
Measuring the Client Performance and Energy
Consumption in Mobile Cloud Gaming

Chun-Ying Huang1, Po-Han Chen1, Yu-Ling Huang1, Kuan-Ta Chen2, and Cheng-Hsin Hsu3
1Department of Computer Science and Engineering, National Taiwan Ocean University

2Institute of Information Science, Academia Sinica
3Department of Computer Science, National Tsing Hua University

Abstract—Mobile cloud gaming allows gamers to play games
on resource-constrained mobile devices, and a measurement study
to quality the client performance and energy consumption is
crucial to attract and retain the gamers. In this paper, we adopt
an open source cloud gaming platform to conduct extensive
experiments on real mobile clients. Our experiment results show
two major findings that are of interests to researchers, developers,
and gamers. First, compared to mobile native games, mobile cloud
games save energy by up to 30%. Second, the frame rate, bit
rate, and resolution all affect the decoders’ resource consumption,
while frame rate imposes the highest impact. These findings shed
some light on the further enhancements of the emerging mobile
cloud gaming platforms.

I. INTRODUCTION

Increasingly more companies, such as OnLive, GaiKai,
and Ubitus, offer on-demand cloud games to users. These
games run on powerful cloud servers, and the game scenes
are captured, encoded, and streamed to thin clients running on
desktops, laptops, and TV set-top boxes. Each client renders
the game scenes and takes the inputs from a gamer. The
inputs are sent back to cloud servers, in order to allow gamers
to interact with games. Cloud gaming has attracted a lot of
attentions [6] and is predicted to be a major growing sector
of the game industry in the next few years [1]. Recently, we
start to see mobile cloud gaming services, for example in the
U.S. [3] and Japan [2], that target the staggering number of
mobile device users. With the wide deployment of 4G cellular
networks, mobile cloud gaming enables gamers to play their
favorite games anywhere and anytime.

Mobile devices, such as tablets and smartphones, have
limited computation power and are battery-powered. There-
fore, running mobile clients on these resource-constrained
devices may lead to inferior performance and high energy
consumption. For example, the gaming frame rate may become
too low for smooth game play due to insufficient CPU power
to execute software video decoders. This results in degraded
gaming quality and may drive the gamers away. On the other
hand, when gamers play cloud games, the communication,
computing, and display components on mobile devices all
consume nontrivial energy, which may quickly drain the bat-
tery and prevent gamers from using their mobile devices for
other purposes, such as making phone calls. Hence, carefully
measuring the performance and energy consumption of mobile
clients is critical to the success of the new mobile cloud gaming
ecosystem.

In this paper, we adopt an open source cloud gaming
platform [4], [5], called GamingAnywhere (GA), to setup
a real mobile cloud gaming testbed. We conduct extensive
experiments on the testbed to answer the two questions: 1)
Does running cloud games save energy compared to native
mobile games? and 2) How does the server configuration
affect the client performance? Our extensive experiments and
in-depth analysis depict several insights that lead to design
suggestions for future developments of mobile cloud gaming
platforms. To the best of our knowledge, similar measurement
studies have not been rigorously done in the literature.

II. METHODOLOGY

A. Environment Setup

Figure 1 shows the GA testbed used in our experiments.
The testbed consists of a PC server and a mobile client
connected via a wireless access (a campus WiFi or a 3G
cellular network). We install five games from different genres
on the GA server: Super Smash Bros, Limbo, Batman, Mario
Kart, and Zelda. Super Smash Bros is a fighting game, Limbo
is a 2D scrolled adventure game, Batman is a 3D adventure
game, Mario Kart is a 3D racing game, and Zelda is an RPG.
We study the GA mobile client’s performance and energy
consumption using these five games, and report the sample
results from Super Smash Bros if not otherwise specified. For
comparing cloud and native games, we adopt a cross-platform
OpenGL game: GLTron, which runs on both the PC server and
Android devices. GLTron is a 3D snake-like game.

