for connecting over Apple’s AirPlay
protocol 2014] of the AirPlay protocol, which may turn any computer into an AirPlay
receiver.

— Chromecast is a digital media player which is capable of directly streaming audio-
visual contents via Wi-Fi. For screencast, a user can use Google Cast extension for
Chrome, which uses WebRTC API to transmit screen contents from the Web browser
or desktop to the Chromecast device.

— Miracast is a peer-to-peer wireless standard for screencast over Wi-Fi Direct.
Miracast-compatible devices can serve as Miracast senders and receivers. Existing
OS’s with built-in Miracast support include Android 4.2 or later, BlackBerry 10.2,
and Microsoft Windows 8.1. For streaming screens to a device that does not support
Miracast, there are also Miracast adapters capable of rendering the screens through
HDMI or USB ports.

— MirrorOp and Splashtop offer pure software solutions, which require the users to
install proprietary applications at both the sender and receiver. Although MirrorOp
and Splashtop use closed protocols, the developers offer the applications on multiple
OS’s, including Windows and Mac OS X.

In addition, the open-source GA is evaluated as a screencast technology as well.

4.2. Content Types

We study how the screencast technologies perform when streaming different types of
contents. We consider 9 content types in the following 3 categories:

— Gaming: including first-person shooter, racing, and turn-based strategy games.
— Movie/TV: including dialogue movie scene, car chasing movie scene, and talk show.
— Applications: including Google street view browsing, slide editing, and Web surfing

in Chrome.

For fair comparisons, we record the screens of different content types into 1280x720
videos. In particular, we extract one minute of representative video for each content
type and concatenate them into a single 9-minute long video. We insert 2-second white
video frames between any two adjacent content types to reset the video codecs. In this
way, the measurement results collected from adjacent content types do not interfere
one another.

4.3. Workload and Network Conditions

We also study how the screencast performance is affected under different workload set-
tings and network conditions, which we believe impose direct and non-trivial impacts
on screencast quality. Workload parameters are related to the quality of source videos,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:8 C. Hsu et al.

Table III. The Considered Parameters

Parameter Value

Workload
Frame rate 15 fps 30 fps 60 fps
Resolution 640x360 896x504 1280x720

Network
Bandwidth 4 Mbps 6 Mbps Unlimited
Delay 200 ms 100 ms 0 ms
Packet loss rate 2% 1% 0%

Table IV. Screencast Technologies Considered

Technology AirPlay Chromecast GamingAnywhere Miracast MirrorOp Splashtop

Spec.

Product Apple TV Chromecast GamingAnywhere NETGEAR PTV3000 Sender/Receiver Streamer/Client
HW/SW Hardware Hardware Software Hardware Software Software
Connectivity AP AP AP Wi-Fi Direct AP/Internet AP/Internet
Protocol TCP UDP UDP/TCP UDP TCP TCP

Devices
Sender

MacBook Pro
OS X 10.9.2

Chrome w/ Google
Cast v14.305.0.0
on Win 8.1 Laptop

Win 8.1 Laptop Win 8.1 Laptop
Sender
v2.0.3.2 on Win
8.1 Laptop

Streamer
v2.5.8.4 on Win
8.1 Laptop

Receiver
Apple TV
v6.1.1

Chromecast
(firmware v16041)

Win 7 PC
NETGEAR Push2TV
(firmware v2.4.46)

Receiver
v0.2.11-4.win
on Win 7 PC

Personal
v2.4.5.2
on Win 7 PC

‡ If not otherwise specified, the PC computer is a ThinkCentre M92p, and the laptop computer
is a ThinkPad X240.

including frame rate and resolution. We change the frame sampling rates to generate
multiple videos, and set 30 fps as the default frame rate. We also vary the resolutions
at 1280x720, 896x504, and 640x480. For the latter two cases, we place the video at the
center of the (larger) screen without resizing it. This is because we believe image resiz-
ing would cause loss of details and therefore bias our results. As to network conditions,
we use dummynet1 to control the bandwidth, delay, and packet loss rate (packet loss) of
the outgoing channel of senders. The default bandwidth is not throttled, the delay is 0
ms, and the packet loss rate is 0%.

In our experiments, a parameter of workload and network conditions is varied while
all other parameters are fixed at their default values. The list of parameters is given
in Table III, with the respective default values in boldface. For screencast technologies
that support both UDP and TCP protocols, the default protocol is UDP.

4.4. Experiment Setup

There are several components in the experiment: a sender and a receiver for each
screencast technology, and a Wi-Fi AP, which is mandatory for all technologies except
Miracast (based on Wi-Fi Direct). The specifications of the screencast technologies are
summarized in Table IV, and the detailed experiment setups are given below.

— AirPlay. The sender is a MacBook Pro running OS X 10.9.2, with a 2.4 GHz Intel
Core i5 processor and 8 GB memory, while the receiver is an Apple TV. They are
connected to the same Wi-Fi AP before the sender can discover, connect, and stream
screens to the receiver.

— Chromecast. The sender is a Lenovo ThinkPad X240 notebook running Windows
8.1, with an 2.6 GHz Intel Core i5 processor and an 8 GB memory with a receiver
that is a Chromecast dongle. The only way for screencasting using Chromecast is by
Google Cast Chrome Extension. Once the sender is connected to the Wi-Fi AP, it can
discover and connect to any available devices in the same Wi-Fi network.

— Miracast. We use the Lenovo notebook as the sender. For the receiver, we use a NET-
GEAR Push2TV Miracast adapter. Miracast is based on Wi-Fi Direct and supported
by Windows 8.1. As long as the receiver is placed within the wireless transmission

1dummynet is a network emulation tool, initially designed for testing networking protocols. It has been used
in a variety of applications, such as bandwidth management.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:9

range of the sender, Windows 8.1 provides a simple user interface for screencasting
the sender’s desktop to the receiver.

— MirrorOp and Splashtop. The Lenovo notebook serves as the sender, while a PC
running Windows 7, with an Intel Core i7 processor serves as the receiver. To use
these two services, a user needs to create an account, and run the sender and receiver
programs on the respective machines. Once both machines are logged in, they can
discover and connect to each other.

In addition, experiments on GA are also conducted using the same setup as Mirro-
rOp and Splashtop. We note that there may be multiple implementations for certain
technologies, e.g., Miracast, but we cannot cover all the implementations in this work.
We pick a popular implementation for each technology, and detail the measurement
methodology so that interested readers can apply the methodology to other implemen-
tations.

4.5. Performance Metrics

We measure the following performance metrics that are crucial to screencast user ex-
perience.

— Bitrate. The average amount of data per second transmitted from the sender to
receiver, which is important because the wireless spectrum and total bandwidth is
limited and shared by all applications/users.

