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ABSTRACT
Mobile cloud gaming allows gamers to play games on resource-
constrained mobile devices, and a measurement study to quantity
the client performance and energy consumption is crucial to attract
and retain the gamers. In this paper, we adopt an open source cloud
gaming platform to conduct extensive experiments on real mobile
clients. Our experiment results show several insights that are of in-
terests to researchers, developers, and gamers. First, compared to
native games, mobile cloud games save energy by up to 30%. Sec-
ond, the hardware video coders achieve higher frame rates but suf-
fer from a small unnecessary buffering delay, and thus is less ideal
for fast-paced games. Third, the frame rate, bit rate, and resolution
all affect the decoders’ resource consumption, while frame rate im-
poses the highest impact. Last, cellular networks incur 30%–45%
more energy consumption than WiFi networks, and the event pro-
cessing of touch screens is also energy-hungry. These findings shed
some light on the further enhancements of the emerging mobile
cloud gaming platforms.

Categories and Subject Descriptors
H.5 [Information Systems Applications]: Multimedia Informa-
tion Systems

General Terms
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1. INTRODUCTION
Cloud gaming companies offer on-demand cloud games to users.

These games run on powerful cloud servers, and the game scenes
are captured, encoded, and streamed to thin clients running on
desktops, laptops, and TV set-top boxes. In contrast to the afore-
mentioned devices, mobile devices, such as tablets and smart-
phones, have limited computation power and are battery-powered.
Therefore, running mobile clients on these resource-constrained
devices may lead to inferior performance and high energy con-
sumption. For example, the gaming frame rate may become too
low for smooth game play due to insufficient CPU power to exe-
cute video decoders. This results in degraded gaming quality and
may drive the gamers away. On the other hand, when gamers play
cloud games, the communication, computing, and display compo-
nents on mobile devices all consume nontrivial energy, which may
quickly drain the battery and prevent gamers from using their mo-
bile devices for other purposes, such as making phone calls. Hence,
carefully measuring the performance and energy consumption of
mobile clients is critical to the success of the new mobile cloud
gaming ecosystem.

In this paper1, we adopt an open source cloud gaming plat-
form [7, 8], called GamingAnywhere (GA), to setup a real mobile
cloud gaming testbed. We conduct extensive experiments on the
testbed to answer the following questions.

• Does running cloud games save energy compared to na-
tive mobile games? While in first glance, offloading games
to cloud servers saves significant amount of computation en-
ergy, doing so however also increases the communication en-
ergy consumption. This is partially due to the nature of con-
stant video streams incurred by cloud games, which prohibits
the wireless interfaces from being turned off when idling.
Hence, a carefully designed measurement study is required
to compare their total client energy consumptions.

• What are the pros and cons of the hardware video de-
coder? The video decoder represents the majority of CPU
workload on the mobile client, which in turn slows down
the overall frame rendering and consumes more energy. One
possible solution is to leverage the hardware video decoders

1This paper is an extended version of a workshop short paper that
appeared as [6].



on modern mobile devices. However, hardware video de-
coders are usually less configurable than the software ones.
Thus, detailed empirical comparisons may shed light for fu-
ture mobile cloud gaming researchers and developers on the
tradeoff between the hardware and software video decoders.

• How does the server configuration affect the client perfor-
mance? The cloud gaming servers are highly configurable,
and selecting the best configuration itself is a challenging
task. Therefore, a comprehensive set of experiments is re-
quired to throughly quantify the impacts of different server
system parameters, such as frame rates and resolutions, on
the client performance and energy consumption. The mea-
surement results are useful to researcher, developers, and
gamers to better configure their cloud gaming servers.

• Does the mobile client suffer from any power-hungry
software components other than video decoders? Al-
though the software video decoders incur the majority of the
CPU workload, which consumes high energy, we also need
to identify other software components, if any, that consume
nontrivial energy. This is because, the battery technology is
not improved as fast as other hardware components [3], and
the overall energy consumption is crucial to retain mobile
cloud gamers.

Our extensive experiments and in-depth analysis depict several in-
sights that lead to design suggestions for future developments of
mobile cloud gaming platforms. To the best of our knowledge,
similar measurement studies have not been rigorously done in the
literature.