The PC server has an Intel Q6600 2.4 Ghz quad-core CPU
and runs Windows 7. We consider two mobile devices: an
ASUS Nexus 7 tablet and a Sony Xperia Z smartphone. The
tablet has a Tegra 3 1.2 quad-core process with 1 GB ram, and
the smartphone has an S4 1.5 GHz quad-core processor wth
2 GB ram. Both mobile devices run Android 4.4.2. We adopt
two tools, UseMon and CurrentWidget, to collect measurement
results. The former is used to collect the CPU utilization of
each CPU core. The latter is used to measure the current
and voltage of the device, which allows us to calculate the
energy consumption. During the experiments, we set the screen
brightness to medium, and always keep the battery level above
70% to avoid noises due to battery’s nonlinear discharging
characteristics (details are given in Section II-C).

B. Controlled Parameters

Table I lists the controlled parameters during the exper-
iments. First our mobile client supports both software and978-1-4799-6882-4/14/$31.00 c⃝ 2014 IEEE

Wireless AP
(or 3G base station) GamingAnywhere

Server
Mobile User

Fig. 1. The GA experiment testbed used throughout this paper.

TABLE I. CONTROLLED PARAMETERS

Parameter Value
Decoder hardware, software
Controller disabled, enabled
Video codec parameter‡

Resolution 640x480, 960x720, 1280x720
Bitrate 1Mbps, 3Mbps, 5Mbps
Frame rate 10fps, 30fps, 50fps

‡ Default values are highlighted in boldface.

hardware video decoders. The software decoder is provided
by the ffmpeg project, and the hardware decoder is accessed
via Android’s MediaCodec framework. We use the popular
H.264 coding standard, which is supported by ffmpeg and
both mobile devices’ hardware codecs. Second, we selectively
disable and enable the controller on mobile devices, which
is a transparent overlay over the video surface. When the
controller is disabled, we play the games on the PC server.
This is to isolate the additional energy consumption due to:
(i) activating touch screens and (ii) handling the user input
events. The remaining three parameters, resolution, bitrate, and
frame rate, are for video codecs. In each experiment, we fix
two video codec parameters, and vary the other one. We let
640x480, 30 fps (frame per second), and 3 Mbps be the default
settings, if not otherwise specified. The goal is to quantify
the impacts of different parameters on client performance and
energy consumptions.

C. Baseline Energy Measurement

We measure the baseline energy consumptions before con-
ducting the experiments. We close all irrelevant applications
and services, turn on the display, and set brightness to medium.
We find that the CPU utilization is close to zero. We measure
the current and voltage for each mobile device, sampled at
1 Hz. The results are shown in Figure 2. On both devices,
we observe that when the battery level reduces, the voltage
gets lower and the current gets higher. When the battery level
is lower than 60%, the current exceeds the average. For fair
comparisons, we only conduct experiments when battery level
is higher than 70%. Based on the measurements, the baseline
power consumption for Nexus 7 and Xperia Z are 1.7 W and
1.1 W, respectively.

III. MEASUREMENT RESULTS

A. Video Codec Parameters

We next present the CPU utilization and power consump-
tion under different video codec parameters. We repeat the
3-minute experiment 5 times, collect samples at 1 Hz, and
give the average results with minimum and maximum in
Figure 3. This figure reports average CPU utilization, i.e.,
25% CPU utilization is equivalent to a fully-loaded CPU core.
We make two observations: (i) higher bitrates, frame rates,

25
0

35
0

45
0

55
0

ASUS Nexus 7

Time Elapsed (second)

C
ur

re
nt

 (m
A)

0 6000 12000 18000

3
4

5

Vo
lta

ge
 (V

)

100% 20%Battery Level

current
voltage

15
0

20
0

25
0

30
0

35
0

Sony Xperia Z

Time Elapsed (second)

C
ur

re
nt

 (m
A)

0 6000 12000 18000 24000

3
4

5

Vo
lta

ge
 (V

)

100% 20%Battery Level

current
voltage

Fig. 2. The voltage and current levels measured under the baseline
configuration.