— End-to-end latency (latency). The time difference between each video frame is ren-
dered at the sender and at the receiver, which is especially important for interactive
applications. The user experience also drops if the latency jitter (i.e., the variation of
latency) is high.

— Frame loss rate (frame loss). The fraction of video frames that are not rendered at
the receiver, which greatly affects the viewing experience.

— Video quality (quality). The video quality rendered at the receiver compared to
the original video captured at the sender. We use PSNR [Wang et al. 2001] and
SSIM [Wang et al. 2004] to quantify the video quality observed at the receiver.

When presenting the measurement results, 95% confidence intervals of the averages
are given as error bars in the figures whenever applicable.

4.6. Experiment Procedure

For each technology, we first connect the sender and receiver, play the video with di-
verse content types at the sender, and measure the four performance metrics. We re-
peat the experiment ten times with each configuration (i.e., workload and network
parameters). To facilitate our measurements, we have added a unique color bar at the
top of each frame of the source contents as their frame id, which can be programmati-
cally recognized (c.f., Figure 1(c)).

To measure the bitrate used by the screencast technologies, we run a packet ana-
lyzer at the sender to keep track of the outgoing packets during the experiments. For
measuring the video quality, we direct the HDMI output of the receiver to a PC, which
is referred to as the recorder. The recorder PC is equipped with an Avermedia video
capture card to record the videos. To quantify the quality degradation, each frame of
the recorded video is matched to its counterpart in the source video, using the frame
id. Last, we calculate the PSNR and SSIM values as well as the frame loss rate by
matching the frames. This setup is illustrated in Figure 1(a).

To measure the user-perceived latency, we direct the rendered videos of both the
sender and receiver to two side-by-side monitors via HDMI (for the sake of larger dis-
plays). We then set up a Canon EOS 600D camera to record the two monitors at the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:10 C. Hsu et al.

Wi-Fi

Screencast

Analyze

U
s
a

g
e

M
o
n
it
o
r

R
e
c
o
rd

HDMI Cable

CPU usage

GPU usage

Network Bandwidth

Video Clip (60 fps)

Frame quality

Frame loss rate

ClientServer

(a)

Wi-Fi

Screencast

Video

Capture

A
n
a
ly

z
e

Client

Video Clip (60 fps)

Server

Frame

Latency

D
isplay D

is
pl

ay

(b)

(c)

Fig. 1. Experiment setup for: (a) bitrate/video quality and (b) latency; (c) actual testbed for latency mea-
surements in our lab.

same time, as shown in Figure 1(c). To capture every frame rendered on the monitors,
we set the recording frame rate of the camera to 60 fps, which equals to the highest
frame rate in our workload settings. The recorded video is then processed to compute
the latency of each frame, by matching the frames based on frame ids and by compar-
ing the timestamps when the frame is rendered by the sender and receiver. The setup
is shown in Figure 1(b).

Last, we note that we had to repeat each experiment twice: once for bitrate and
video quality (Figure 1(a)), and once for the latency (Figure 1(b)). This is because each
receiver only has a single HDMI output, but the two measurement setups are quite
different. Fortunately, our experiments are highly automated in a controlled environ-
ment, thus our experiment results are not biased. The actual testbed is shown in Fig-
ure 1(c).

5. DESIGN CONSIDERATIONS

Our performance evaluations on screencast technologies given in Appendix B lead to
two main observations: (i) screencast technologies all have advantages and disadvan-
tages and (ii) deeper investigations to identify the best design decisions are crucial.
In this section, we present a series of GA-based experiments to analyze several de-
sign considerations. We emphasize that our list of design considerations is not ex-

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:11

hausted, and readers are free to leverage open-source screencast technologies such as
GA [Huang et al. 2014] and DisplayCast [Chandra et al. 2012; Chandra et al. 2014] for
similar studies.

5.1. Software vs. Hardware Encoding

We study the implications of switching from software video encoder to hardware en-
coder in GA, and we compare their performance against the commercial screencast
technologies. We use the experiment setup presented in Table IV, and we stream the
9 minutes 18 seconds video using the default settings given in Table III. We con-
sider three performance metrics: CPU usage, GPU usage, and end-to-end latency. For
CPU/GPU usage, we take a sample every second, and the end-to-end latency is calcu-
lated for every frame. Then, we report the average CPU/GPU usages incurred by indi-
vidual screencast technologies in Figure 2. In this figure, GA and GA (HE) represent
GA with software and hardware video encoders, respectively. Moreover, the numbers
above the points are the average end-to-end latency.

We draw several observations from this figure. First, hardware encoder dramati-
cally reduces the CPU usage of GA: less than 1/3 of CPU usage is resulted compared to
software encoder. Second, upon using the hardware encoder, GA results in lower CPU
usage, compared to MirrorOp, Chromecast, and Splashtop. While AirPlay and Mira-
cast consume less CPU compared to GA with hardware encoder, they achieve inferior
coding efficiency as illustrated in Figures 13(a) and 13(d). More specifically, although
AirPlay and Miracast incur much higher bitrate, their achieved video quality levels
are no better than other screencast technologies. We conclude that AirPlay and Mira-
cast trade bandwidth usage (coding efficiency) for lower CPU load, so as to support
less powerful mobile devices, including iOS and BlackBerry. Third, both GA and GA
(HE) achieve very low latency: up to 18 times lower than some screencast technolo-
gies. Such low end-to-end latency comes from one of the design decisions of GA, i.e.,
zero playout buffering [Huang et al. 2014], as a cloud gaming platform, which is crucial
for highly interactive applications during screencasting. We note that GA (HE) leads
to 26 ms longer latency than GA, which is due to the less flexible frame buffer man-
agement mechanism in Intel’s Media SDK framework [Intel Web Page 2015], which
prevents us from performing more detailed latency optimization that are done by us
in ffmpeg/libav.

In summary, the hardware video encoder largely reduces the CPU usage, while
slightly increases the GPU usage and end-to-end latency. It is therefore quite worthy
to consider when developers are building future screencast technologies.

5.2. Comparison of Transport Protocols

The experiment results given in Appendix B indicate that GA is vulnerable to non-
trivial packet loss rate. This may be attributed to the fact that GA employs the UDP
protocol by default, and a quick fix may be switching to the reliable TCP protocol.
Therefore, we next conduct the experiments using GA with the UDP and TCP proto-
cols. We adopt the default settings as above and vary the network bandwidth and delay
settings. We consider 3 performance metrics: end-to-end latency, frame loss rate, and
video quality in PSNR and report the average results over the 9 minutes 18 seconds
video in Figure 3, where two corresponding points (those of UDP versus TCP) are con-
nected by dashed lines. The annotations next to the dash lines are network conditions,
and the numbers next to the points are the PSNR values representing the resulting
video quality rendered at the client.