2. RELATED WORK
Various optimization approaches have been proposed for mobile

cloud gaming platforms, which can be classified into: specialized
video codecs [2, 5, 13] and system adaptations [1, 11, 14], Spe-
cialized video codecs leverage the properties of computer rendered
graphics to reduce the downlink bandwidth consumption of mo-
bile cloud games. In particular, Hemmati et al. [5] selectively en-
code game objects to save network bandwidth and rendering power
while maintaining gaming quality. Shu et al. [13] adopt 3D warp-
ing for light-weight post-rendering manipulation on mobile clients,
in order to reduce the network bandwidth and cope with network
delay. Chuah and Cheung [2] render low-quality game scenes on
mobile devices while streaming the difference between low- and
full-quality game scenes from cloud servers, so as to trade client
computation complexity for communication complexity. System
adaptations dynamically adjust the system resources across multi-
ple distributed servers for better overall performance. Cai et al. [1]
divide computer games into small components, and dynamically
move these components across multiple distributed servers to meet
the demands from mobile gamers. Wang and Dey [14] adjust the
visual effect levels of computer games to trade off the server com-
putation load and user-perceived quality. Liu et al. [11] present a
subjective model to approximate the user experience under diverse
video contents, coding parameters, and network conditions, in or-
der to guide their adaptive rendering component for better gaming
quality. These optimization techniques [1, 2, 5, 11, 13, 14] are
complementary to the measurement studies presented in this paper.

Both objective measurement studies [12] and subjective user
studies [9] on cloud gaming using desktops have been done in the
literature. We focus on mobile cloud gaming, which has only been
recently considered [4, 8, 10]. Lampe et al. [10] adopt three perfor-
mance metrics: latency, energy, and cost, trying to demonstrate the
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Figure 1: The GA experiment testbed used throughout this pa-
per.

feasibility of mobile cloud gaming. In our earlier work [8], we con-
duct a user study to quantify the impact of different configurations
on mobile gamer satisfaction. In contrast, the current paper con-
centrates on the objective measurements on mobile devices. Hans
et al. [4] measure the energy consumption of Android smartphones
running a cloud gaming client, and is probably the closest work to
ours. While their findings on energy consumption are in-line with
ours, Hans et al. [4] is different from the current paper for two main
reasons: (i) we measure both client performance and energy con-
sumption, while they focus on energy, and (ii) we deploy several
actual games in our cloud gaming platform, while their CPU/GPU
workloads are emulated.

The current paper is built upon our earlier work on developing
the first open source cloud gaming platform [7], and porting the
cloud gaming client to mobile devices [8]. Our mobile cloud gam-
ing platform is transparent to existing PC games, and is of interests
to researchers and developers for experiments and further enhance-
ments.

3. METHODOLOGY

3.1 Environment Setup
Figure 1 shows the testbed used in our experiments. The testbed

consists of a server and a mobile client connected via a wireless
access (a campus WiFi or a 3G cellular network). We install five
games of different genres on the GA server: Super Smash Bros,
Limbo, Batman, Mario Kart, and Zelda. Super Smash Bros is a
fighting game, Limbo is a 2D scrolled adventure game, Batman is
a 3D adventure game, Mario Kart is a 3D racing game, and Zelda is
an RPG. We study the GA mobile client’s performance and energy
consumption using these five games, and report the sample results
from Super Smash Bros if not otherwise specified. For compar-
ing cloud and native games, we adopt a cross-platform OpenGL
game: GLTron, which runs on both the server and Android devices.
GLTron is a 3D snake-like game.

The server has an Intel Q6600 2.4 Ghz quad-core CPU and runs
Windows 7. We consider two mobile devices: an ASUS Nexus 7
tablet and a Sony Xperia Z smartphone. The tablet has a Nvidia
Tegra 3 1.2 quad-core process with 1 GB ram, and the smartphone
has a Qualcomm Snapdragon APQ8064 1.5 GHz quad-core pro-
cessor wth 2 GB ram. Both mobile devices run Android 4.4.2. We
adopt the tools, UseMon and Current Widget, to collect measured
CPU utilization and power consumption of a device, respectively.
During the experiments, we set the screen brightness to medium,
and always keep the battery level above 70% to avoid noises due to
battery’s nonlinear discharging characteristics (details are given in
Section 3.3).

3.2 Controlled Parameters
Table 1 lists the controlled parameters during the experiments.

First our mobile client supports both software and hardware video
decoders. The software decoder is provided by the ffmpeg project,



Table 1: Controlled parameters
Parameter Value
Decoder hardware, software
Controller disabled, enabled
Video codec parameter‡

Resolution 640x480, 960x720, 1280x720
Bitrate 1Mbps, 3Mbps, 5Mbps
Frame rate 10fps, 30fps, 50fps

‡ Default values are highlighted in boldface.

and the hardware decoder is accessed via Android’s MediaCodec
framework. We use the popular H.264 coding standard, which is
supported by all the chosen implementations. Second, we selec-
tively disable and enable the controller on mobile devices, which is
a transparent overlay over the video surface. When the controller
is disabled, we play the games on the server. This is to isolate the
additional energy consumption due to: (i) activating touch screens
and (ii) handling the user input events. The remaining three param-
eters, resolution, bitrate, and frame rate, are for video codecs. In
each experiment, we fix two video codec parameters, and vary the
other one. We let 640x480, 30 fps (frame per second), and 3 Mbps
be the default settings, if not otherwise specified. The goal is to
quantify the impacts of different parameters on client performance
and energy consumptions.

