
Smart Beholder: An Extensible Smart Lens Platform

Chun-Ying Huang1, Ching-Ling Fan2, Chih-Fan Hsu3, Hsin-Yu Chang2, Tsung-Han Tsai3,
Kuan-Ta Chen3, and Cheng-Hsin Hsu2

1Department of Computer Science, National Chiao Tung University
2Department of Computer Science, National Tsing Hua University

3Institute of Information Science, Academia Sinica

ABSTRACT

Smart Lenses refer to detachable, orientable and zoomable
lenses that stream live videos over wireless networks to het-
erogeneous computing devices, including tablets and smart-
phones. Various novel applications are made possible by
smart lenses, including mobile photography, smart surveil-
lance cameras, and Unmanned Aerial Vehicle (UAV) cam-
eras. However, to our best knowledge, existing smart
lenses are closed and proprietary, and thus we initiate an
open-source project called Smart Beholder for end-to-end
solutions of smart lenses. The code and documents of
Smart Beholder can be found at our website http://www.
smartbeholder.org. Our Smart Beholder platform are useful
to researchers for fast prototyping, developers for rapid de-
velopment, and amateurs for hobbies. We have implemented
Smart Beholder server (camera) using a popular embedded
Linux platform, called Raspberry Pi. We have also realized
Smart Beholder client (controller) on various OS’s, including
Android. Our experimental results show the practicality and
efficiency of our proposed Smart Beholder: we outperform
commercial products in the market in terms of both objec-
tive and subjective metrics. We believe the release of Smart
Beholder will stimulate future studies on novel multimedia
applications enabled by smart lenses.

Keywords: Streaming; wireless networks; camera; opti-
mization; smartphones; mobile devices; quality of experi-
ence

1. INTRODUCTION

Miniature sensors and actuators are getting increasingly
popular, and users expect to access intelligent information
gathering systems, such as smart lenses, from their tablets,
smartphones, and smart watches. Smart lenses refer to de-
tachable, orientable, and zoomable lenses that stream live
videos to heterogeneous computing devices over wireless net-
works. Users exercise these computing devices to control
smart lenses for: (i) adjusting various settings, such as orien-
tation and optical/digital zoom, (ii) previewing the current

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15-19, 2016, Amsterdam, Netherlands

c© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2973793

view, and (iii) capturing photos or videos. Through the
separation of optical lenses and computing devices, smart
lenses offer higher flexibility and enable novel multimedia
applications that were not possible before. These applica-
tions include, but are not limited to:

• Mobile photography. Although smartphones are
widely used by casual photographers, smartphone
cameras often adopt small sensors without optical
zoom supports due to limited spaces. This in turn
leads to inferior photo/video quality and limited cam-
era features [1]. In contrast, regular digital cameras
give users full control over aperture, white balance,
shutter speed, and so on. Smart lenses [2,5,13] are not
limited by the small form factor of smartphones, and
may provide similar features/quality as digital cam-
eras.

• Smart surveillance cameras. Governments and or-
ganizations, such as police departments, may deploy
surveillance cameras for real-time, high-quality, and
interactive photo/video gathering, so as to improve ur-
ban safety, such as identifying fights, riots, protests,
demonstrations, fires, chemical leaks, and stampedes.
Amateurs may also deploy surveillance cameras at
home [11], e.g., to check on their pets when traveling.

• UAV (Unmanned Aerial Vehicle) cameras. In-
creasingly more hobbyists and journalists adopt UAVs
to capture aerial photos/videos, which are made possi-
ble because of UAVs’ 3D mobility. Several UAV manu-
facturers [4,14], provide different mounts to turn smart
lenses [5,7] and thermal imaging cameras [6], into UAV
cameras.