We make the following observations. When the network delay is low, TCP always
leads to lower frame loss rate: 2% difference is observed. However, when the delay
is longer, say ≥ 100 ms, TCP results in even higher frame loss rate, which can be

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:12 C. Hsu et al.

0 10 20 30 40 50

0
1

0
2

0
3

0
4

0
5

0

CPU usage (%)

G
P

U
 u

s
a

g
e

 (
%

)

98

97078

52

172

945

78

 ms

 ms ms

 ms

 ms

 ms

 ms

AirPlay

ChromecastGA (HE)

GA

Miracast
MirrorOp

Splashtop

Fig. 2. Hardware encoder reduces the CPU usage of
GA. The numbers below screencast technologies rep-
resent end-to-end latency, and the length of horizontal
(and vertical) line segments represent the 95% confi-
dence intervals of mean CPU usage (and GPU usage),
respectively.

0 100 200 300 400 500 600

0
.0

4
0

.0
5

0
.0

6
0

.0
7

0
.0

8
0

.0
9

0
.1

0
0

.1
1

Latency (ms)

F
ra

m
e

 l
o

s
s
 r

a
te

30.130.1

30.0

30.0

30.1

27.6

28.3

30.1 30.1

30.1

 dB
 dB

 dB

 dB

 dB

 dB

 dB

 dB
 dB

 dB

TCP

UDP

4

6

default

100
200

 Mbps

 Mbps

 ms
 ms

bandwidth

bandwidth

setting

delay
delay

Fig. 3. The impacts of TCP and UDP protocols. The
numbers below symbols represent graphical quality in
PSNR. Each pair of experiments with identical set-
tings (except for the transport protocol) is connected
by dashed lines, and the length of horizontal (and ver-
tical) line segments represent the 95% confidence in-
tervals of mean latency (and frame loss rate), respec-
tively.

attributed to the longer delay caused by TCP, making more packets miss their playout
deadlines and are essentially useless. Moreover, TCP usually incurs slightly longer
end-to-end latency, except when we set the bandwidth to 4 Mbps, which leads to a much
longer latency. On the other hand, under 4 Mbps bandwidth, UDP suffers from higher
packet loss rates and thus leads to lower video quality, in particular, UDP results in
2.5 dB lower video quality than TCP.

In summary, Figure 3 depicts that the TCP protocol may be used as a basic er-
ror resilience tool of GA, but it does not perform well when network delay is longer
and when the network bandwidth is not always sufficiently provisioned. This is inline
with the well-known limitation on TCP: it suffers from degraded performance in fat
long pipes [Kleinrock 1992], due to the widely adopted congestion control algorithms.
Hence, more advanced error resilience tools are desired.

5.3. Comparison of Video Codecs

Under the default settings, we report the achieved video quality in Figure 4. This
figure shows that MirrorOp and Splashtop achieve good video quality for all content
types, while other screencast technologies all suffer from degraded video quality for
some content types. For example, AirPlay leads to inferior PSNR for Applications, and
GA results in lower PSNR/SSIM for Movie/TV. Furthermore, we observe that several
screencast technologies suffer from lower video quality, especially in PSNR, for some
content types. For example, for Web browsing, AirPlay, Chromecast, and Miracast lead
to ∼ 22 dB in PSNR, which can be caused by the different characteristics of Web brows-
ing videos: the sharp edges of texts are easily affected by the ringing artifacts in the
standard video codecs, such as H.264 [Wiegand et al. 2003]. Recently, Screen Content
Coding (SCC) has been proposed [Zhu et al. 2014] as an extension to the High Effi-
ciency Video Coding (HEVC) standard. SCC is built on top of the Range Extension

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:13

P
S

N
R

 (
d
B

)

0
1
0

2
0

3
0

4
0 AirPlay

Miracast
Chromecast
MirrorOp

GA
Splashtop

FPS Racing Strategy

Gaming

P
S

N
R

 (
d
B

)

0
1
0

2
0

3
0

4
0 AirPlay

Miracast
Chromecast
MirrorOp

GA
Splashtop

Adventure Action Talk show

Movie/TV

P
S

N
R

 (
d
B

)

0
1
0

2
0

3
0

4
0 AirPlay

Miracast
Chromecast
MirrorOp

GA
Splashtop

Google Maps PowerPoint Web browsing

Applications

(a)

S
S

IM

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AirPlay
Miracast

Chromecast
MirrorOp

GA
Splashtop

FPS Racing Strategy

Gaming

S
S

IM

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AirPlay
Miracast

Chromecast
MirrorOp

GA
Splashtop

Adventure Action Talk show

Movie/TV

S
S

IM

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AirPlay
Miracast

Chromecast
MirrorOp

GA
Splashtop

Google Maps PowerPoint Web browsing

Applications

(b)

Fig. 4. Video quality achieved by different screencast technologies on diverse content types, in: (a) PSNR
and (b) SSIM.

(REXT) of the HEVC standard. REXT expands the supported image bit depths and
color sampling formats for high-quality video coding.

In the following, we conduct a separate study to investigate the benefits of the
emerging video coding standards: H.265 REXT, which is designed for nature videos,
and H.265 SCC, which is designed for screen contents. For comparisons, we also in-
clude x264 with two sets of coding parameters: the real-time parameters used by
GA, which is denoted as H.264 RT, and the high-quality parameters with most op-
timization tools enabled, which is denoted as H.264 SLOW. In particular, we select
5 screen content videos: BasketballScreen (2560x1440), Console (1920x1080), Desktop
(1920x1080), MissionControl3 (1920x1080), and Programming (1280x720) from HEVC
testing sequences for SCC.We encode the first 300 frames of each video using the four
codecs at 512 kbps on an AMD 2.6 GHz CPU. Table V gives the resulting video quality,
which reveals that, H.264 RT results in inferior video quality. With optimized tools en-
abled, H.264 SLOW leads to video quality comparable to H.265 REXT, which is outper-
formed by H.265 SCC by up to ∼ 5 dB. This table shows the potential of the emerging
H.265 video codecs.

We next conduct a user study to get the QoE scores achieved by different codecs. We
randomly pick 40 frames from each video, and extract these frames from the recon-
structed videos of the 4 codecs. We save the chosen frames as lossless PNG images,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:14 C. Hsu et al.

