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Abstract

One of the most traditional methods for information security can
be as easy as sequence matching, such as the signature-based meth-
ods for virus detection. However, it is now well-accepted that the
signature-based methods are no longer satisfactory solutions for many
security problems. The signature is usually too rigid, resulting in
detection that is hard to adjust and easy to bypass. Statistical learn-
ing approaches can complete the puzzle to form an integrated defense
system. Numerous statistical learning methods have been proposed
in the last couple of decades for various applications. To solve in-
formation security problems statistically, we need to carefully choose
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appropriate statistical learning methods and evaluation procedures so
that what seems to be a meaningful and effective method in terms
of the statistical analysis can also be beneficial when the method is
deployed to the real world. This paper aims to give an introductory
and as self-contained as possible overview for how to correctly and
effectively apply statistical methods to information security problems.
We also demonstrate a couple of applications of the statistical learning
methods on the problems of botnet detection and account security.

Keywords — Anomaly detection, Information security, Intrusion
detection, Signature-based methods. Statistical learning.

1 Introduction

Information security has been one of the cornerstones in modern cyber tech-
nology. People dream of automatically detecting intrusions to ensure a secure
system all the time. Information security researchers did not use statistical
learning or machine learning algorithms substantially in their applications
until recent decades. The traditional approach of information security re-
search relies heavily on the understanding of various domain knowledge such
as computer network, database, operating system, web technology, etc. That
is to say, however difficult it may be, mastering the domain knowledge is a
necessary condition to build a robust defense system to prevent a domain or
server from intrusions.

To detect an intrusion, we may solve a symbol matching problem using
either an exact string matching [36] or an approximate Longest Common Sub-
sequence (LCS) matching [15] algorithm. More generally, we can check sig-
natures to detect intrusive activities, so-called the signature-based approach.
On the other hand, we can adopt rule-based detection algorithms to sep-
arate intrusions from normal behavior. Nevertheless, for both approaches,
the blacklist for signature-based methods or the rules for rule-based methods
may get longer and longer as time goes by, and the performance eventu-
ally degrades as both its time and storage requirements increase. In recent
years, zero-day exploits [18] that take advantage of unsynchronized signature
databases often cause disasters for infrequent patch updating. Moreover, in-
creases in the automation of intrusive procedures complicate the detection
rule designation and speed up the intrusion propagation. In summary, for the
traditional approach to work properly, we need experienced domain experts,
a complete (which could be infinitely long) signature database, an efficient
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and effective detection method, and frequent and prompt signature updating
to make the defense system work.

An alternative technique to deal with the above issues is the probabilistic
approach. In the probabilistic method, we can combine similar patterns that
are generated along with some malicious activities into one group to com-
press the blacklist. A high-level guideline is to “extract” knowledge from the
activity patterns and classify the intention behind the patterns into either
a benign type or a malicious type. A theoretical treatment includes using
a Markov chain or hidden Markov model [58, 72] to model sequential data,
which is a type of generative model in the sense that we can really generate
more sequential data (such as an attack sequence in a network environment)
given the model. A Probabilistic Graphical Model [38, 31] is a general model
that can describe a dataset which consists of various dependencies in the set,
including spatial and temporal dependencies.

To detect intrusions, anomaly detection techniques can complement the
weakness of signature-based methods. While signature-based methods which
belong to a specific hypothesis in concept learning [51] may suffer from high
false-negative problems1, most anomaly-based detection methods which be-
long to a general hypothesis could give relatively high false-positives. Gener-
ally speaking, integrating both the signature-based approach and anomaly-
based detection approach should give a better result than using only one of
them in intrusion detection [30]. However, to apply this integration effec-
tively in real intrusion detection systems is still challenging. Especially, it is
not trivial to make a final decision when two approaches give contradicting
results.

Probabilistic learning and anomaly-based detection techniques, where
both belong to the data driven approach, are two examples of statistical
learning methods that can be helpful to solve information security problems.
Statistical machine learning has been receiving attention in recent decades
due to several successful stories in which learning algorithms have been ap-
plied to problems such as speech recognition [58], bioinformatics [4], face
detection [70], autonomous driving [55], etc. One of the reasons for such suc-
cess is due to the development of discriminative models, such as the support
vector machines (SVM) [11], where the goal is to separate data that belong
to different patterns. For instance, given some malicious and benign training

1We consider an attack or an intrusion positive data in this case and throughout the
article.
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data, we can train a model and use it to classify new incoming data into one
of the two categories, called supervised learning. Generative modeling and
discriminative modeling are different in their algorithms, the goals they try
to achieve, and the applications that they perform well at [52].

Statistical learning methods have already solved numerous information
security problems, especially system security problems. This is because a
system security problem can be transformed into a clustering or a classifica-
tion task by nature; for instance, to distinguish between benign and mali-
cious activities. With well-developed learning methods, researchers are able
to concentrate more on analyzing the security problem itself and identifying
the key point to solve the problem. To our knowledge, Forrest et al. [21] is
the first research group that suggested detecting intrusions by using learn-
ing methods. Numerous researches based on generative models [71, 74, 34]
are then followed to explore the effectiveness of learning methods on solving
security problems. Researchers have also used discriminative models to deal
with security issues. They utilized RIPPER [39, 8], decision tree [42, 62], or
SVM [8, 27, 28] to solve different security problems.

Researchers have shown that learning methods can solve security prob-
lems; however, it is still challenging when, for example, the training dataset
is unbalanced, the labels of data are not 100% accurate, or the training data is
not representative, etc. Even we have so many learning methods available in
the public domain these days, it is still not a straightforward task to success-
fully apply the learning methods to real-world information security problems
because of the gap between academic research and industrial deployment [61].
Information security consists of many sub-fields such as network security,
software security, database security, identification/authentication, spam fil-
tering, privacy preserving, and many others. Applying learning algorithms
to deal with those different problems may lead to different difficulties, and we
illustrate how to deal with various problems given a wide range of algorithms.

In this article, we show how and why machine learning methods can
help solve information security problems. We introduce the basic statistical
learning concept, and also demonstrate how the learning algorithms can solve
real problems. Statistical learning methods, like any other methods, also
have their limitations. The key idea is to utilize the methods in appropriate
domains, perhaps in synergy with other methods such as the traditional
approach, for a robust and efficient problem solving package. The remainder
of this paper is organized as follows. Section 2 contains a discussion of
a few well-known information security problems and issues if solving the
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problems by statistical learning methods. In Section 3, we introduce the
basic statistical leaning concept, followed by a series of guidelines in choosing
learning and statistical methods for real security problems. Following that,
we offer some case studies in Section 4; then, in Section 5, we summarize our
conclusion.