3.3 Baseline Energy Measurement
We measure the baseline energy consumptions before conduct-

ing the experiments. We close all irrelevant applications and ser-
vices, turn on the display, and set brightness to medium. We find
that the CPU utilization is close to zero. We measure the current
and voltage for each mobile device, sampled at 1 Hz. The results
are shown in Figure 2. On both devices, we observe that when
the battery level reduces, the voltage gets lower and the current
gets higher. When the battery level is lower than 60%, the cur-
rent exceeds the average. For fair comparisons, we only conduct
experiments when battery level is higher than 70%. Based on the
measurements, the baseline power consumption for Nexus 7 and
Xperia Z are 1.7 W and 1.1 W, respectively.

4. MEASUREMENT RESULTS

4.1 Software vs. Hardware Video Decoders
Table 2 shows the frame rates achieved by the software decoders.

This table reveals that while software decoders work well when the
resolution, frame rate, and bitrate are low, they fail to achieve the
configured frame rate when these video codec parameters are high.
This can be attributed to the limited CPU resources on the mobile
devices. We then switch to the hardware decoders, which run faster
but do not report the achieved frame rate. We observe fairly con-
stant frame rate under different video codec parameters. We make
an interesting observation: the hardware decoders on both mobile
devices buffer 1 or 2 decoded frames, which lead to unnecessary
delay. Such limitation renders the hardware decoders less suitable
to mobile cloud gaming platforms with longer network latency and
fast-pace games.

Next, we zoom into two video codec configurations: (i) light,
with 640x480, 10 fps, and 3 Mbps and (ii) heavy, with 1280x720,
30 fps, and 3 Mbps. We run each experiment for 15 minutes, and
plot the CDF curves of per-core CPU utilization in Figure 3, where
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Figure 2: The voltage and current levels measured under the
baseline configuration.

N7 and XZ represent the tablet and smartphone respectively. We
first observe that, for each mobile device, the two curves (light and
heavy) of the hardware codecs are very close. This validates the
aforementioned observation: the hardware decoders achieve the
same frame rate under different video codec parameters. In con-
trast, for each mobile device, the gap between two curves of the
software codec is much larger. Last, our measurements on the
power consumption leads to similar observation (figure not shown
due to the space limitations). The hardware decoders consume
power levels that are about two times of the baseline, which is
independent to video codec parameters. In contrast, the software
decoders are sensitive to video codec parameters, and draw power
consumptions that are between two and three times of the baseline.

4.2 Video Codec Parameters
We next present the CPU utilization and power consumption un-

der different video codec parameters. We repeat the 3-minute ex-
periment 5 times, collect samples at 1 Hz, and give the average re-
sults with minimum and maximum in Figure 4. This figure reports
average CPU utilization, i.e., 25% CPU utilization is equivalent to
a fully-loaded CPU core. We make two observations: (i) higher
bitrates, frame rates, and resolutions consume more resources and
(ii) the software decoders consume more resources. Next, we take
a closer look at how each codec parameter affects the performance
of the hardware decoders. We do not consider the software de-
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Figure 4: Measured CPU utilization and power consumption under various codec parameters.

Table 2: Achieved decoder frame rate (in fps)
Nexus 7 Xperia Z

Configured 10 30 50 10 30 50
1280x720, 5 Mbps 10 13 13 10 14 13
1280x720, 3 Mbps 10 14 13 10 14 13
1280x720, 1 Mbps 10 27 19 10 17 13

960x720, 5 Mbps 10 13 13 10 14 13
960x720, 3 Mbps 10 18 15 10 16 13
960x720, 1 Mbps 10 30 24 10 24 14
640x480, 5 Mbps 10 30 30 10 30 22
640x480, 3 Mbps 10 30 46 10 30 27
640x480, 1 Mbps 10 30 45 10 30 45

coders, because neither of the considered mobile devices can keep
up with the high frame rate. We define the parameter impact factor
as follows. Given a parameter p and a function fp that quantifies
the load of p based on its parameters. Suppose p is altered from
ci to cj , we write the increased load Lp as Lp =

fp(cj)−fp(ci)

fp(ci)
.

We also measure the battery level differences mi and mj for ci
and cj , respectively. The increased overhead Op for p is defined as
Op =

mj−mi

mi
. Last, the impact factor for parameter p is written as

Op

Lp
. Note that we measure the battery level difference to define the

parameter impact factor because CPU utilization does not fully re-
flect system loads, as some workload is offloaded to the hardware
decoders. Table 3 gives the parameter impact factors. This table
shows that the frame rate has the highest impact, and the resolution
has the lowest.
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Figure 3: Comparison of CPU utilization with the hardware
and software decoders under different loads.