Table V. The Resulting Video Quality in PSNR (dB)

Video H.264 RT H.264 SLOW H.265 REXT H.265 SCC

BasketballScreen 15.93 33.12 30.83 33.08
Console 15.18 19.35 21.63 22.37
Desktop 13.57 23.08 23.15 28.06

MissionControl3 16.63 34.70 30.46 33.36
Programming 17.29 31.46 31.67 33.36

H.264 RT H.264 SLOW H.265 REXT H.265 SCC

Q
o
E

 s
c
o
re

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)

Basketball Console Desktop Mission Control Programming

Q
o
E

 s
c
o
re

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

H.264 RT H.264 SLOW H.265 REXT H.265 SCC

(b)

Fig. 5. QoE scores of achieved by different codecs: (a) overall scores and (b) individual videos.

and create a Web site to collect inputs from general publics. We present images en-
coded by two random codecs side-by-side, and ask viewers to do pair comparisons. We
conducted the user study in September 2014, including 126 paid subjects, who com-
pleted 180 sessions with 7,200 paired comparisons, and the total time the subjects
spent in the study is 27.2 hours. We compute the QoE scores using the Bradley-Terry-
Luce (BTL) model [Wu et al. 2013] and normalize the scores to the range between 0
(worst experience) and 1 (best experience). We plot the overall average and per-video
QoE scores in Figure 5. We make a number of observations on this figure. First, H.265
SCC outperforms H.265 REXT for all videos, demonstrating the effectiveness of H.265
SCC. Second, the H.264 RT codec results in very low QoE scores, while the H.264
SLOW codec results in video quality comparable to H.265 SCC. However, a closer look
at the H.264 SLOW reveals that the encoding speed can be as low as < 1 fps, turning
it less suitable to real-time applications such as screencasting.

In summary, Figures 4 and 5 depict that different contents require different video
codecs, e.g., the emerging H.265 SCC codec is more suitable to screen contents, com-
prising texts, graphics, and nature images.

Fig. 6. Sample blocking features observed in Miracast.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:15

Table VI. Negative Impacts due to Imperfect Rate Adaptation (Sample Results at 1 Mbps)

Technology Slow Responsiveness Blocking Features Frozen Screens (a few secs) Consecutive Lost Frames Disconnections

AirPlay X

Chromecast X X X X

GA X X X

Miracast X X X

MirrorOp X X X

Splashtop X X

5.4. Necessity of Rate Adaptation

We repeat the experiments under different bandwidth settings: between 4 Mbps and
1 Mbps. We observe various negative impacts, including slow responsiveness, block-
ing features, frozen screens, consecutive lost frames, and disconnections (between the
sender and receiver) for some screencast technologies once the bandwidth is lower than
3 Mbps. Figure 6 gives a sample screen with serious artifacts. Table VI presents the
observed negative impacts under 1 Mbps bandwidth, which clearly shows that most
screencast technologies suffer from at least two types of negative implications. AirPlay
performs the best, which is consistent with our observation made in Appendix B.2 :
AirPlay actively adapts its bitrate to the changing bandwidth. On the other hand, al-
though Chromecast and Miracast also actively adapt their bitrate, they do not survive
under low bandwidth. Furthermore, (ordinary) GA, MirrorOp, and Splashtop do not
adapt their bitrate to the bandwidth at all, and thus sometimes they under-utilize the
available bandwidth. Moreover, they may sometimes send excessive traffic and suf-
fer from unnecessary packet loss and quality degradation. These observations clearly
manifest that more carefully-designed rate adaptation mechanism is highly demanded
for screencast technologies. Thus, we develop and implement rate adaptation mecha-
nism in open-source GA and conduct experiments to evaluate the performance and
efficiency of our proposed mechanism. The details are given in the next section.

6. AN ADAPTIVE SCREENCAST PLATFORM

The crux of adaptive screencasting is an accurate and efficient available bandwidth
estimation algorithm. However, most existing algorithms are not suitable for screen-
cast platforms because they send probing packets that generate extra traffic. This is
not a problem for quickly estimating the available bandwidth before streaming com-
mences, but less suitable to continuous bandwidth estimation. To better understand
the overhead, we configure Iperf [Iperf Web Page 2015] and WBest+ [Farshad et al.
2014] to estimate the available bandwidth for 2 minutes. We then plot the probing
traffic overhead in Figure 7. Iperf (OT) and WBest+ (OT) only send probing packets
one time at the beginning of the streaming, and thus are not able to dynamically es-
timate the available bandwidth for rate adaptation. On the other hand, we configure
Iperf (P) and WBest+ (P) to send probing packets every 20 seconds for adaptive estima-
tion. This figure shows that Iperf results in much higher probing overhead, especially
for dynamic estimation, which prevents screencast platforms from sending videos at
higher bitrates. WBest+ introduces about 3.4 Mbits probing overhead for each esti-
mation. In contrast, we develop a non-intrusive and flexible algorithm, inspired by
WBest+, that leverages video packets as probing packets. Indicated as GA in this fig-
ure, our algorithm (detailed below) leads to no probing overhead.

6.1. Overview on Adaptation Supports

Figure 8 gives a high-level overview of our proposed rate adaptation mechanism for
GA [Huang et al. 2014] screencast platform. A typical screencast platform consists of
several components that are presented below. The server contains: (i) a frame buffer
that is the display memory holding the screen contents, (ii) a video capturer that re-
peatedly retrieves the screen contents from the frame buffer, (iii) a video encoder that

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:16 C. Hsu et al.

0 50 100
0

20

40

60
P

ro
b

in
g

 O
v
e

rh
e

a
d

 (
M

b
it
s
)

Time (s)

Iperf (P)
Iperf (OT)
WBest+ (P)
WBest+ (OT)

Fig. 7. Overhead of Iperf and WBest
over non-intrusive GA.

Video Capturer

Video Encoder

RTSP/RTP

Sender

Frame Buffer

Screencast Server

Available Bandwidth Video StreamingWireless and Wired Networks

Packet Loss Rate,

Throughput
Bitrate

Reconfigurator

Video Decoder

RTSP/RTP

Receiver

Display

Screencast Client

Threshold

Chooser

Bandwidth

Estimator Timestamps of

Packets

Aggregation

Threshold

Target Bitrate

Fig. 8. The overview of the components for rate adaptation.

encodes the captured video, and (iv) an RTSP/RTP sender that sends the coded video to
the client via wired or wireless networks. The client contains: (i) an RTSP/RTP receiver
that receives the coded video from the networks, (ii) a video decoder that decodes the
coded video to screen contents, and (iii) a display to render the screen contents to user.
These 7 components are standard to real-time video streaming applications, including
screencast platforms.

To support the rate adaptation mechanism, we add 3 new software components in
the screencast server/client. They are highlighted by the bold font in Figure 8. These
components are: (i) bandwidth estimator, (ii) threshold chooser, and (iii) bitrate recon-
figurator. Their interactions are as follows. When the screencast server starts, the
screen contents are captured by the video capturer and sent to the video encoder,
which is then streamed to the screencast client by the RTSP/RTP sender. Upon re-
ceiving video frames from the server for a period of time T , the RTSP/RTP receiver at
the client calculates the current packet loss rate ρ and throughput θ and then reports
them to the threshold chooser. The threshold chooser selects the aggregation thresh-
old a, which is the percentile of inter-arrival times of received packets in T . Adjacent
packets with inter-arrival time smaller than the aggregation threshold are considered
as parts of the same aggregated frame in 802.11n. The bandwidth estimator uses the
timestamps of video packets sent from the RTSP/RTP receiver and the empirical cho-
sen percentile a sent from the threshold chooser to estimate the available bandwidth c̄a
by calculating the results of the packet size over the dispersion time among clustered
adjacent probing packets. After that, the bandwidth estimator sends the estimated
bandwidth to the server for the bitrate reconfigurator that maps the estimated band-
width to the target encoding bitrate b. The target encoding bitrate is then sent to the
video encoder. We present the detailed designs of the added components in the next
section.

