
Mitigate Web Phishing Using Site Signatures∗

Chun-Ying Huang1, Shang-Pin Ma1, Wei-Lin Yeh1, Chia-Yi Lin1, and Chien-Tsung Liu2

1 Department of Computer Science and Engineering, National Taiwan Ocean University
2 Networks and Multimedia Institute, Institute for Information Industry

Email: {chuang,albert}@ntou.edu.tw, {wlyeh,cylin}@snsl.cs.ntou.edu.tw, netsaga@nmi.iii.org.tw

Abstract—Phishing is now a serious threat to the security of
Internet users’ confidential information. Basically, an attacker
(phisher) tricks people into divulging sensitive information by
sending fake messages to a large number of users at random.
Unsuspecting users who follow the instruction in the messages are
directed to well-built spoofed web pages and asked to provide
sensitive information, which the phisher then steals. Statistics
published by the anti-phishing working group (APWG) show
that, at the end of Q2 in 2008, the number of malicious web pages
designed to steal users’ confidential information had increased
by 258% over the same period in 2007. Therefore, protecting
users from phishing attacks is extremely important.

Existing anti-phishing solutions detect mimicked phishing
pages by either text-based features or visual similarities of web
pages. The former one can be bypassed using image based
phishing attacks while the latter one may suffer from great
variants of phishing pages. In this paper, we propose a novel
technique that identify the real domain name of a visiting web
page based on signatures created for web sites. Site signatures,
including distinctive texts and images, can be systematically
generated by analyzing common parts from pages of a web
site. On matching a signature, the domain name of the visiting
URL is checked first and then redirected if the domain name
is unmatched. The result shows the proposed method achieves a
high accuracy and low error rates.

Index Terms—Anti-Phishing, Feature Selection, Image Extrac-
tion, Site Signature, URL Redirection

I. INTRODUCTION

Phishing is a malicious activity whereby an attacker
(phisher) tries to trick Internet users into providing confidential
information [6]. It is a serious problem because phishers can
steal sensitive information, such as users’ bank account details,
social security numbers, and credit card numbers. To achieve
this goal, a phisher first sets up a fake website that looks
almost the same as the legitimate target website. The URL of
the fake website is then sent to a large number of users at
random via e-mails or instant messages. Unsuspecting users
who click on the link are directed to the fake website, where
they are asked to input their personal information. Although
the process of setting up a fake website sounds complicated,
reports show that it is much easier than before as there are
now ”phishing kits” [14], [5] that can create a phishing site
in a very short time. Users believe that responsible enterprises
should protect them from phishing attacks; thus, in addition to
the risk of personal information leakage, successful phishing

∗This work was supported in part by National Science Council under the
grant number NSC 97-2218-E-019-004-MY2, NSC 99-2218-E-019-001-MY2
and by Taiwan Information Security Center at NTUST(TWISC@NTUST)
under the grant number NSC 99-2219-E-011-004.

attacks can seriously damage business enterprises, especially
a company’s brand reputation [13], [19].

As phishing is a serious threat to both users and enter-
prises, several anti-phishing techniques have been developed.
In general, the techniques can be classified as either list-
based or heuristic-based technologies. List-based techniques
maintain a black list or a white list, or both. Many anti-
phishing mechanisms use a black list to prevent users from
accessing phishing sites. However, the effectiveness of black
list filtering depends on the coverage, freshness, and accuracy
of the list. The URLs are usually reported by Internet users or
collected by web crawlers, and list maintainers are responsible
for verifying whether or not the listed URLs are really phishing
sites. Though a well maintained black list can filter most well-
known phishing sites, it obviously can not filter unreported,
uncollected, or unanalyzed URLs. No list can guarantee 100%
coverage and up-to-date freshness; and list-based filtering
techniques often generate false negatives.

Some anti-phishing mechanisms use white lists that contain
the names of trusted domains. If a user visits an unlisted
website, a white-list based filter may block the site imme-
diately or require the user to make decisions on the fly. The
drawback of this method is that the user may become annoyed
if some sites are blocked or if the system constantly requests
confirmation. Sometimes, it may even be difficult for the user
to make a decision. In the end, the user may loose patience
with having to validate unlisted sites and decide to disable the
filter mechanism.