2 Solving Information Security Problems Sta-

tistically

In this section, we discuss some of the more recent problems in information
security and the issues we face when solving them via statistical learning
methods. First, we focus on the debate between signature-based methods and
anomaly-based methods. Second, a few recent information security problems
are reviewed; following that, we give suggestions on how to deal with those
problems. The statistical learning methods belong to the category of data-
oriented approach, so in the last, we discuss the issues when the data-oriented
approach is applied to information security problems.

2.1 Signature-based Methods versus Anomaly-based

Methods

The majority of traditional methods are signature-based (also called misuse-
based methods in intrusion detection). Signature-based methods have the
advantage of using an attack database to detect previously seen attacks. On
the other hand, finding the unusual behaviors in daily security data belongs
to the category of anomaly-based detection methods [12, 23, 35]. While
the signature-based methods are usually efficient and well-defined, anomaly-
based methods generally need no pre-defined categories of benign or different
types of malicious behaviors. That is why the anomaly-based methods can
detect novel attacks. As we mentioned in the introduction section, signature-
based methods usually produce more false negatives, and anomaly-based
methods are likely to have more false positives.

The input for the signature-based method is a pre-defined attack database.
The attack database has a set of attack rules that is usually defined by ex-
perts. On the other hand, the input for the anomaly-based method is a
dataset that consists of mostly benign data. Statistical learning methods
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can profile normal behaviors based on the data. Compared to the signature-
based method which is an expert/model-oriented approach, the anomaly-
based method is a data-oriented approach. When we build a model from
data, the model’s generalization power is expected to make correct labeling
for some unseen cases. Given the anomaly detection approach, we expect to
detect novel intrusions that domain experts may not think of. That makes
the data-driven or anomaly-detection-based approach more robust than the
methods that heavily rely on experts’ knowledge. Nevertheless, when deploy-
ing a model to a new environment, a data-driven approach has the advantage
of being able to adjust the model of previous moments to reflect the current
status. Before we discuss more issues regarding data-driven approaches, we
review a set of various information security problems and illustrate how sta-
tistical learning methods can help us solve the problems.

2.2 A Set of Current Information Security Problems

Most attacks evolve rapidly in a dynamic environment. With different times
come different types of intrusions and threats topping security lists. We
discuss a few of the most notorious attacks, malicious items, or important
security issues in recent years and use them to illustrate how statistical learn-
ing methods can help us to detect attacks.

Understanding Botnets Botnets are one of the most talked-about at-
tacks nowadays, thanks to the rise of Web 2.0 and computerized social net-
works. A botnet can hijack a network or a host to execute some pre-assigned
tasks. A large-scale botnet attack can compromise hosts/networks and cause
a severe loss. By nature, a botnet has a spatial connection in the social
or non-social network; therefore, we should take advantage of those spatial
relationships for an effective detection. Moreover, considering the dynamic
behavior of a botnet, we can understand more about how the botnet spreads
out through time and provide a better defense for the attacks.

We discuss several issues in the botnet detection. First, as we mentioned
previously, to detect a botnet effectively, one has to consider the spatial and
temporal aspects of a botnet. Second, botnet activities are usually hidden
in the environment; therefore, to acquire a benchmark dataset for a fair
evaluation is generally difficult. Collecting data in a restricted domain can
only claim a limited rather than a general statement. Also, label information
is not always trustful in this case. All imply that the evaluation of botnet
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detection methods must be carefully handled. A detailed discussion of botnet
detection can be found in Section 4.1.

Malicious URL Detection A malicious URL references a website that
traps web surfers with some unauthorized actions when they visit the site.
Some typical examples include an installation of Trojans, worms, or unwanted
scripts in the local client when the client’s owner visits a malicious URL.
Malicious URLs are a serious problem on the Internet because not all web
surfers have a basic understanding of information security. In particular,
many cannot differentiate malicious websites from normal ones. Therefore,
malicious URL detection is an urgent task to ensure web security. Moreover,
it is ideal to perform the detection in real time or close to real time so that
the damage to the victims of malicious websites can be minimized.

Understanding the content of a malicious site can help us classify it as one
that is designed with bad intentions and make appropriate defensive actions
afterwards. However, content analysis usually takes a lot of computational
effort, not to mention the bandwidth load to retrieve the content before the
analysis. Another approach is to only use the URL string to pre-screen a
significant amount of malicious sites so that the need to do further analysis
based on the website content can be avoided [45, 44, 53]. To build a model
that can judge whether a website is malicious or not given the website URL,
clearly, having a rule-based model is not appropriate; instead, a black-box
method may work better which can combine several features to have an
integrated judgment. We will discuss the choice between a transparent model
and a black-box model in Section 3.4.

Account Security Most Internet users have more than a couple of web
accounts for various cyber activities. In recent years, the methods used to
secure users accounts have become a serious issue. To login to an account,
the user normally provides credentials such as a username and password, but
biometric methods like fingerprint matching, facial recognition, or iris scan
may also be used for personal identification. Sometimes, a web connection is
built on an untrusted network and unauthorized persons may steal a user’s
personal information and even his or her identity. We need a procedure to
confirm or identify the user’s true identity.

To detect account hijackers, most traditional approaches use a rule-based
method. For example, most account login systems prevent users from account
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access after a few password trials; remote web servers usually shut down a
network connection when the connection reaches a maximum transmission
limit. Clearly, strict rules like those stated above could be annoying if we set
easy-to-reach thresholds for the rules to avoid high false negatives. We can
apply statistical learning methods to learn the true account owner’s behavior
so that when a user who has a different behavior pattern tries to access the
account, the method can give warning to the system. In Section 4.2, we
demonstrate an approach that can learn different behavior patterns to decide
whether or not a given user is the true account owner when he or she intends
to access an account. To build a profile of the true account owner’s behavior,
we need to profile the so-called normal behavior, further discussed in the
next subsection.