6.2. Design of Major Adaptation Components

We build our bandwidth estimator on top of the state-of-the-art WBest+ [Farshad et al.
2014], which is proposed to estimate available bandwidth for 802.11n. However, they
did not specify the actual value of the aggregation threshold, and we address this
limitation. In particular, we first create a Cumulative Distribution Function (CDF)
of inter-arrival times, and then determine the percentile a to best match the average
bandwidth to the ground truth given by Iperf. We conduct experiments to find aggre-
gation threshold a in our labs with live interference traffic. We consider the following
two scenarios: (i) both the server and the client are launched on End Devices (EDs),
which are connected via a Wi-Fi Access Point (AP), and (ii) the server and the client

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:17

are launched on an ED and an AP, respectively. We vary the distances between the
server and the client to be at 1, 2, 4, and 8 m. In our experiments, the server streams
captured video to the client for 3 minutes at each distance, and we compute the ag-
gregation thresholds in Table VII. This table shows that the aggregation thresholds
are diverse and dynamic, e.g., the difference can be higher than 10%. Therefore, the
threshold chooser that dynamically adjusts the aggregation threshold is proposed to
enhance our bandwidth estimator. The bitrate reconfigurator then reconfigures the
encoding bitrate, which is proportional to the estimated bandwidth.

We also conduct experiments to determine the best system parameters: ρf and bf for
adjusting the aggregation threshold and the encoding bitrate, respectively. We vary
ρf , bf ∈ {0.5, 0.6, 0.7, 0.8, 0.9} and measure the throughput and the packet loss rate.
We found that the difference between the highest and the lowest throughput and the
packet loss rate under different bf values are only 1.9% and 1.5%, respectively. There-
fore, we choose the median, 0.7, as our default bf value. Similarly, the difference be-
tween the highest throughput and the lowest throughput under different ρf values is
only 2.7%. Thus, we choose 0.7 as the default ρf value for its minimum packet loss rate
of 3.11% among all considered ρf values.

Table VII. Different Thresholds Under Differ-
ent Environments

Distance 1 m 2 m 4 m 8 m
ED-ED 32% 37% 40% 43%
ED-AP 33% 34% 35% 33%

Threshold chooser. The threshold chooser considers the packet loss rate and
throughput to choose the aggregation threshold, e.g., high packet loss rate indicates
that the aggregation threshold should be risen for lower available bandwidth estima-
tion. In contrast, if the throughput is high and there is no packet loss, the aggregation
threshold should be reduced. In our implementation, the aggregation threshold a is
adjusted with step size δ once every T seconds as follows. We increase the aggregation
threshold if the current packet loss rate is higher than the average packet loss rate ρavg
multiply a system parameter ρf . If not otherwise specified, we let ρf = 0.7 according to
our preliminary experiment. We note that the actual bitrate of coded video is typically
different from the target encoding bitrate, depending on the amount of information to
code and inaccuracy of the rate control. Therefore, we introduce a new parameter θf to
accommodate such reality in the following way. We reduce the aggregation threshold
if: (i) the current packet loss rate is lower than the minimum packet loss rate ρL and
(ii) the achieved throughput is higher than the factor of target bitrate θf × b. We set
ρL = 0%, θf = 95% if not otherwise specified.

Bandwidth estimator. Let sp and tp represent the packet size and the received
time of packet p. The packet dispersion time, which is the inter-arrival time between
two adjacent received packets, can be represented as tp − tp−1 and the instantaneous
bandwidth is calculated as sp/(tp − tp−1). We first sort all the packet dispersion times
collected in T seconds in the ascending order, and use a to cluster the received packets
for estimating the available bandwidth c̄a.

Bitrate reconfigurator. The bitrate reconfigurator obtains the available band-
width c̄a from the bandwidth estimator and then reconfigures the encoder with en-
coding bitrate b, which is a function of c̄a. We let b = bf c̄a to be conservative according
to our preliminary experiment if not otherwise specified.

Pseudocode of our algorithm. Algorithm 1 gives the pseudocode of our rate adap-
tation algorithm. Lines 3–7 belong to the threshold chooser. Line 3 checks whether the
achieved throughput is high and the packet loss rate is low. If it passes, line 4 reduces

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:18 C. Hsu et al.

Algorithm 1 Rate Adaptation Algorithm

1: for every T seconds do
2: Compute ρ and θ
3: if θ > θf × b and ρ ≤ ρL then
4: a = a− δ
5: else if ρ > ρavg × ρf then
6: a = a+ δ
7: end if
8: Compute c̄a
9: b = bf × c̄a

10: Reconfigure video encoder with b

11: end for

the aggregation threshold for higher estimated available bandwidth. Line 5 checks if
the current packet loss rate is high. If it passes, line 6 increases the aggregation thresh-
old. Line 8 is part of the bandwidth estimator, which computes the available bandwidth
as the average value of all sp/(tp − tp−1), where (tp − tp−1) > a. The server then recon-
figures the encoding bitrate in line 9. Instead of dynamically selecting the aggregation
threshold for bandwidth estimation and encoding bitrate, Hong et al. [Hong et al. 2015]
choose the mean capacity among all packets as the effective capacity, while Huang et
al. [Huang et al. 2015] model the percentile capacity for single-hop bandwidth esti-
mation. Compared to the current article, they are less flexible in diverse and dynamic
wireless networks. Javadtalab et al. [Javadtalab et al. 2015] estimate the available
bandwidth changes during video streaming using weighted inter-arrival time of video
packets. Their method is not tailored for 802.11n or other short-range wireless net-
works, which is the most common environment for screencast.