Optimizing smart lenses for good user experience in these
and future applications is not an easy task, because smart
lenses are connected to computing devices via wireless net-
works, which are vulnerable to interference, channel fad-
ing, and shadowing. In addition, users have two expecta-
tions: (i) low interaction delay and (ii) high graphics qual-
ity, which are inherently contradicting to each other. Last,
smart lenses are typically implemented on resource-scarce
embedded systems, which further complicate the design, de-
velopment, and implementation of smart lenses for diverse
applications. Fortunately, researchers and developers have
plenty of ideas on addressing these challenges. However, ex-
isting smart lenses products [2, 5, 7, 11, 13] are closed and
proprietary, preventing researchers and developers from fast
prototyping so as to validate their ideas.

To resolve the problem, we present Smart Beholder, which
is an open-source end-to-end platform for smart lenses. The

Figure 1: Sample usage scenarios of Smart Beholder.

code and documents of Smart Beholder are publicly avail-
able at http://www.smartbeholder.org, and detailed system
designs are given in Huang et al. [8]. Figure 1 shows typ-
ical usage scenarios of Smart Beholder, which consists of a
server and a client. Smart Beholder server is an embed-
ded system equipped with a lens and a wireless interface,
while Smart Beholder client runs on a computing devices
such as a tablet or a smartphone. The server captures views
and streams them in real-time to the client via wireless net-
works. Smart Beholder is designed with three goals: (i)
cost effectiveness, (ii) low interaction latency, and (iii) high
preview quality. These goals are achieved by: (i) choosing a
just-powerful-enough embedded system (Raspberry Pi [12]),
(ii) minimizing latency in all software components, and (iii)
dynamically adapting the video coding parameters.

2. SYSTEM DESIGN

Figure 2 gives the high-level design of Smart Beholder.
The server consists of network interface and video streamer.
The network interface includes: (i) AP (Access point) ser-
vice that allows clients to connect to the server, and (ii)
the DHCP server that assigns clients IP addresses. The
networks between Smart Beholder server and client can be
single-hop WiFi networks (e.g., for mobile photography and
UAV cameras) or multi-hop wired and wireless networks
(e.g., for smart surveillance cameras). The video streamer
captures videos using camera capturer, encodes videos us-
ing encoder module, and streams videos to the clients
through the RTSP (Real-Time Streaming Protocol)/RTP
(Real-Time Protocol) server. The Smart Beholder client
consists of UI (User Interface) and video streamer. The UI
renders received videos via viewfinder and takes user inputs
using camera controller. The user inputs are interpreted as
user commands and transferred from controller client to con-
troller server. The user commands may include taking pho-
tos, recording videos, and configuring effect settings, such as
white balancing, exposure, and sensitivity. In addition, the
RTSP/RTP client periodically measures the available band-
width and sends the results to server for dynamic parameter
selections of preview videos.

3. INTENDED AUDIENCE

Smart Beholder is designed for three kinds of intended au-
dience. First, researchers may use Smart Beholder platform
to analyze and evaluate their new ideas without implement-
ing everything from scratch. That is, Smart Beholder en-
ables fast prototyping on smart lens based applications for
academic exploration. Second, developers may use Smart
Beholder to develop new products with high-quality user
experience. The developers only need to adjust some pa-

rameters and add/delete components to improve the per-
formance or offer new functionalities. This promotes rapid
development of smart lens based applications. Third, ama-
teurs may also build our platform and customize it for fun.
This may encourage them to try innovative smart lens based
applications. Smart Beholder works for researchers, develop-
ers, and amateurs because it is extensible, portable, config-
urable, and open. We envision that the release of Smart Be-
holder will stimulate more projects on new smart lens based
applications. For example, in Section 8, we demonstrate
how to use Smart Beholder to build a panoramic camera.

4. SOURCE TREE STRUCTURE

Smart Beholder is released with two types of software
packs: all-in-one and pre-compiled binary packs. In ad-
dition, the source codes are available on our project website
at http://www.smartbeholder.org. The all-in-one pack
includes Smart Beholder source codes, third-party library
source code, pre-compiled binaries, while a pre-compiled bi-
nary pack includes only binaries for running the software
on Raspberry Pi [12]. Users may extend Smart Beholder to
support other hardware platforms running embedded Linux.
There are five subdirectories in the all-in-one pack; their
descriptions are given in the following.