Heuristic-based mechanisms employ several criteria to de-
termine whether a website is a phishing site. Common criteria
includes the domain name of a web page, the complete URL
of a web page, visual similarities, input fields embedded on
a web page, and keywords. Heuristic-based mechanisms may
use only one criterion to assess web sites. For example, the
basic CANTINA filter [24] only calculates the TF-IDF score.
In contrast, the advanced CANTINA filter and the SpoofGuard
filter [3] use a weighted score based on several criteria. Given
a set of predefined weights for each criterion, the overall score
used to evaluate a site is calculated by

s =
∑

wiPi,

where wi and Pi are, respectively, the weight and the proba-
bility of a given criterion i.

Our approach is also a heuristic based method. Compare
with other heuristic based methods, our approach differs
in three aspects. First, most anti-phishing techniques detect

phishing pages only by text-based features. They do not use
images as a feature because they are relatively more difficult to
be extracted. There are researches that detect phishing pages
by visual similarities [8], [2]. However, it is possible that there
can be only limited parts of a phishing page looks similar to
the official web page. While visual similarity based solutions
create signatures using a whole page, if the ratio of similar
parts to all parts is not high enough, a phishing page can
pass the check. Second, the signature used to detect phishing
pages are composed by common features extracted from an
entire website instead of a single page. Thus, one signature
can be used to detect different targeted pages or variants of a
website. This reduces the required space to store signatures.
Third, we force a detected phishing page to be redirected to the
correct one instead of providing hints to users. Since users are
not always aware of alerts displayed by anti-phishing toolbars
[23]. It would be better if URL redirections are enforced when
the accuracy of detection rates is good enough and the error
rate is limited.

The remainder of this paper is organized as follows. In the
next section, we review existing solutions to phishing attacks.
Section III explained the proposed solution in detail, which
includes how the features of a signature are chosen and how
to match web pages against the signatures. In Section IV, we
provide an evaluation of the proposed approach. A concluding
remark is finally given in Section V.

II. RELATED WORK

There are various methods for protecting users from phish-
ing attacks as they surf the Web. Most web browsers have
built-in anti-phishing solutions [17], [15] that block phishing
sites based on well maintained black lists and white lists.
For example, Firefox blocks malicious web sites based on
lists from Google [9] and StopBadware.org [22]. Clearly,
the effectiveness of phishing detection depends on the cov-
erage, freshness, and the accuracy of the employed list. Many
other solutions can be implemented as add-ons, plug-ins, or
extensions for web browsers [3], [9], [18], [24].However,
researchers [4] evaluate several popular anti-phishing toolbars
and conclude that the phishing detection rate is not good
enough. While the better implementations can detect more than
75% of phishing attacks, the least effective ones can detect less
than half of such attacks. Furthermore, a toolbar with a high
detection rate may also have a high false positive rate, i.e., it
blocks non-phishing sites.

As mentioned in Section I, in addition to using black lists,
some approaches employ heuristics to distinguish between
phishing and non-phishing sites [12], [8], [3], [24], [21], [7].
In [24], the authors identify distinctive keywords by TF-IDF in
the visiting web page and search these keywords via Google.
The authors assume that the results returned by Google should
include the visiting web page, or at least having the same
domain name suffixes. Then, by matching the domain name
of the visiting web page against those results returned by
Google, a phishing page can be identified if nothing matched.
In [3], several different heuristics including host names, URLs,

password fields, hyperlinks, and image hashes, are combined
and used to compute an overall phishing score. When a score
exceeds, a pop-up window is shown to notify the user. Fu
et al. [8] propose to use visual similarities to detect phishing
pages. They treat a whole web page as an image and convert
it to a low resolution image. The colors and coordinates of
converted images are stored as signatures. On visiting a web
page, the whole page is also converted to a low resolution
image and then used to match against those signatures in a
database. The similarity distance is computed by the Earth
mover’s distance (EMD) algorithm Chen et al. [2] propose
another visual similarity based solution. Instead of applying
EMD for low resolution images, they extract web page features
based on contract context histogram [10] and use the feature
to match two web pages.

III. THE PROPOSED SOLUTION

The rationale behind the proposed solution is simple. A
successful phishing attack exploits the phenomenon that users
usually determine the correctness of a website by only visual
similarities. They are not always aware of the URL of a visit-
ing page. Hence, to mitigate such an attack, our solution tries
to automatically do the check for users. We extract common
stable features from a website as its signature and then create
the map between the signature and the website domain name.
On matching a signature, the corresponding domain name is
compared with the domain name of the visiting URL. If they
are unequal, a URL redirection is enforced to prevent the user
from being phished.