2.3 Issues for Data-oriented Approach

To apply statistical learning methods to information security problems, we
are concerned with some issues which may not be found for the traditional
signature-based approach due to the need of acquiring a dataset for training.
Let us further discuss the issues below:

i. Acquiring Benchmark and Data Labeling:

In general, it is not easy to acquire a benchmark dataset when we want
to evaluate statistical methods that are proposed to solve security prob-
lems. To adopt a supervised learning method for intrusion detection
in a network environment, we need label information for a naturally
collected dataset. However, it takes significant effort from humans to
label massive network data to the correct class: either an attack or a
benign one. What should be emphasized is that many security prob-
lems need professional experts to build such labeled datasets, which is
a quite different from e.g., face detection problems where almost ev-
erybody can take the labeling job, and crowd sourcing can be applied
when it is necessary. On the other hand, people do use synthesized
datasets, such as the well-known DARPA dataset [37] which was built
in an isolated network environment. Researchers believe that synthe-
sized datasets such as the DARPA dataset may not be appropriate to
simulate the real-world network environment [49, 50].

ii. Profiling Normal Behavior: An alternative choice to build a benchmark
dataset is to find a set with all or most of the data in one label. Given
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the dataset, we can train a one-class model to describe the “normal”
behavior in the set. In practice, we also allow the situation in which
some or many of the label information is not perfectly reliable, but the
majority of the whole set is still believed to have the same label. When
detecting network intrusions, it is likely that most network data in the
network environment is “clean”, and we can focus on how to model the
majority of the data, which is normal behavior profiling. Understanding
normal behavior can help us understand the “anomalies” (also known
as “outliers”) in a task of anomaly detection. We need no effort to
label the data in this case; however, keep in mind that to judge an
environment that contains no attacks at all is usually risky.

iii. Unbalanced Distributions: In various security datasets, attacks are usu-
ally less common than non-attacks. In this case, the rare events, i.e., the
attacks, are easily classified as non-attacks because it may not increase
the error rate by much. To give a fair evaluation criterion of model
selection, we can consider F-measure which can balance the counting
between the false positives and false negatives. We should also take into
account different priors, or to assign different costs for data of different
labels according to the problem types [3].

iv. Hybrid Data Types: The data that we usually discuss for information
security problems may consist of hybrid data types, the categorical data
(such as alert types, used protocol, etc.), and the numerical data (such
as the bandwidth, transmission rate, and duration, etc.). In general, we
need to apply different methods for different types of data. In the case
we must transform the data from one type to the other (categorical to
numerical or vice versa) to fit the model’s need, we need to make sure
no artifacts are introduced in such a transformation.

We need to consider the problems mentioned above when we solve real
world security problems using statistical methods. Even so, we believe that
statistical methods generally open a possible “complementary” viewpoint to
common approaches that use only rigid detection rules. In this article, we
discuss some security problems in which a statistical approach may better
help to solve the problems.
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3 Statistical Learning Methods Applied in In-

formation Security

Traditionally, machine learning methods are categorized as three disciplines:
supervised, unsupervised, and reinforcement learning methods [1], depending
on whether or not and how we acquire the label information of data. For
instance, we can consider attacks as positive-labeled data and non-attacks as
negative-labeled data in an intrusion detection task so that we can apply bi-
nary classification techniques, which are among the most discussed learning
methods, to solve the problem. In this case, labeled data are given for train-
ing, and the goal is to predict or give a label for fresh data that have no label.
Alternatively, as a more conservative approach2, we can use an unsupervised
method to cluster data into groups of the same types when we either do not
have the label information, or the given label information cannot be trusted.
Usually we can detect novel type attacks by unsupervised learning instead
of supervised learning, which makes the unsupervised learning method more
applicable in a dynamic environment.

Some other candidate methods for novel attack detection include one-
class methods [60], where we have data of one label, and we are interested
in modeling data that belong to this class; semi-supervised learning, where
the given data for training are only partially labeled; and many asymmetric
classification methods [48, 47] that give different penalties (costs) for false
positives and false negatives. We can also apply different strategies for data
that belong to the known controlled label(s) and the data that do not belong
to any known labels. More issues and related methods are discussed further
below. Before that, we introduce the notations that we plan to use in this
work.

Notations We have a dataset D = {d1,d2, . . . ,dm} = {(x1, y1), (x2, y2),
. . . , (xm, ym)} that consists of m data and each data3 (xi, yi) = (xi1, xi2, . . . ,

xin; yi) can be summarized by its n attributes and the label/class information
yi. Knowing the relationship between xi and yi is the basis of our modeling
for prediction. Sometime we choose a different index system, s, t, . . . rather
than i, j, . . . for data index if we believe there is a known or unknown de-

2Unsupervised learning is more conservative than supervised learning in the sense that
we do not (fully) trust the label information in the given dataset.

3A bold face letter indicates a vector in this article.
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pendency between data. In this case, we may interpret s, t, . . . as time for a
series of data with a clear order or data with dependencies in between. The
attributes can be categorical (or called discrete) or numerical (or called con-
tinuous)4. Below we discuss the basic learning concepts that can be helpful
for information security problems.

3.1 The Complete Learning Procedure

The typical learning procedure consists of the training phase which produces
a function f to describe the relationship between x and y given the training
data D; and the prediction phase, which takes the trained function f and
fresh unseen x′ to predict y′, as shown in Figure 1(a). It says that one of the
key components in machine learning is model estimation, where we look for
the most appropriate model f to predict y given x. A list of well-known mod-
els for the purpose includes decision trees [57, 56], Support Vector Machine
(SVM) [68], artificial neural networks, and boosting (e.g., Adaboost [22], to
name a few. When we need to deal with data that have dependencies between
them, we may consider Hidden Markov Model (HMM) [58] for sequential data
or Probabilistic Graphical Models (PGM) [38, 31] for modeling more compli-
cated dependencies. A related classification problem aims to predict labels
(yi1, yi2, . . . , yik) given attributes (xi1, xi2, . . . , xin), called multi-label classi-
fication [66] may also need to model dependencies between different labels
(and maybe attributes too). Given various advanced learning methods pro-
posed in the last decades, one should not forget the baseline methods which
can be as simple as k-nearest neighbor (kNN) or näıve Bayes. In some cases,
by choosing an appropriate Mahalanobis distance, kNN can perform as well
as many other methods [24]. In fact, kNN can be considered a special case
of SVM, when we choose a small enough neighborhood range. On the other
hand, we often see näıve Bayes outputs competitive result even the condi-
tional independence assumptions violate [75]. Thanks to the open source
package WEKA [25], researchers can easily try out many learning methods
to get a basic understanding of how difficult a problem could be. Before
applying various learning models to problems, visualization of data on low-
dimensional space is also helpful when we have no clue on choosing from
many learning models.