TABLE II. THE PARAMETER IMPACT FACTORS FOR HARDWARE
DECODERS

Nexus 7 Xperia Z
Param. Change† a→b b→c a→c a→b b→c a→c

Bitrate +0.14 +0.02 +0.13 +0.07 +0.03 +0.07
Frame rate +0.06 +0.10 +0.10 +0.11 +0.09 +0.14
Resolution +0.07 -0.17 -0.01 +0.01 -0.03 -0.01

† a, b, and c are the minimal, median, and maximal values of each parameter.

and resolutions consume more resources and (ii) the software
decoders consume more resources. Next, we take a closer look
at how each codec parameter affects the performance of the
hardware decoders. We do not consider the software decoders,
because neither of the considered mobile devices can keep
up with the high frame rate. We define the parameter impact
factor as follows. Given a parameter p and a function fp that
quantifies the load of p based on its parameters. Suppose p
is altered from ci to cj , we write the increased load Lp as
fp(cj)−fp(ci)

fp(ci)
. We also measure the battery level differences

mi and mj for ci and cj , respectively. The increased overhead
Op for p is defined as mj−mi

mi
. Last, the impact factor for

parameter p is written as Op

Lp
. Note that we measure the battery

level difference to define the parameter impact factor because
CPU utilization does not fully reflect system loads, as some
workload is offloaded to the hardware decoders. Table II gives
the parameter impact factors. This table shows that the frame
rate has the highest impact, and the resolution has the lowest.

Hardware Software

Bitrate−CPU (Nexus 7)
C

PU
 U

til
iz

at
io

n
(%

)

0
5

10
15

20
25

30

7.5
8.9

10.6

16.2
18.6

23.1

1 Mbps 3 Mbps 5 Mbps

Hardware Software

Bitrate−CPU (Xperia Z)

C
PU

 U
til

iz
at

io
n

(%
)

0
5

10
15

20
25

30

12.9 13.7

19.4
21.2

24 24.5

1 Mbps 3 Mbps 5 Mbps

Hardware Software

Bitrate−Power (Nexus 7)

Po
we

r C
on

su
m

pt
io

n
(W

)

0
1

2
3

4
5

2.9
3.2 3.2

4.2 4.3 4.4

baseline

1 Mbps 3 Mbps 5 Mbps

Hardware Software

Bitrate−Power (Xperia Z)

Po
we

r C
on

su
m

pt
io

n
(W

)

0
1

2
3

4

2.3 2.4 2.4

2.9 3 3.1

baseline

1 Mbps 3 Mbps 5 Mbps

Hardware Software

Resolution−CPU (Nexus 7)

C
PU

 U
til

iz
at

io
n

(%
)

0
5

10
15

20
25

30

8.9

12.9 13.7

18.6

26.4
24.8

640x480 960x720 1280x720

Hardware Software

Resolution−CPU (Xperia Z)

C
PU

 U
til

iz
at

io
n

(%
)

0
5

10
15

20
25

30
35

13.7 14.2 14

24
27.4 27.9

640x480 960x720 1280x720

Hardware Software

Resolution−Power (Nexus 7)

Po
we

r C
on

su
m

pt
io

n
(W

)

0
1

2
3

4
5

6

3.2 3.3 3.2

4.3
4.9 4.7

baseline

640x480 960x720 1280x720

Hardware Software

Resolution−Power (Xperia Z)

Po
we

r C
on

su
m

pt
io

n
(W

)

0
1

2
3

4

2.4 2.4 2.3

3
3.2 3.3

baseline

640x480 960x720 1280x720

Hardware Software

Framerate−CPU (Nexus 7)

C
PU

 U
til

iz
at

io
n

(%
)

0
5

10
15

20
25

30

9.5 8.9
11.2 10

18.6

25.5

10 fps 30 fps 50 fps

Hardware Software

Framerate−CPU (Xperia Z)

C
PU

 U
til

iz
at

io
n

(%
)

0
5

10
15

20
25

30

12.2
13.7

23.1

14

24
26.1

10 fps 30 fps 50 fps

Hardware Software

Framerate−Power (Nexus 7)