In the proposed solution, we try to extract common stable
features that must be kept when mimicking a web page.
Features extracted from a web site are then grouped as a site
signature and used to detect phishing pages that try to mimic
the targeted website. The proposed solution contains two parts.
One is to build site signatures for websites and another is to
match web pages against site signatures. Features included in
a site signature can be classified into two types, i.e., text-based
and image-based features. The extraction of these two types
of features are discussed separately in this section.

Readers may notice that the proposed solution cannot pre-
vent users from pharming attacks, which are able to make
the domain name of a phishing page indistinguishable from a
valid website. The discussion of pharming attacks is out the
scope of this paper. Interested readers can refer to researches
focused on the prevention of pharming attacks [11].

A. Extraction of Text-Based Features

Text-based signatures can be extracted from different parts
of a web page. The extraction of text-based signatures is much
simpler then image-based signatures and it is also common is
similar researches. Thus, here we only briefly introduces what
and how we extract from a website. The featured texts are
extracted from the following three parts of a website:

1) Title keywords: Based on our observations, we find that
web pages of the same domain name usually has some
common keywords in the title. For example, almost

every eBay web page has a keyword eBay placed at the
beginning of the title and almost every Yahoo web page
has a keyword Yahoo embedded in the title. Therefore,
by counting the frequency of each word appeared in
titles of web pages, we are able to obtain the keywords
that used most often in title.

2) URL keywords: URL is a common feature to detect
phishing sites because attackers often tries to confuse
users by embedding strings similar to the domain name
of the targeted website in phishing URLs. Hence, we
extract URL keywords as parts of the signature from
the domain name of a valid website.
Not all words appeared in a domain name are extracted
as keywords. To extract keywords from a domain name,
we first split words in the domain name by the dot
symbol. Then, we remove top level domains (TLDs)
and country-code top level domains (ccTLDs). Common
words used in domain, for example, www and mail, are
removed.

3) Content keywords: We also extract content keywords
from a website. We treat sampled pages of a website
as a single document and extract all words as keyword
candidates. To effectively identify the real keywords
of the website, we also collect documents from on-
line news websites like BBC and CNN as the base to
compute the TF-IDF [21] score. The words with top N
highest TF-IDF socre are chosen as the keywords of the
website.

It is worth noticing that the signatures are extracted from the
entire website, not a single web page. Thus, the extracted
features can be used to identify most pages of a website.

B. Extraction of Image-Based Features

Image-based features is important to determine the real
domain name of a visiting web page. To extract image-based
features efficiently, we assume that the image-based features
must be seen in the very first page of a website. For example,
we can always see the website’s logo, which is usually a
common image feature, in the website’s welcome page. Thus,
we always start the image-based feature extraction from the
welcome page of a website.

The complete algorithm to extract image-based features is
depicted in Figure 1. The input of the image-based feature
extraction process is the URL of the welcome page of a
website and the maximum number identified common image
blocks. First, we extract all images embedded in the welcome
page as image feature candidates. Then, we sampled another
w pages within the same domain name and also extract images
embedded in those pages. Sampled pages are usually picked
up randomly by following links embedded in the welcome
page. Now we have two sets of images: Sc contains candidates
collected from the welcome page and Sd contains images used
to identify featured images in Sc.

Suppose the cardinalities of Sc and Sd are n and m,
respectively. For each candidate Ci ∈ Sc (1 ≤ i ≤ n), we run
our image extraction algorithm (explained later) to identify

Input: u - The welcome page URL of a target website;
N - The maximum number of identified image
blocks.

Output: S - The set containing image blocks for the
website.

Sc = find image(u) ;1

H = sample hyperlink(u);2

Sd = {∅} ;3

foreach h ∈ H do4

Sd = Sd

⋃
find image(h);5

n = |Sc| ; /* number of images in Sc */6

m = |Sd| ; /* number of images in Sd */7

B = a map that maps an image block to a counter;8

foreach Ci ∈ Sc, 1 ≤ i ≤ n do9

foreach Dj ∈ Sd, 1 ≤ j ≤ m do10

b = cib extract(Ci, Dj);11

if b 6= ∅ then12

if b /∈ B then B[b] = 1;13

else B[b] = B[b] + 1;14

S = first N common image blocks in B (sort by counter15

values in a descendent order);
return S16

Fig. 1. The algorithm to extract image-based feature.

common parts by matching Ci against each image Dj ∈ Sd

(1 ≤ j ≤ m). The output of the image extraction algorithm are
common image blocks that can be found in images of various
pages belong to the same website. With the image extraction
algorithm, we are able to avoid the misuse of a whole image as
an image feature, as shown in Figure 2. When common image
blocks are all identified, we then pick the most frequently used
one as the representative of the site’s image feature.