• bin/: Pre-compiled run-time files, including the ex-
ecutables, modules, and configurations. The current
pre-compiled files are built on Raspbian Linux.

• codes/: Source codes for Smart Beholder, which is
divided into three parts: libcore, module, and server.

• deps.posix/: Dependencies for POSIX platforms, in-
cluding libraries and headers. Smart Beholder cur-
rently supports Raspberry Pi, which runs a POSIX-
compatible Linux. This subdirectory is empty by de-
fault, as the files in this subdirectory are built from
the sources in deps.src.

• deps.src/: Source files of the dependent third-party
packages. You will need these files to build dependen-
cies for POSIX platforms.

• scripts/: Sample setup scripts, e.g., to turn a Rasp-
berry Pi into a WiFi AP.

5. COMPILATION AND SETUP

Smart Beholder can be installed by uncompressing the
software packs, with or without the source codes. If all-

in-one software pack is downloaded, the complete Smart
Beholder system can be compiled from scratch. Smart Be-
holder is a platform dependent software, and the compilation
and setup instructions are written for Raspberry Pi [12].

Users attach an official camera module to a Raspberry
Pi, and install Raspbian Wheezy Linux To build Smart Be-
holder, users first make sure that g++, pkg-config, libX11,
libXext, libXtst, libfreetype6, libgl1-mesa, libglu1-
mesa, libpulse, libasound2, libmp3lame, libopus, libogg,
libvorbis, libtheora, libvpx, libx264, and libxvidcore

are installed. Users must install both binaries and devel-
opment files for the above packages. Next, the following
instructions are recommended:

1. Edit the env-setup script and point GADEPS to the
absolute path of beholder/deps.posix/.

2. Load environment variables from env-setup by using
. or source commands.

�✁✂✄☎✆ ✝☎✄✆✞✟ ✠✆✡☛✆✡

☞
✌
✍
✎
✏✑
✒✓✑
✒

✔
✎
✏✑
✒✓✕✖✑

✗✘✙✚✛✘
✗✘✜✢✣✛✚✛

✤✥✦✧★✚✛
✩✧★✣✪✚

✫✬✭✮✯✫✬✮
✭✚✛✰✚✛

✱
✕✲
✑
✳
✏✴✒✑
✵✶
✑
✒

✷✸✚✹✺✸✥★✚✛
✗✘✙✚✛✘
✗✧✥✢✛✧✪✪✚✛

✫✬✭✮✯✫✬✮ ✗✪✸✚✥✢

✻✼✽✾✿✼❀❀❁✿
✻❀❂❁✽✾

❃❄✻❅ ✼✿ ❆❇❅❈

❉✯❊
❋✚✦✧★✚✛

✭✯❊
❋✚✦✧★✚✛

✱
✕✲
✑
✳

✏✴✒✑
✵✶
✑
✒

●
❍ ✑
✒

■❏
✴✑
✒❑✵✖✑

▲▼◆❖P▼◗◗❘P
❙❘P❚❘P

❯❱▲ ❲
▼P
❳
❨
❲❩

Figure 2: The design of Smart Beholder.

(a)

Analyze

Live Preview

HDMI

S
tr

e
a
m

in
g

Beholder Client

Video Clip

Latency

&

Frame

Rate

Beholder Server Video Source

Video Capture

 at 60 fps

Client External Monitor

Bitrate Report

(b)

Figure 3: Experimental setup: (a) testbed and (b) procedure.

3. Build dependencies using
make -f Makefile.raspbian under deps.src/. All
third-party libraries will be then installed in
deps.posix/.

4. Build Smart Beholder using make all under codes/.

5. Install Smart Beholder using make install under
codes/. All binaries and configurations will be copied
to bin/.

Users next configure Raspberry Pi into a WiFi AP
using hostapd and dhcpd tools. Users may mod-
ify our sample configurations scripts/hostapd.conf and
scripts/dhcpd.conf for this purpose. However, hostapd

does not work with all wireless modules. In particular,
a Linux wireless driver must support nl80211 interface to
work properly with hostapd, and thus users have to care-
fully choose WiFi adaptors.