4Using the terms “discrete” and “continuous” in machine learning should not be con-
fused with the mathematical meanings of the same keywords.
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(a) (b)

Figure 1: The complete learning procedure.

Finding a good model to describe the data is not the only focus when we
apply learning algorithms to security problems. The ultimate goal of learn-
ing is to be able to predict the correct label y′ for a given fresh attribute set
x′. We can take both the training data D and the attribute set x′ together
to predict y′. In this case, the training and prediction procedures are inte-
grated as one procedure. kNN is an example, which belongs to a category
of lazy learning methods when we do not explicitly build a model for predic-
tion until there is a need to do so (at the time for prediction), or we simply
skip the training part and combine training and prediction together as one.
In another case, we also take both D and x′ together as the input, but we
build a “side product” model f in the time for prediction. Sometimes, to
deal with dynamic learning and prediction tasks, we can operate the train-
ing/prediction procedure continually and periodically. In this case, at time
t, we take Dt = {d1, . . . , dt}, the attribute set xt+1 and the model that was
learned from the previous step ft as the input to produce the model for the
next step ft+1, as well as the predicted label yt+1. The procedure is especially
useful for continuous monitoring in information security.

For most security problems, we are worried about novel types of intru-
sions. In these cases, a dynamic intrusion detection model is preferred where
we continually tune the model based on current network or server status,
rather than a batch-mode trained model which is built upon a fixed dataset
D. We need a one-time training model (such as an intrusion detection model)
that is efficient particularly in its prediction/detection phase; on the other
hand, the dynamic model (such as an intrusion prevention model) needs to
be efficient or close to real-time in both its training and prediction phases.
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We also need to emphasize that a dynamic model is inevitably necessary
when we build a model in an adversarial environment. In this case, a model
needs to evolve as attackers continue to revise their attack scenarios [6].

To successfully build a good model is not only to correctly estimate model
parameters or to select a good model from a set of candidates. It is often the
case that we have to make appropriate assumptions (inductive bias) about
the security problems, and to extract a good feature set from available at-
tributes to effectively find intrusions. After the model estimation, finding
good criteria for model evaluation or validation is also important. Simply
speaking, when a learning model fails to find intrusions or malicious pat-
terns, not only should we criticize the model choice, we must also re-visit the
whole learning procedure, which includes 1) finding an informative feature
representation for the problem; 2) selecting a model that fits the problem; 3)
knowing how to fairly evaluate a set of models; and 4) checking how trustful
and noisy the data is. Finding a model that does not overfit or underfit the
dataset is also a key for successful learning. The complete learning procedure
is shown in Figure 1(b).

Researchers in the information security community have criticized careless
use of learning algorithms in solving security problems [61]. When we use
statistical learning methods to solve problems, we often need the help of some
expert knowledge for labeling, model selection, and model improvement, etc.
To label data for training, for instance, the difficulty exists in information
security rather than in other applications. Considering the learning problems
such as face detection, autonomous driving, and speech recognition, most of
us can recognize faces, drive cars, and understand spoken languages without
much difficulty at all. To label intrusions or attacks in security problems,
however, the needed expert knowledge is not as trivial. Moreover, labeling
large-scale data based on expert knowledge can be a burden whether it is for
inexperienced people or even for domain experts. Acquiring expert knowledge
is expensive in information security. Using the expert knowledge should also
be with care. To solve security problems, what should be done is to introduce
as little bias as possible to make the modeling robust. For instance, working
on an expert-chosen feature set may not be as good as working on a rich
feature set and letting the training decide what the effective features are.
Overall, a careful choice of learning models as well as a list of experienced
decisions from the learning result is necessary to effectively detect intrusions.
We discuss more issues about how to apply learning algorithms from different
viewpoints in the following subsections.
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3.2 Supervised Learning versus Unsupervised Learn-

ing

In most cases, to choose between supervised learning and unsupervised learn-
ing methods relies on the availability of data label information. However, we
need to consider several issues when dealing with security problems. First,
acquiring data label information for security problems is often expensive
because a carefully executed stealthy or masquerade attack may not be iden-
tified easily even for experts. Therefore, it is not expected to have such label
information for large-scale data. To work with the security problems that are
full of large-scale data, we have to choose between semi-supervised learning
and unsupervised learning methods. That is also the case when we cannot
fully trust the label information.

Second, we should consider the problem of labeling errors and measure-
ment errors in training sets. When a set contains more labeling errors rather
than measurement errors, especially when data are more or less formed as
clusters and data are not too sparse, we should choose unsupervised meth-
ods. For rare types of intrusions, we seldom collect enough (or maybe even
collect none) data to form separate groups. In this case, we should apply
one-class methods or anomaly-based detection methods [12] to detect intru-
sions. In this case, “intrusions” are considered anomalies or outliers from
the normal benign patterns and we can learn the model with or without the
label information and with or without the novel attack patterns.

We need to emphasize that unsupervised learning rather than supervised
learning methods are more distribution dependent; therefore, some paramet-
ric assumptions for distribution estimation could be inevitable. When the
label dependent distribution (likelihood) is hard to model, using label infor-
mation in training is helpful if the labels are reliable. That is, supervised
learning rather than unsupervised learning is still recommended in the nor-
mal cases when we have reliable labeled data for training. In the last few
decades or so, supervised learning has dominated the mainstream research
of statistical learning community. One of the reasons is due to its well-
accepted evaluation procedure. This situation has been changing in the last
decade [69].
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3.3 To Be or Not to Be, Stochastic Models, Bayesian

Models and Stochastic Algorithms

To detect intrusions, both the detection result and the detection method itself
can be formed probabilistically. In the typical sense of supervised learning,
given training data D, we can build a detection model f that can predict
a coming activity to be either an intrusion or a benign one by evaluating
f(x) for a given observed attribute set x. Alternatively, as a probabilistic
approach, we instead estimate the probability distribution5 P (f | D), and
choose the most probable model by computing

argmax
f

P (f | D) , (1)

and then we find the correct label by evaluating f(x) afterwards. We can
further improve the detection result based on a group of classifiers and their
weighted prediction. First, we compute

P (y | D,x) =
∑

k

P (y | fk,x)P (fk | D) , (2)

where fk is a function or a hypothesis that is feasible to the given training
data D, and P (y | fk,x) is the probability of having a label y when the func-
tion/hypothesis is fk given the attribute set x. When we have the probability
of P (y | D,x) for all kinds of labels y as in Eq. 2, we can predict the label
to be the most probable label by

argmax
y

P (y | D,x) . (3)

This is called the Bayes optimal classifier [51]. We compute the integral
instead of summation in Eq. 2 when we have an infinite hypothesis space.