6.3. Experiments

We have implemented our proposed components for rate adaptations in GA
server/client. The AP is build on a Linux box using a wireless adapter with Atheros
chip. Our proposed system is meant to be used in real world. Thus, we conduct experi-
ments in the lab, which is one of the typical scenarios for screencast. Our experiments
last within 2 to 3 hours, and we believe that the wireless network conditions do not
fluctuate too much within such a short time period. In our experiments, both the server
and client run on Thinkpad Linux laptops. We randomly choose a content type from
each of the three categories (see Section 4.2) and play the videos on the server. We
save the videos at both server and client into YUV files, which are used for quality
assessment. We run Wireshark at the server for network related results, such as bi-
trate, video quality, frame loss rate, estimated bandwidth, throughput, and packet loss
rate. The estimated bandwidth is the available bandwidth reported by the bandwidth
estimator. The throughput is the number of bits per-second received at the client. The
packet loss rate is the fraction of lost packets. In addition, we derive PSNR by first com-
paring the pre-inserted color bars in video frames to match the frames at the server-
and client-side YUV files. For lost frames, we replay the previously decoded frames at
the client side to mimic the basic error concealment approach. We then compute the
PSNR values accordingly.

Functionality of our adaptation algorithm. We fix the distance between the
server and the client at 4 meters, which is inline with one of the most popular screen-
cast scenarios: streaming presentation slides over a Wi-Fi network with a projector
in a conference room. The server plays different content types and streams captured
videos to the client for 3 minutes in each experiments. Figure 9 shows the sample re-
sults from the Movie/TV category (Talk Show), which is more complex. We first plot

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:19

0 50 100 150
0

5

10

15

E
s
ti
m

a
te

d
 B

a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(a)

0 50 100 150
0

5

10

15

T
a
rg

e
t

B
it
ra

te
 (

M
b
p
s
)

Time (s)

(b)

50 100 150
0

5

10

15

E
n
c
o
d
in

g
 B

it
ra

te
 (

M
b
p
s
)

Time (s)

(c)

0 50 100 150
10

20

30

40

50

A
g
g
re

g
a
ti
o
n
 T

h
re

s
h
o
ld

 (
%

)

Time (s)

(d)

0 50 100 150
0

5

10

15

20

P
a
c
k
e
t
L
o
s
s
 R

a
te

 (
%

)

Time (s)

(e)

50 100 150
0

20

40

60

80

P
S

N
R

 (
d
B

)

Time (s)

(f)

Fig. 9. Sample results from Movie/TV: (a) estimated bandwidth, (b) target bitrate, (c) encoding bitrate, (d)
aggregation threshold, (e) packet loss rate, and (f) quality in PSNR.

0 50 100 150
0

5

10

15

E
s
ti
m

a
te

d
 B

a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(a)

0 50 100 150
0

5

10

15

T
a
rg

e
t
B

it
ra

te
 (

M
b
p
s
)

Time (s)

(b)

50 100 150
0

5

10

15

E
n
c
o
d
in

g
 B

it
ra

te
 (

M
b
p
s
)

Time (s)

(c)

0 50 100 150
10

20

30

40

50

A
g
g
re

g
a
ti
o
n
 T

h
re

s
h
o
ld

 (
%

)

Time (s)

(d)

0 50 100 150
0

5

10

15

20

P
a
c
k
e
t
L
o
s
s
 R

a
te

 (
%

)

Time (s)

(e)

0 50 100 150
0

20

40

60

80

P
S

N
R

 (
d
B

)

Time (s)

(f)

Fig. 10. Sample results from Application: (a) estimated bandwidth, (b) target bitrate, (c) encoding bitrate,
(d) aggregation threshold, (e) packet loss rate, and (f) quality in PSNR.

the estimated available bandwidth over time from Movie/TV in Figure 9(a). The target
encoding bitrate is then decided by a function of c̄a, and the values are illustrated in
Figure 9(b). Figure 9(c) shows the actual encoding bitrates at the server. The average
encoding bitrate of Movie/TV is about 7.3 Mbps, which is close to the target bitrate.
Figure 10 gives similar results from the Application category (PowerPoint). However,
we observe that its average encoding bitrate is 0.6 Mbps lower than the target bitrate.
A deeper investigation indicates that it is because Applications have lower complexity
and are easier to be compressed.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:20 C. Hsu et al.

The dynamics of the aggregation threshold. Figure 9(d) plots the trend of the
adaptive aggregation threshold over time. In our experiments, the initial aggregation
threshold is empirically set to 0.36. The aggregation threshold in Figure 9(d) tends to
be continuously decreased until t = 90 s. The aggregation threshold continuously de-
creases because the throughput approaches the target bitrate and the packet loss rate
is zero. This indicates that the aggregation threshold should be reduced for higher
bandwidth estimation. Figure 9(e) plots the packet loss rate over time from Movie/TV.
Comparing Figures 9(d) and 9(e), the threshold chooser is aware of high packet loss
rate at t = 90 s, and increases the aggregation threshold accordingly. Figures 10(d)
and 10(e) show similar behavior at t = 135 s. The threshold chooser adjusts the aggre-
gation threshold to accommodate to the current network environments, and helps to
quickly recover from the video quality degradation due to high packet loss rate.

1 2 4 8
0

5

10

15

Distance (m)

E
s
ti
m

a
te

d
 B

a
n
d
w

id
th

 (
M

b
p
s
)

Gaming
Movie/TV
Applications

(a)

1 2 4 8
0

20

40

60

Distance (m)

P
S

N
R

 (
d
B

)

Gaming
Movie/TV
Applications

(b)

1 2 4 8
0

5

10

15

20

F
ra

m
e

 L
o

s
s
 R

a
te

 (
%

)

Distance (m)

Gaming
Movie/TV
Applications

(c)

1 2 4 8
0

5

10

15

20

P
a
c
k
e
t
L
o
s
s
 R

a
te

 (
%

)

Distance (m)

Gaming
Movie/TV
Applications

(d)

Fig. 11. Performance at different distances: (a) estimated bandwidth, (b) quality in PSNR, (c) frame loss
rate, and (d) packet loss rate.

Implications of distances on performance. Screencasting is more likely to hap-
pen in conference rooms, homes, and classrooms. Thus, we consider the distance be-
tween the server and the client at 1, 2 , 4, and 8 m. We plot the average of the estimated
available bandwidth with different content types at diverse distances in Figure 11(a).
This figure shows that the estimated available bandwidth has a trend of decreasing
as the distance increases. This is consistent with our intuitions. Figure 11(b) plots the
video quality at different distances. This figure shows the scalability of our proposed
rate adaptation: the PSNR values are always higher than 40 dB2. Besides, the PSNR
values of Applications are higher than the other 2 categories by about 15 dB on av-
erage. This can be attributed to the lower complexity of Applications. Figures 11(c)
and 11(d) report the frame loss rate and the packet loss rate, respectively. We note
that frame loss rate is usually higher than packet loss rate. This is because each frame
is typically segmented into multiple packets and losing any packets (of a frame) leads
to a frame loss. Movie/TV usually suffers from higher loss rate than others, because it
has higher complexity, and hence produces more packets.