6. EXECUTION GUIDE

This section explains how to run Smart Beholder server
and client. Before running binaries, please ensure that
the full path to deps.posix/lib has been added to the
system-wide ld.so search path. Smart Beholder can be
launched using the following command: server-rpi con-

fig/server.rpi.conf. If a Raspberry Pi is configured as
an AP using our hostapd.conf and dhcpd.conf, a wireless
device can associate to the AP’s SSID smartb using pass-
word smartbeholder. On a PC or a Mac client, please use
the following command: client config/client.abs.conf

rtsp://192.168.11.254:8554/beholder to connect to
Smart Beholder. On an Android device, the client can con-
nect to rtsp://192.168.11.254:8554/beholder. Alterna-

tively, users can use an RTSP video player to connect to the
same URL to watch the live video captured by Smart Be-
holder. By default, Smart Beholder uses TCP port 8554 for
RTSP streams and TCP/UDP port 8555 for control mes-
sages. Once connected, a client can send a mouse click or
screen touch event to Smart Beholder for taking a camera
shot. The captured photos are by default stored in /tmp

directory. The photo directory can be changed using the
photo_dir option in Smart Beholder server configuration.

7. PERFORMANCE EVALUATIONS

We conduct real experiments to evaluate and compare our
proposed Smart Beholder against two products: Altek Cu-
bic [2] and SONY QX100 [5]. In our experiments, we con-
sider the following performance metrics: bitrate, latency,
frame rate, and preview quality in MOS (Mean Opinion
Score). Figure 3(a) shows our testbed setup. The video
source is played on the right monitor, which is captured by
the Smart Beholder server. The server then streams the
preview video to the client running on the tablet on the left
via a WiFi network. The tablet is connected to an external
monitor, and we use a Canon EOS 600D camera to capture
the two monitors at 60 fps (frame-per-second), and report
the objective experiments results (see Figure 3(b)). For sub-
jective evaluations, we recruit 52 subjects and perform 117
sessions that totaled 14,410 comparison rounds.

Sample experiment results are given in Figure 4 due to
the space limitations. Figure 4(a) shows that the bitrate of
Smart Beholder is 3 Mbps, which is half of other commer-
cial products. Figures 4(c) and 4(b) reveal that the Smart
Beholder achieves slightly higher frame rate as well as has
higher interactivity since the latency of Smart Beholder is

Beholder Cubic QX100

B
it
ra

te
 (

M
b

p
s
)

0
1

2
3

4
5

6

(a)
Beholder Cubic QX100

L
a

te
n

c
y
 (

m
s
)

0
5

0
1

0
0

1
5

0
2

0
0

(b)
Beholder Cubic QX100

F
ra

m
e

 r
a

te
 (

fp
s
)

0
5

1
0

1
5

2
0

(c)
Beholder Cubic QX100

P
re

v
ie

w
 Q

u
a

lit
y
 S

c
o

re

1
2

3
4

5

(d)

Figure 4: Sample performance comparisons among smart lenses: (a) bitrate, (b) latency, (c) frame rate, and
(d) preview quality.

lower than that of others by at least 50 ms. The subjective
evaluations of Smart Beholder on the preview quality also
achieve higher scores than others as reported in Figure 4(d).
In summary, our proposed Smart Beholder achieves higher
preview quality without incurring network overhead. More
details are provided in Huang et al. [8].

8. PANORAMIC SMART LENS: A USE

CASE OF SMART BEHOLDER

There are increasingly more novel cameras in the market,
such as panoramic [16] or 360◦ [9, 15] cameras. We build
a panoramic smart lens using Smart Beholder, which works
as follows. It continuously captures multiple images with
multiple cameras pointing at different orientations, stitches
these images, and then passes the resulting images to the
encoder module. In this way, users see panoramic video on
their Android devices.
In particular, we equip Raspberry Pi board with a multi-