We can generally use the probabilistic approach to obtain richer infor-
mation for intrusion or malicious behavior detection. For instance, a 90%
chance that a site is under attack is very much different from a 60% chance.
Moreover, the solution from Bayes optimal classifier can be proved to be
optimal [51]. However, building a successful prediction model based on the
probabilistic approach is difficult when we do not have enough prior informa-
tion when we need to apply Bayes rule, or do not have enough computation

5It can be a probability mass function or a probability density function.
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resources to enumerate all items in Eq. 2 to estimate Bayes optimal classifi-
cation result.

A systematic approach for probabilistic modeling is Probabilistic Graphi-
cal Models, which work under assumptions of independence or conditional
independence. Popular choices include näıve Bayes, which assumes con-
ditional independence between attributes given the label information, and
hidden Markov models [58] for the detection problem given sequential data.
PGM can encode complex interactions, including spatial and temporal rela-
tionships between attributes (or between data) in a graphical and modular
form [38, 31]. One has to know that structural learning in PGM is generally
difficult [76] unless we have small parent sets [14].

We can use a graphical model, a general purpose probabilistic model,
to detect intrusions or other types of malicious behaviors. For instance, we
can use HMM to predict whether the site is under attack at any moment
given a series of observations. In this case, we aim at modeling the temporal
relationship between the observed data. On the other hand, a group of hosts
may share a similar safety status if they are in the same network domain or
from the same social network. In this case, we can use directed or undirected
graphical models to construct the spatial relationship between different hosts’
status. In a graphical model, we can represent a host’s safety status by a
random variable, and we can model how a host interacts with another host
with a link in between. Finally, probabilistic inference in the model can help
us to check whether or not a set of hosts act similarly as a group. In practice,
graphical models can deal with categorical attributes directly. In a situation
where we have numerical attributes, we often must deal with attribute values
that are either not drawn from well-defined distributions or are generated
by unknown distributions that are hard to describe. In this case, we can
choose either a nonparametric approach or transform numerical attributes to
categorical ones before we apply the categorical type of graphical models.

At times, even the model itself is not a stochastic model; however, we may
use a stochastic algorithm to find the model. Many learning algorithms, such
as the online perceptron algorithm, Passive and Aggressive algorithm [17],
and Confidence Weight algorithm [20] use an iterative approach to find the
optimal solution. In this case, if we use a gradient descent algorithm to
find the solution, we may use an incremental and randomized approach in
which we feed the data into the training process one at a time, and randomly
select the data for each moment. This approach is called stochastic gradient
descent [10, 9]. The approach works better than other types of gradient
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descent algorithms because the stochastic manner has a chance to jump out
of local optimum.

To use a gradient descent algorithm, we need to understand how fast the
algorithm converges to the optimum. If we need a model that does not allow
long training time, iterative algorithms may not be appropriate. However,
we can use an approximate version to find the answer, such as using only a
few data to compute the gradient in each run. That is another reason why
stochastic gradient descent is favored over the typical gradient algorithm.

3.4 Transparent Models versus Black-box Models

When we look for a detection model, we aim to choose either a model that has
a high detection accuracy, or a model that is transparent enough that domain
experts and model users can understand the model and further improve/tune
the model based on their domain expertise. A transparent model is a model
that clearly shows what the useful features are to detect intrusions; on the
other hand, a black-box model can provide high detection accuracy, but it
may not be easily understood how the model achieves the high detection
accuracy.

An example of a transparent model is a decision tree. Given a decision
tree, we can predict the label of incoming data by sequentially checking the
decisions and their outcomes from the tree root to one of the leaves with
label information; on the other hand, we can convert the tree to a series of
detection rules. Given either approach, the detection is transparent so that
experts can manipulate the tree or the rules to improve the detection result.
That is not quite the case for artificial neural networks (ANN) [7], a typical
black-box model where we only know the weights between consecutive layers
in networks. However, it is not comprehensive to us how the detection is
done or how to further improve the detection result. A similar case is seen
in support vector machines [68]. In an SVM model, we often work on the
feature space rather than the input space when a nonlinear method is used
to project original attributes to a high-dimensional space, called the kernel
trick [11]. In a black-box model, detection features are usually abstract from
any physical meanings or concrete features that can be measured or collected
in the real world.

The distinction between the transparent model and the black-box model
is not always clear. For the decision tree model, once we adopt the boost-
ing technique to build an ensemble of trees to detect intrusions, the set of
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trees may not be as transparent as before, and we are no longer clear on
what the most “influential factors” are to achieve high performance. On the
other hand, for a single tree, we cannot conclude that all the attributes in
the tree are important if the tree is very large. Similarly, interpreting the
attribute’s importance based on its level in the tree is not always accurate
because the interactions between not-always-independent attributes could be
sophisticated. The attribute located in the tree root is the most important
one in the set; however, the importance of any other attributes further down
in the tree can only be interpreted conditionally. We can only find the sec-
ond, third, etc. important attributes in the tree when we have independence
between all the attributes in the set.

With the black-box models, ANNs, SVMs and others, we can indeed
extract explainable features from the model once we acquire a detection
model. For different black-box models, one of the most focused topics is to
extract rules from them, such as the approaches proposed for SVMs [46, 5],
and the ones proposed for ANNs [2]. For SVMs, an alternative approach for
feature selection, called LASSO [65] is to apply L1-norm in the optimization
so that coefficients to unimportant attributes will be pushed to zero.

Whether to choose a transparent model or black-box model depends on
how and what we need for a detection model. If an organization has enough
man power as well as the expertise to deal with the detection model and
the detection result, a transparent model is preferred. On the other hand,
if a high accuracy model is the ultimate goal and there are no technicians
with enough training to maintain the detection model, a black-box model or
similar could be the solution. We also need to know that in an adversarial
environment, choosing a black-box may be more favorable than a transparent
model in the sense that the rules to decide a transparent model may be
easily worked around and targeted by adversarial opponents. In recent years,
people have consistently asked for intrusion detection models that can remain
effective even under the adversarial environment, which is called adversarial
learning [6, 43, 67].