Effectiveness of our rate adaptation mechanism. We conduct experiments to
compare our proposed algorithm to static bitrate configurations: (i) 1 Mbps and (ii)
12 Mbps at 8 m. We report the frame loss rate and PSNR in Figures 12(a) and 12(b).
We observe that 12 Mbps configuration suffers from high frame loss rate, thus leads
to inferior video quality except for Applications. A closer look at the encoding bitrate
of Applications video reveals that the contents are encoded at 6.6 Mbps on average.
Therefore, even when the available bandwidth reduces, the video quality of Applica-
tions may not be affected too much. Last, although conservatively setting the static
bitrate at 1 Mbps avoids high frame loss rate, it also results in lower video quality. In

2The PSNR value of our proposed GA in Figures 11(b) and 12(b) are higher than that in Figure 4 because
these two figures are from two independent experiment setups.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:21

Gaming Movie/TV Appl.
0

20

40

60

F
ra

m
e

 L
o

s
s
 R

a
te

 (
%

)

Static 1 Mbps
Static 12 Mbps
Adaptive

(a)

Gaming Movie/TV Appl.
0

20

40

60

P
S

N
R

 (
d

B
)

Static 1 Mbps
Static 12 Mbps
Adaptive

(b)

Fig. 12. Comparisons between static and adaptive bitrate: (a) frame loss rate and (b) estimated bandwidth.

particular, our adaptation algorithm outperforms the 1 Mbps configuration by at least
5 dB in PSNR in our experiments.

7. CONCLUSION

Although screencasting is becoming increasingly popular, researchers and developers
resort to ad-hoc design decisions, because the performance measurement of screen-
cast technologies has not been throughly studied. In this article, we have developed a
comprehensive measurement methodology for screencast technologies and carried out
detailed analysis on several commercial and one open-source screencast technologies.
The presented methodology is also applicable to other and future technologies, such
as screencast products and non-Intel hardware codec SDKs. Our comparative analy-
sis shows that all screencast technologies have advantages and disadvantages, which
in turn demonstrates that the state-of-the-art screencast technologies can be further
improved by making educated design decisions, based on quantitative measurement
results. Exercising different design decisions using commercial screencast technologies
is, however, impossible, because these technologies are proprietary and closed. We have
presented how to customize GA for a screencast platform, which enables researchers
and developers to perform experiments using real testbed when facing various design
considerations. Several sample experiments related to actual decision considerations
have been discussed, e.g., we have found that hardware video encoders largely re-
duce the CPU usage, while slightly increase the GPU usage and end-to-end latency.
We have acknowledged the importance of well-designed rate adaptation mechanisms
for dynamic wireless networks, and designed, implemented, and evaluated a practical
rate adaptation algorithm on GA. The lessons learned in our research shed some light
on building next generation screencast technologies.

Future work. The current article can be extended in several directions. For exam-
ple, we plan to study more ubiquitous multi-display usage scenarios, where several
handheld device users share these displays in a nature fashion. Another possible ex-
tension is an alternative transport protocol, such as Quick UDP Internet Connections
(QUIC) [Roskind 2012], which leverages Forward Error Correction (FEC) to mitigate
packet losses.

REFERENCES

AirPlay 2014. AirPlay–Play Content from iOS devices on Android TV. (2014). https://www.apple.com/
airplay/.

R. Baratto, L. Kim, and J. Nieh. 2005. THINC: a virtual display architecture for thin-client computing. In
Proc. of ACM symposium on Operating systems principles (SOSP’05) (SOSP ’05). ACM, New York, NY,
USA, 277–290. DOI:http://dx.doi.org/10.1145/1095810.1095837

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:22 C. Hsu et al.

K. Calagari, M. Pakravan, S. Shirmohammadi, and M. Hefeeda. 2014. ALP: Adaptive loss protection scheme
with constant overhead for interactive video applications. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM’14) 11, 2 (2014), 25.

S. Chandra, J. Biehl, J. Boreczky, S. Carter, and L. Rowe. 2012. Understanding Screen Contents for Building
a High Performance, Real Time Screen Sharing System. In Proc. of ACM Multimedia’12. Nara, Japan,
389–398.

S. Chandra, J. Boreczky, and L. Rowe. 2014. High Performance Many-to-Many Intranet Screen Sharing
with DisplayCast. ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM’14) 10, 2 (Feb 2014).

Y. Chang, P. Tseng, K. Chen, and C. Lei. 2011. Understanding The Performance of Thin-Client Gaming. In
Proc. of IEEE CQR’11.

K. Chen, Y. Chang, H. Hsu, D. Chen, C. Huang, and C. Hsu. 2014. On the Quality of Service of Cloud Gaming
Systems. IEEE Transactions on Multimedia (Feb 2014).

Chromecast Web Page 2014. Chromecast Web Page. (2014). http://www.google.com/chrome/devices/
chromecast/.

M. Claypool, D. Finkel, A. Grant, and M. Solano. 2012. Thin to win? Network performance analysis of the
OnLive thin client game system. In Proc. of ACM Workshop on Network and Systems Support for Games.
DOI:http://dx.doi.org/10.1109/NetGames.2012.6404013

B. Cumberland, G., and A. Muir. 1999. Microsoft Windows NT server 4.0 terminal server edition technical
reference. Microsoft Press. (1999).

A. Farshad, M. Lee, M. Marina, and F. Garcia. 2014. On the impact of 802.11 n frame aggregation on end-
to-end available bandwidth estimation. In Proc. of IEEE International Conference on Sensing, Commu-
nication, and Networking (SECON’14). IEEE, 108–116.

GaiKai Web Page 2012. GaiKai Web Page. (2012). http://www.gaikai.com/.

GamingAnywhere Web Page 2013. GamingAnywhere: An Open Source Cloud Gaming Project. (2013). http:
//gaminganywhere.org.

Y. He, K. Fei, G. Fernandez, and E. Delp. 2014. Video Quality Assessment for Web Content Mirroring. In
Proc. of Imaging and Multimedia Analytics in a Web and Mobile World.

HEVC Test Model 2014. HEVC Test Model (HM) Documentation. (2014). http://hevc.hhi.fraunhofer.de/
HM-doc/.

H. Hong, C. Hsu, T. Tsai, C. Huang, K. Chen, and C. Hsu. 2015. Enabling adaptive cloud gaming in an
open-source cloud gaming platform. IEEE Transactions on Circuits and Systems for Video Technology
(Jun 2015). Accepted to appear.

C. Hsu, T. Tsai, C. Huang, C. Hsu, and K. Chen. 2015. Screencast dissected: performance measurements and
design considerations. In Proc. of ACM Multimedia Systems Conference (MMSys’15). ACM, 177–188.

C. Huang, K. Chen, D. Chen, H. Hsu, and C. Hsu. 2014. GamingAnywhere: The First Open Source Cloud
Gaming System. ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM’14) 10, 1 (Jan 2014).