camera adapter board [10], which supports up to 4 cam-
eras. While streaming, we program the GPIO pins to
switch among cameras for images from different cameras,
in a round-robin fashion. The resulting videos are then
stitched using OpenCV [3] running on the Raspberry Pi.
The resulting videos are then handled by a software-based
video source. This video source iteratively feeds a sequence
stitched images into a ring-buffer based pipe, which is shared
with the encoder module. The encoder module then reads
each frame from the pipe, performs the encoding task, and
sends the encoded frames to a client via the RTSP and RTP
protocols. The encoder module is put into sleep if no frame
is available in the pipe, and is waked up right after a frame
is pushed into the pipe. The video source and the encoder
module are launched in different threads and the use of pipe
increases the parallelism of the running threads.
Because Smart Beholder is designed and realized with high

extensibility in mind, implementing the panoramic video
source module (vsource-stimage) becomes relatively easy.
In fact, we have only created 3 files with about 500 non-
comment lines, before getting a working panoramic camera,
which is illustrated in Figure 5.

9. CONCLUSION

We presented Smart Beholder, an open-source smart lens
platform, which is available at http://www.smartbeholder.

Camera Array

Multi-Camera

Adapter

Android Device

Raspberry Pi

Figure 5: Our panoramic smart lens built on Smart
Beholder.

org. Smart Beholder enables various new multimedia ap-
plications, such as mobile photography, smart surveillance
cameras, and UAV cameras. We designed Smart Beholder
for three goals: (i) cost effectiveness, (ii) low interaction
latency, and (iii) high preview quality. Our evaluations re-
veal that Smart Beholder indeed achieves the three goals by:
(i) using a just-powerful-enough embedded system, (ii) re-
ducing latency in individual software components, and (iii)
adapting video coding parameters based on measured wire-
less network conditions. Smart Beholder can be leveraged by
researchers for fast prototyping, developers for rapid devel-
opment, and amateurs for fun. We envision that the release
of Smart Beholder will stimulate more projects related to
smart lenses and result in many new smart lens based ap-
plications. For example, we used panoramic camera as a
sample application to demonstrate that Smart Beholder is
highly extensible.

10. ACKNOWLEDGEMENTS

This work was partially supported by the Ministry of Sci-
ence and Technology of Taiwan under the grants: 103-2221-
E-001-023-MY2, 103-2221-E-009-230-MY2, 102-2221-E-007-
062-MY3.

11. REFERENCES

[1] 5 areas where cameras still beat smartphones if you
want great photo quality. http://tinyurl.com/n8f5w8d.

[2] Altek Cubic: Perfect to selfies.
http://www.altek.com.tw/cubic/.

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal

of Software Tools, 2000.

[4] Dragonfly innovative uav aircraft & aerial video
systems.
http://www.draganfly.com/industrial/products.php.

[5] DSC-QX100 lens-style camera with 1.0-type sensor.
http://www.sony.co.uk/electronics/
cyber-shot-compact-cameras/dsc-qx100.

[6] FLIR Thermal Imaging.
http://www.flir.co.uk/cs/display/?id=41702.

[7] GoPro 3+ high-performance life capture.
http://shop.gopro.com/cameras/hero3plus-silver/
CHDHN-302-master.html.

[8] C. Huang, C. Hsu, T. Tsai, C. Fan, C. Hsu, and
K. Chen. Smart beholder: An open-source smart lens
for mobile photography. In Proc. of ACM

Multimedia’15, Brisbane, Australia, 2015.

[9] LUNA 360 Camera - luna 360 vr camera.
http://luna.camera.

[10] Multi Camera Adapter Module for Raspberry Pi.
http://www.arducam.com/
multi-camera-adapter-module-raspberry-pi.

[11] Petcube remote wireless pet camera.
https://petcube.com/.

[12] Raspberry Pi. http://www.raspberrypi.org/.

[13] RE Camera a remarkable little camera.
http://www.htc.com/us/re/re-camera/.

[14] Skybotix uav navigation solutions.
http://www.skybotix.com/.

[15] The Bublcam - experience true 360 spherical
technology. https://www.bublcam.com/.

[16] V360 - capture everything the way you play in full
360. http://www.vsnmobil.com/products/v360.