Po
we

r C
on

su
m

pt
io

n
(W

)

0
1

2
3

4
5

6

3.1 3.2 3.3 3.4

4.3
4.8

baseline

10 fps 30 fps 50 fps

Hardware Software

Framerate−Power (Xperia Z)

Po
we

r C
on

su
m

pt
io

n
(W

)

0
1

2
3

4

2.2 2.4 2.4 2.5

3
3.3

baseline

10 fps 30 fps 50 fps

Fig. 3. Measured CPU utilization and power consumption under various codec parameters.

B. Cloud versus Native Games

Next, we play Super Smash Bros and GLTron as cloud
games and GLTron as a native game. Cloud games are config-
ured to stream at 1280x720. The results are shown in Figure 4.
In the figure, “Cloud#1” and “Cloud#2” correspond to Super
Smash Bros and GLTron, respectively. “Native” is the Android
version of GLTron. It is clear that the native game consumes
much more resources than cloud games: the CPU consumption
is doubled and the power consumption is also increased by
more than 30%. We emphasize that the GLTron game is not
very visually-rich, and yet running it natively incurs nontrivial
resource consumption. The resource consumption gap between
the cloud and native games will be even larger for modern 3D
games.

IV. CONCLUSION

In this paper, we implement a testbed using a real mobile
cloud gaming platform [4], [5] developed by us. We conduct
extensive experiments to measure the client performance and
energy consumption. Our measurement results lead to the
following main findings. First, running mobile cloud games
is more energy efficient than native mobile games. Our ex-
periments indicate that mobile cloud games reduce the CPU
utilization by half, and save energy by 30%. Second, the
video codec parameters (bitrate, frame rate, and resolution)
impose different degrees of impacts on CPU utilization and
energy consumption. The frame rate affects the most, while
the resolution affects the least. These insights lead to design
recommendations for future researchers and developers of the
emerging mobile cloud gaming platforms.

REFERENCES

[1] Distribution and monetization strategies to increase revenues
from cloud gaming. http://www.cgconfusa.com/report/documents/
Content-5minCloudGamingReportHighlights.pdf.

Nexus 7 Xperia Z

Cloud VS Native − CPU
C

PU
 U

til
iz

at
io

n
(%

)

0
20

40
60

8.9 9.9 10.3 11.6

26.9 28.9

13.7 15.6 15.9 18

31.1
39.5

Cloud#1
Cloud#1+Ctrl

Cloud#2
Cloud#2+Ctrl

Native
Native+Ctrl

Nexus 7 Xperia Z

Cloud VS Native − Power

Po
we

r C
on

su
m

pt
io

n
(W

)

0
2

4
6

8

3.2 3.4 3.3 3.5
4.4 4.8

2.4 2.6 2.5 2.7
3.3 3.7

Cloud#1
Cloud#1+Ctrl

Cloud#2
Cloud#2+Ctrl

Native
Native+Ctrl

Fig. 4. CPU utilization and power consumption for cloud and native games.

[2] Dragon Quest 10 going mobile in Japan with cloud-
streaming service. http://www.shacknews.com/article/81351/
dragon-quest-10-going-mobile-in-japan-with-cloud-streaming.

[3] Enhance your mobile gaming experience with the cloud.
http://www.verizonwireless.com/insiders-guide/entertainment/
mobile-cloud-gaming/.

[4] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen. Gaminganywhere:
An open cloud gaming system. In Proc. of the ACM Multimedia Systems
Conference (MMSys’13), pages 36–47, Oslo, Norway, February 2013.

[5] C.-Y. Huang, C.-H. Hsu, D.-Y. Chen, and K.-T. Chen. Quantifying user
satisfaction in mobile cloud games. In Proceedings of ACM Workshop
on Mobile Video Delivery (MoVid’13), pages 4:1–4:6, 2014.

[6] P. Ross. Cloud computing’s killer app: Gaming. IEEE Spectrum,
46(3):14, March 2009.