3.5 Feature Selection and Feature Extraction

Researchers in machine learning, information security, and many other fields
know how difficult it is to build an attribute set that is complete enough
to design a robust model to detect intrusions. To build an attribute set
for learning a detection model, we often face the trade-off between choosing
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a complete attribute set that may be high-dimensional, and a truncated
attribute set that may not be complete but small enough to be handled for
modeling. Clearly, to separate data of different patterns in a truncated space
may not be possible. On the other hand, developing a high-dimensional
model may suffer from the curse of dimensionality phenomenon [7] because
the data are relatively sparse in high-dimensional space when we need to
consider the distance between pairwise data points, for instance, for kNN
classification.

When we have an attribute set that includes almost all necessary informa-
tion for the detection, a good representation of the attributes is still helpful,
at least in the following senses.

i. In some cases, learning or detection on the representation space can be
as easy as a kNN classification/detection where we can use the simple
Euclidean distance to separate data of different patterns [24].

ii. A good representation may imply a natural parameterization where we
can extract “insights” from the representation. One of the well-known
examples is that computer vision researchers can use Isomap [64], Lo-
cally Linear Embedding (LLE) [59] or Hessian eigenmaps [19] to find
a good parameterization for a set of images where we have extremely
high dimensional space if we use all pixels as the attribute dimensions.

Overall, we can do our best to find an attribute set that is as complete as
possible, followed by a good representation, and to detect intrusions in the
representation space.

A representation (or parameterization) system is a mapping from the
original input space (x1, x2, . . . , xn) that consists of n attributes to a new
space (σ1(x), σ2(x), . . . , σd(x)) where x = (x1, . . . , xn). The new space is
called a representation space and each attribute in the new space is called a
feature. Usually we are interested in a case where d ≪ n, and the technique
is called dimensionality reduction. When σk = xℓ for some ℓ for all k, such
dimensionality reduction technique is called feature selection. Otherwise, it
is called feature extraction.

Apart from the techniques that were mentioned above, other useful di-
mensionality reduction techniques include Principal Component Analysis
(PCA) [32] and Multidimensional Scaling (MDS) [16] for the unsupervised
cases, and Sliced Inverse Regression (SIR) [41] and its (nonlinear) kernelized
version [73] for the supervised cases. PCA and MDS are linear techniques.
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When we expect that data are located on a nonlinear manifold, we can choose
Isomap, LLE or Hessian eigenmaps [19]. MDS is applied to the case when
we are given pairwise distances rather than coordinates as the input. Note
that MDS will produce a result identical to the one from PCA if we start
from a distance matrix D that is computed from the Euclidean distances of
known pairwise coordinates [1].

The dataset for intrusion detection may not be in a high-dimensional
space, such as the well-known KDD dataset [33, 63] that was extracted from
DARPA 1999 [37]. To detect malware, however, we may need to check the
source code for static analysis and the system logs for dynamic analysis. We
expect relatively high-dimensional data in this case. Regardless of whether
data were originally in a low- or high-dimensional space, when we need to
consider temporal or spatial dependencies in a problem, we may work on high-
dimensional data where each datum is formed by combining a few data that
are from different time or “space”. For example, in a time series prediction
problem, we can consider a dataset6 {x1,x2, . . . , xt,xt+1, . . .} where data are
given with time stamps. In this case, to consider the temporal relationship
in the dataset, we can build a “giant” datum Xt = (xt,xt+1, . . . ,xt+k), and
find patterns within the set of giant data. The n-gram method that is often
used for text mining belongs to this category. Similar cases can be applied
when we have spatial dependencies between data, or have both spatial and
temporal dependencies between data at the same time. Feature selection or
extraction is also useful even when we do not have high-dimensional data,
but a visualization of the data in low-dimensional space is necessary.

4 Case Study

We discuss two case studies in this article. The first security problem is to
detect botnets given the network statistics, and in the second case, we study
an account security problem in which we attempt to distinguish between ac-
count intruders and the genuine account owner. Before we discuss the two
cases, let us compare the two cases in terms of the “checklists” that we re-
viewed in the last section. As we can see in Table 1, we should select different
algorithms for different types of applications. There may not be a “perfect”
algorithm for any given application; however, if we choose an inappropriate

6We may or may not have label information in this case.
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Table 1: Comparison of two case studies following the guidelines in the pre-
vious section when choosing a learning algorithm.

Botnet detection Account security
Method C4.5 Markov Chain, dis-

similarity measure,
kNN, SSVM, Isomap

Learning Procedure Batch Batch/Continuous
Supervised/Unsupervised Supervised Supervised
Deterministic/Stochastic Deterministic Stochastic
Transparent/Black-box Transparent Black-box
Feature Selection and
Extraction

With vector inputs,
without feature ex-
traction

With distance inputs,
using Isomap for data
representation

Evaluation Precision, recall, F-
measure under 10-fold
cross-validation, &
ROC

10-fold cross-
validation, visual-
ization

algorithm, we cannot see how well statistical learning algorithms can benefit
from solving a security problem.

4.1 Botnet Detection

Problem and Motivation Due to the distributed design and implemen-
tation of a botnet, a number of features can be observed and retrieved as the
key to detect bot activities. In this case, we discuss one solution [29] that
detects bot activities in a monitored network. It is assumed that a bot of-
ten has a differentiable failure pattern due to its distributed behavior. Since
a victim or a command and control (C&C) server can be temporarily un-
available, network requests sent from a bot to those unavailable hosts would
generate failures different from regular Internet applications. By monitoring
failures caused by a single host for a short period, it is possible to determine
whether the host is running bot software. In this case, we detection bot
activities using the C4.5 decision tree algorithm.
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time

Current time T
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An identified failure Measurement time window

1 2 3 4 5 6 7 8 9

snapshot for failure #15

Figure 2: Examples of snapshots for a single host. Snapshots are used to
calculate feature vectors.