C. Huang, C. Hsu, T. Tsai, C. Fan, C. Hsu, and K. Chen. 2015. Smart Beholder: An Open-Source Smart Lens
for Mobile Photography. In Proc. of ACM Multimedia’15. Brisbane, Australia.

Intel Web Page 2015. Intel Media Client Solution Web Page. (2015). https://software.intel.com/en-us/
media-client-solutions.

Iperf Web Page 2015. Iperf Web Page. (2015). https://iperf.fr/.

A. Javadtalab, M. Semsarzadeh, A. Khanchi, S. Shirmohammadi, and A. Yassine. 2015. Continuous one-way
detection of available bandwidth changes for video streaming over best-effort networks. IEEE Transac-
tions on Instrumentation and Measurement 64, 1 (2015), 190–203.

R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi. 2004. CapProbe: A Simple and Accurate Capacity
Estimation Technique. In Proc. of SIGCOMM’04. Portland, OR, 67–78.

L. Kleinrock. 1992. The Latency/Bandwidth Tradeoff in Gigabit Networks. IEEE Communications Magazine
30, 4 (1992), 36–40.

H. Lagar-Cavilla, N. Tolia, E. Lara, M. Satyanarayanan, and D. O’Hallaron. 2007. Interactive resource-
intensive applications made easy. In Proc. of the ACM/IFIP/USENIX International Conference on Mid-
dleware.

M. Lai and J. Nieh. 2006. On the performance of wide-area thin-client computing. ACM Trans. Comput. Syst.
24 (May 2006), 175–209. Issue 2. DOI:http://dx.doi.org/10.1145/1132026.1132029

M. Li, M. Claypool, and R. Kinicki. 2008. WBest: a Bandwidth Estimation Tool for IEEE 802.11 Wireless
Networks. In Proc. of IEEE Conference on Local Computer Networks (LCN’08). Montreal, Canada, 374–
381.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:23

Y. Lin, W. Xie, L. Jin, and R. Shen. 2012. Content-adpative H. 264 rate control for live screencasting. In
Visual Communications and Image Processing (VCIP’12). IEEE, 1–6.

Markets 2012. Global Market for Wi-Fi/WLAN, Wireless Display/Video, Mobile WiMAX & LTE (4G) and Zig-
Bee Chipsets in Consumer Electronics & Automation Applications worth $20.4 Billion by 2017. (2012).
http://www.marketsandmarkets.com/PressReleases/wireless-communication-chipsets.asp.

Markets 2014. Flexible Display Market worth $3.89 Billion by 2020. (2014). http://www.marketsandmarkets.
com/PressReleases/flexible-display.asp.

Miracast 2014. Wi-Fi Certified Miracast. (2014). http://www.wi-fi.org/discover-wi-fi/wi-fi-certified-miracast.

MirrorOp Web Page 2014. MirrorOp Web Page. (2014). http://www.mirrorop.com.

OnLive Web Page 2012. OnLive Web Page. (2012). http://www.onlive.com/.

open-airplay: A collection of libraries for connecting over Apple’s AirPlay protocol 2014. open-airplay: A
collection of libraries for connecting over Apple’s AirPlay protocol. (2014). https://github.com/jamesdlow/
open-airplay.

OpenH264 Web Page 2015. OpenH264 Web Page. (2015). http://www.openh264.org/.

V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell. 2003. PathChirp: Efficient Available Band-
width Estimation for Network Paths. In Proc. of Passive and Active Monitoring Workshop (PAM’03),
Vol. 4. San Diego, CA.

T. Richardson, Q. Stafford-Fraser, R. Wood, and Hopper. 1998. Virtual Network Computing. IEEE Internet
Computing 2 (January 1998), 33–38. Issue 1. DOI:http://dx.doi.org/10.1109/4236.656066

J. Roskind. 2012. QUIC (quick UDP Internet connections), multiplexed stream transport over UDP. Technical
Report. Google technical report,[online].

K. Schmidt, M. Lam, and J. Northcutt. 1999. The interactive performance of SLIM: a stateless, thin-client
architecture. In Proceedings of the seventeenth ACM symposium on Operating systems principles (SOSP
’99). ACM, New York, NY, USA, 32–47. DOI:http://dx.doi.org/10.1145/319151.319154

Splashtop 2014. Splashtop Home Page. (2014). http://www.splashtop.com.

N. Tolia, D. Andersen, and M. Satyanarayanan. 2006. Quantifying interactive user experience on thin
clients. Computer 39, 3 (2006), 46–52.

S. Tursunova, K. Inoyatov, and Y. Kim. 2010. Cognitive passive estimation of available bandwidth (cPEAB)
in overlapped IEEE 802.11 WiFi WLANs. In Proc. of IEEE International Conference on Network Opera-
tions and Management Symposium (NOMS). IEEE, 448–454.

Ubitus Web Page 2014. Ubitus Web Page. (July 2014). http://www.ubitus.net.

Y. Wang, J. Ostermann, and Y. Zhang. 2001. Video Processing and Communications. Prentice Hall.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. 2004. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Processing 13, 4 (April 2004), 600–612.

T. Wiegand, G. Sullivan, G. Bjntegaard, and A. Luthra. 2003. Overview of the H.264/AVC video coding
standard. IEEE Transactions on Circuits and Systems for Video Technology 13, 7 (July 2003), 560–576.

C. Wu, K. Chen, Y. Chang, and C. Lei. 2013. Crowdsourcing Multimedia QoE Evaluation: A Trusted Frame-
work. IEEE Transactions on Multimedia (July 2013), 1121–1137.

x264 Web Page 2012. x264 Web Page. (2012). http://www.videolan.org/developers/x264.html.

x265 Web Page 2014. x265 Web Page. (2014). http://x265.org.

K. Xu, K. Tang, R. Bagrodia, M. Gerla, and M. Bereschinsky. 2003. Adaptive bandwidth management and
QoS provisioning in large scale ad hoc networks. In Military Communications Conference, 2003. MIL-
COM’03. 2003 IEEE, Vol. 2. IEEE, 1018–1023.

S. Yang, J. Nieh, M. Selsky, and N. Tiwari. 2002. The Performance of Remote Display Mechanisms for Thin-
Client Computing. In Proceedings of the General Track of the annual conference on USENIX Annual
Technical Conference. USENIX Association, Berkeley, CA, USA, 131–146. http://portal.acm.org/citation.
cfm?id=647057.713852

C. Zhang, X. Zhang, and R. Chandra. 2015. Energy Efficient WiFi Display. In Proc. ACM International
Conference on Mobile Systems, Applications, and Services (MobiSys’15). Florence, Italy.

W. Zhu, W. Ding, J. Xu, Y. Shi, and B. Yin. 2014. Screen Content Coding Based on HEVC Framework. IEEE
Transactions on Multimedia 16, 5 (August 2014).

Received August 2015; revised December 2015; accepted December 2015

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