4.3 Game Genres
We report the CPU utilization and energy consumption of dif-

ferent game genres in Figure 5. All the games are configured to
stream game scenes at 1280x720, although only Windows games
(Limbo, Batman, and GLTron) support 1280x720: the game scenes
captured from N64 emulator (Super Smash Bros, Mario Kart, and
Zelda) have to be up-sampled to 1280x720 before being streamed.
Therefore, the game scenes from the N64 emulated games contain
less details, which in turn consume less resources. The power con-
sumption fluctuations caused by all game genres are within ±5%.



Table 3: The parameter impact factors for hardware decoders
Nexus 7 Xperia Z

Param. Change† a→b b→c a→c a→b b→c a→c
Bitrate +0.14 +0.02 +0.13 +0.07 +0.03 +0.07

Frame rate +0.06 +0.10 +0.10 +0.11 +0.09 +0.14
Resolution +0.07 -0.17 -0.01 +0.01 -0.03 -0.01

† a, b, and c are the minimal, median, and maximal values of each
parameter.
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Figure 5: CPU utilization and power consumption for different
game genres.

If we separate the Windows and N64 games, the fluctuations are
about ±2%. We conclude that game genre has very little impact on
cloud gaming CPU utilization and power consumption.

4.4 Cloud versus Native Games
Next, we play Super Smash Bros and GLTron as cloud games

and GLTron as a native game. Cloud games are configured to
stream at 1280x720. The results are shown in Figure 6. In the fig-
ure, “Cloud#1" and “Cloud#2" correspond to Super Smash Bros
and GLTron, respectively. “Native" is the Android version of
GLTron. It is clear that the native game consumes much more re-
sources than cloud games: the CPU consumption is doubled and
the power consumption is also increased by more than 30%. We
emphasize that GLTron is not very visually-rich, but running it na-
tively incurs nontrivial resource consumption. The resource con-
sumption gap between the cloud and native games will be even
larger for modern 3D games. Last, we make another observation:
enabling the controller results in additional resource consumption.
We take a deeper look at this observation below.

4.5 Other Components
We study the impact of other components on resource consump-

tion, including the wireless access links and touch screens. Figure 7
shows the resource consumptions by using different wireless access
links. We only report results from Xperia Z because Nexus 7 does
not have a 3G module. We work with the default codec configura-
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Figure 6: CPU utilization and power consumption for cloud
and native games.

tion (640x480, 30fps, 3Mbps). Both the software and hardware de-
coders can decode at the configured frame rate. The measurements
also show that the 3G module consumes additional 30%–45% of
power.

To measure the impact of touch screens, we develop an Android
application that does nothing but accepting gestures from a user.
The accepted events are dropped immediately. We run this gesture
application on both mobile devices for 3 minutes and collect the
CPU utilization and power consumption. We continuously slide
the touch screens during the second minute, and leave the mobile
devices idle in the first and last minutes. To isolate the resource
consumption due to touch screens and event processing, we also
write replayer application that injects the touch screen events to
the gesture application. We run the gesture application and log all
the timestamped events. We then inject the events to the gesture ap-
plication using the replayer application, and compare the two mea-
surement results. Figure 8 gives the CPU utilization and power
consumption over time. This figure shows that the touch screen
(including event processing) and event processing (only) consume
similar amount of resources. This indicates that the event process-
ing is energy-hungry, while the touch screen consumes negligible
amount of additional resources. That is, touch screen and event
processing is not free, although it may be overlooked in the past.
Our measurements show that event processing consumes additional
6%-10% power. More in-depth analysis along this line is among
our future tasks.

5. CONCLUSION
In this paper, we implement a testbed using a real mobile cloud

gaming platform [7, 8] developed by us. We conduct extensive ex-
periments to measure the client performance and energy consump-
tion. Our measurement results lead to the following main findings.

• Running mobile cloud games is more energy efficient than
native mobile games. Our experiments indicate that mobile
cloud games reduce the CPU utilization by half, and save
energy by 30%.
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control events.

• The hardware video decoders are not sensitive to higher
video codec parameters, such as resolutions and bitrates.
However, the hardware video decoders always buffer 1–2
frames, which are less ideal to fast-pace games.

• The video codec parameters (bitrate, frame rate, and resolu-
tion) impose different degrees of impacts on CPU utilization
and energy consumption. The frame rate affects the most,
while the resolution affects the least.

• Two other energy-hungry components are identified: (i) the
3G cellular module consumes 30%–45% more energy and
(ii) the event processing of touch screens consumes nontriv-
ial resources as well.

These insights lead to design recommendations for future re-
searchers and developers of the emerging mobile cloud gaming
platforms.
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