Feature Collection One fundamental task in this case study is to identify
proper features used to classify bots and non-bots. In the discussed solution,
network failures are collected from TCP, UDP, ICMP, and DNS communica-
tions and the features are then obtained from a series of failures. To shorten
the detection time, failures used to generate features are collected in a short
period. The group of failures collected within a period is called a snapshot
of failures (or simply snapshot) and the period is called a measurement time
window (∆t). A snapshot is taken when a failure occurs, as in the example
provided in Figure 2. Snapshots are taken on a per-host basis. Each snap-
shot is then transformed into a feature vector, which consists of numerous
features. For the complete list of features please refer to [29]. The solu-
tion assumes that feature vectors for normal, peer-to-peer, and bot hosts are
differentiable. Hence, by collecting numerous feature vectors and assigning
proper labels to feature vectors, these data can be used to train and build a
classification model to differentiate normal, peer-to-peer, and bot hosts.

Feature Selection and the Classification Model We collected approx-
imately 30GB of normal traces, 2GB of peer-to-peer traces, and 2GB of
botnet traces. Feature vectors generated from normal, peer-to-peer, and bot
traces are labeled NORM, P2P, and BOT, respectively. It is not clear whether a
selected feature is effective or not. A quick solution to evaluate the selected
features is to look at their scatter plots. Figure 3 shows two scatter plots
(out of 561 total plots) for various pairwise selected features. We find that
a few features are not good for classification. For example, the left one in
Figure 3 shows that F9 is not a good feature because it is almost impossible
to classify the three traces. Most of the rest of the figures, which look similar
to the right one in Figure 3, should be useful for the purpose of classification.
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Figure 3: Scatter plots for selected pairwise features.
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(a) The complete decision tree. (b) Zoom in the rectangle area.

F13: Total number of TCP RESETs.

F18: Total number of UDP timeout failures.

F19: Total number of DNS failures.

F21: Ratio of distinct destination ports to all destination ports.

(c) Part of features used to detect bot activities in the zoom-in area.

Figure 4: Decision tree generated from the training traces. The measurement
time window (∆t) is 120 seconds.
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The classification model is built from the collected traces using the C4.5
algorithm [56]. Figure 4(a) shows the decision tree generated from feature
samples collected in a 120-second time window. There are 137 nodes in the
tree. The maximum tree depth is 14 and the maximum tree width is 18.
The detection algorithm has to walk an average of seven to eight steps in the
decision tree before it is able to make a decision. We notice that those less
effective features are almost excluded from the resulting decision tree. We
found only four, one, zero, and two nodes made decisions based on features
F9, F10, F11, and F33 respectively. In addition to detecting bot activities, we
can also infer detection rules given the decision tree. Based on the marked
path {F21 → F18 → F13 → F19 → BOT} in Figure 4(b) and the features listed
in Figure 4(c), we are able to know how a bot is detected and understand
activities of one type of bot hosts:

(1) F21 is a small value (≤0.4), indicating that this type of bot would use
similar port numbers for communications.

(2) F18 is greater than one, indicating that this type of bot would have a few
UDP failures.

(3) F13 is a larger value (>37), indicating that this type of bot often generates
many TCP RESETs.

(4) F19 is greater than three, indicating that this type of bot would have
several DNS failures.

Note that given such a transparent model, we can tune the model such as
choosing between a less accurate but smaller tree, or a more accurate but
larger tree; between a tree with fewer false negatives or fewer false positives,
etc. The tree generated by the C4.5 algorithm is not guarantee to be optimal
anyway, so an improvement from experts could be possible.

Performance The performance of the classifier was evaluated using the
collected training traces as well. We used 10-fold cross-validation to verify
the accuracy of the discussed solution. Figure 5 shows the precision, recall,
F-measure, and false positive rates of all 10-fold cross-validation results. Dif-
ferent scales of measurement time windows ranging from tens of seconds to
half a day were used to evaluate the performance. The results show that a
larger measurement time window would obtain enhanced detection perfor-
mance in accuracy and false positive rates. Although it is possible to use
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Figure 5: Summary of detection performance: Precision, recall, F-measure,
and false positive rates.

a large measurement time window such as half a day (43200 seconds), the
response time to detect an unwanted event is also delayed. Based on the de-
tection performance, to have a balance between the required detection time
and the detection performance, a measurement time window between 180
and 600 seconds would be ideal.

Using ROC curve plots is common to judge whether a classifier is better
than another without giving any thresholds. Figure 6 shows ROC curve
plots for measurement time windows of 60, 120, and 180 seconds. A perfect
classifier would have an area under curve (AUC) of 1.0 [26]. The figures
show that the AUCs for the three small measurement time windows are all
greater than 0.999. We can conclude that the C4.5 decision tree algorithm
performs well on classifying normal, peer-to-peer, and bot hosts with well-
chosen features.

4.2 Account Security Based on Behavior Profiling

In the second case study, we discuss the account security problem. We use
user behavior to decide the users’ identity and verify whether the user is the
genuine account owner.

Problem and Motivation To logon to a web service such as a bank,
social network, or online game, a user normally needs to provide a password
among other credentials for user authentication/verification. In this study,
we discuss a statistical learning-based method that can analyze user behavior
to verify whether or not a user is the genuine account owner. In reality,
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Figure 6: ROC curves for small measurement time windows.

we aim to detect both intruders, the ones not the genuine user and bots,
automatic programs. In this case study, we are interested in using user
trajectories, which are sequential coordinates of user inputs to represent user
behavior to decide a user’s identity.

Some input trajectory examples are shown in Figure 7, which include
an online game trace made by a human user, and a mouse trace from a
right-handed user. We shall test the same method for those various types of
trajectories to demonstrate how effective our learning method is for a wide
range of inputs. It is not surprising that a method built upon a “rigid”
signature without statistical consideration may not detect unlawful access
too well, given so many different kinds of inputs.

Classification Model We describe the proposed method and explain how
we detect unlawful account users by exploiting the trajectory input. Given
the trajectory input of varied length, a typical approach is to extract a set of
features that form a fixed-length vector; then, we utilize a classifier to detect
intruders based on the feature vector. In practice, building an informative
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(a) Human playing online game (b) Mouse trace from a right-handed user

Figure 7: Different types of user trajectory: (a) is the trace of a human
who played an online game called Quake 2; and (b) is the mouse trace that
belongs to a right-handed user.

and complete feature set which needs domain expertise is usually difficult.
Alternatively, in this case study, we compute dissimilarity/distance between
each pair of trajectories. Once we have the dissimilarity measure, classifying
a user to be the genuine account owner or intruders/bots becomes trivial
given the user’s trajectory. More about the implementation details can be
found in [54].

Formally, for each trajectory s, we would like to use a model M to de-
scribe the trajectory. For instance, we can use a Markov chain or HMM to
model the trajectory. Given a trajectory s and a description model M, we
compute the code length of the trajectory s with respect to the model M as
a negative logarithm of the likelihood, as follows:

c(s | M) = −ℓ(s;M) = − logL(s;M) , (4)

where L(s;M) = P (s | M) denotes the likelihood of s given the model
M. Based on the code length, we define the dissimilarity7 between two
trajectories s1 and s2 as follows:

d(s1, s2) =
c(s1 |M2) + c(s2 |M1)

c(s12 |M12)
− 1 , (5)

7The smaller the value, the closer will be the relationship between s1 and s2.
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(a) Quake 2: 500 seconds (b) Quake 2: 1000 seconds

Figure 8: (a) (b) given inputs of different length, the representations of the
Quake 2 traces after projection by Isomap into a 2-D space, where a point
represents a human trace (green circles) or a bot trace (other symbols), after
projection by Isomap into a 2-D space. The x- and y-axes are the first and
second principal coordinates from Isomap. Classification is usually performed
in a higher dimensional space, called the space of intrinsic dimensionality.

where Mi is the associated model for si; also, s12 and M12 denote the trajec-
tory that concatenates s1 and s2 one after another, and its associated model
of s12 respectively. We have d(s1, s2) ≥ 0 and d(s1, s2) = d(s2, s1).

Given the pairwise dissimilarities of trajectories derived by Eq. 5, we ei-
ther: (1) utilize a classification model that allows distance inputs, such as
the kNN classifier, to determine if a trajectory is similar to the trajectories of
the real account owner or if it belongs to an intruder; (2) adopt a map, such
as (linear) MDS [16] or (non-linear) Isomap [64] to output data coordinates
given pairwise data distances and apply a classification task afterwards. In
this study, we choose a manifold learning approach called Isomap where we
seek an embedded feature space to represent a set of trajectories. Figure 8
shows some examples of embedding in a 2-D space after applying Isomap.
Note that the “optimal” dimensionality (also called the intrinsic dimension-
ality), where we can (more or less) separate different kinds of trajectories
effectively, is not necessarily two dimensions. Ideally, we should be able
to use any classifier in the feature space to determine whether a trajectory
belongs to the true account owner or an intruder. In this study, we use
SSVM [40] to evaluate the performance of the proposed method.
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Table 2: Summary of the verification results for various inputs. The table
shows the average error rates (in percentages) of the SSVM classification
after performing ten-fold cross-validation three times.

Data Set Training Error Test Error
Handwriting 1.18 3.91

Mouse 6.67 8.10
Game 10.80 15.62

Performance In this study, we test the proposed method on three types
of trajectories: online game traces, handwriting traces, and mouse traces.
The game trace dataset is comprised of avatar movements obtained from
Quake 2, a popular FPS game. The dataset comprises of human traces from
many players and traces from well-known game bots such as CR Bot, Eraser
Bot, and ICE Bot. The handwriting dataset from SVC 2004 handwritten
signature verification competition is a benchmark for user verification. We
also created the mouse movement dataset by ourselves based on 14 users’
daily mouse controlling traces for a total of 217 instances. We aim to detect
unlawful intruders and bots in the online game dataset and the intruders
in the handwriting and mouse trace datasets. More details can be found
in [13, 54].

We design the experiment as follows. First, given all trajectories, based on
the dissimilarity measure in Eq. 5, we utilize Isomap to find the representa-
tion space for all the trajectories. Second, given two identities (a true account
owner and an intruder), we select all trajectories belonging to the two iden-
tities in the representation space, and then we operate a binary classification
(under ten-fold cross-validation, for three repeats) to label the trajectories
as either belonging to the true account owner or not. Table 2 shows the
performance of the proposed method on different kinds of trajectories. As
expected, verification of the handwritten trajectory dataset achieves the best
error rate (3.91%), followed by verification of the mouse trace (8.10%), and
verification of the game trace (15.62%). Handwriting traces give us the best
discriminative power because they are based on finer motions. In contrast,
game traces are usually collected in a restricted environment, so they lack
some degree of freedom in their movement to show the true identity of the
trace owners.
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Figure 9: The test error rates obtained by applying two detection schemes,
SSVM and kNN, to: (a) handwriting traces, (b) mouse traces and (c) online
game traces, of different length. All verification errors decrease over time;
also, the SSVM-based method outperforms the kNN-based method.

Since we want to verify the user’s identity as early as possible given a
trajectory, we are interested in analyzing the performance when only a shorter
input trajectory is given, rather than waiting for a longer one. In Figure 9,
given inputs such as handwriting traces, mouse traces, or online game traces
of different length, we show the error rates of the verification task using SSVM
and kNN. We use both SSVM and kNN as the classifiers after finding the
representation by Isomap. The verification results (i.e., whether the trace
belongs to the true account owner or not) can be summarized as follows.
First, the verification errors on all types of inputs decrease when we use longer
traces. Second, the SVM-based method outperforms the kNN-based method.
Third, similar to the result in Table 2, handwriting trajectory dataset again
achieves the best verification performance, followed by verification of the
mouse traces, and verification of the game traces. In particular, we observe
that for handwriting traces, after several hundred seconds (such as after
observing 550 sampling points), the (nonlinear) SVM classifier yields an error
rate as low as 2-4%.

5 Conclusion

Information security is an endless effort for computer scientists. The tradi-
tional method on signature matching can help detect known intrusions or
threats efficiently. Based on statistical machine learning methods, we can
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find attacks with novel behavior. Moreover, statistical learning methods can
adapt to the novel attacks constantly as the attacks evolve over time. The
statistical learning methods for information security should not be consid-
ered as a substitute for traditional methods for intrusion or threat detection.
In fact, having both approaches, the traditional signature-based and statis-
tical learning methods work together could aid in fighting cyber-crime more
effectively and efficiently than ever before. To correctly and thoughtfully use
statistical learning methods, we should not be restricted to the most common
methods. In fact, we should take into account different data statistics and
properties to decide the best method to build our detection framework. Com-
bining different disciplines that include domain knowledge and appropriate
methodology, we can solve the problems that could not be solved before.
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