The most important component in the above procedure is the
image extraction algorithm, i.e., the cib_extract function
used in Figure 1. The input of this algorithm is two images and
the output of the algorithm is the area of the common image
block. In the algorithm, we need four steps to identify common
image blocks. An overview of the four steps is depicted in
Figure 2. Readers can find the complete algorithm description
in Figure 3. First, we have to identify key points from each of
the two input images. Key points are robust features that can
be kept even if an image is resized, rotated, and distorted.
Therefore, these features can be used to recognize image
patterns. There are several well known algorithms [16] to
identify key points of images. In this work, we choose SIFT
to identify key points because its availability and performance,
as discussed in [16]. The output of SIFT is a set of key points,
each key point is represented as a multi-dimension vector.
Suppose two sets, S1 and S2, contain key points identified
from the two input images respectively. Pairwise key points
from the two sets can be matched by measuring minimum
Euclidean distance between any unmatched key points in the
sets.

Welcome page
http://www.firstbanks.com/

Referred page from the welcome page
http://www.firstbanks.com/Personal

Featured Image Candidates Test Images

0. Inputs from the two sources

1. Identify key points

2. Match key points

3. Remove incorrect matches

4. Expand and retrieve the common block

Fig. 2. An overview of the image extraction algorithm.

In the third step, we have to remove incorrectly matched
key points so that the common image block can be identified
correctly. If a common image block can be found in two
different images, we assume that the positions of key points
matched in the block should be relatively the same within the
block. Based on the assumption, an incorrectly matched key
point pair (P1,a ,P2,a′) in K can be identified by the following
procedure.

1) Reset a counter CTR to zero.
2) Obtain the x- and y-coordinates of the two key points

P1,a and P2,a′ as Pt1,a and Pt2,a′ , respectively.
3) Randomly choose m matched key point pairs from the

set K.
4) Iteratively choose one from the m matched key point

pairs. Suppose a matched key point pair (P1,b, P2,b′) is
chosen, the x- and y-coordinates of the two key points
are also obtained as Pt1,b and Pt2,b′ . Then, compute the
two vectors −→v1=(Pt1,b−Pt1,a) and −→v2=(Pt2,b′−Pt2,a′)
and check whether −→v1 and −→v2 are parallel or not. This can
be done by calculating the cosine value of the included
angle for the two vectors by cos θ = (−→v1 ·−→v2)/(|−→v1 ||−→v2 |).
If cos θ is greater than a given threshold, the counter CTR
is increased by 1.

5) After the m key point pairs are all processed, if the
counter CTR is less than 0.3 × m, the key point pair
(P1,a ,P2,a′) are removed from K.

An example of the above procedure can be found in Figure 4.
In the figure, the key point pairs (F, F’) and (G, G’) should
be removed. By the key point removing algorithm, we can see

Input: I1 and I2 - The two images used to extract the
common image block.

Output: b - The common image block or ∅ if none is
found.

P1 = identify keypoints(I1);1

P2 = identify keypoints(I2);2

K = a map that maps a key point to another key point;3

foreach P1,i ∈ P1, 1 ≤ i ≤ |P1| do4

min = + inf;5

foreach P2,j ∈ P2, 1 ≤ j ≤ |P2| do6

d = Euclidean distance(P1,i, P2,j);7

Pm = ∅;8

if d < min then9

min = d;10

Pm = P2,j ;11

if min < {pre-defined threshold} then12

K[P1,i] = Pm;13

Remove P1,i from P1;14

Remove Pm from P2;15

foreach P1,a ∈ indexOf (K) do16

ctr = 0;17

repeat18

Randomly select P1,b from indexOf (K);19

P2,a′ = K[P1,a];20

P2,b′ = K[P1,b];21
−→v1 = positioinOf (P1,b)− positioinOf (P1,a);22
−→v2 = positioinOf (P2,b′)− positioinOf (P2,a′);23

cos θ = (−→v1 · −→v2)/(|−→v1 ||−→v2 |);24

if cos θ ≥ {threshold} then ctr = ctr+ 1;25

until m times ;26

if ctr < 0.3×m then27

Remove P1,a and K[P1,a] from indexOf (K) and28

K, respectively;

if |K| < {threshold} then return ∅ A = {∅};29

foreach P1,a ∈ indexOf (K) do30

a = flooding fill expand(positionOf (I1, P1,a));31

A = A
⋃

a;32

return the area that covers all blocks in A33

Fig. 3. The algorithm of extracting the common image block, i.e., the
cib_extract function.

that pairwise vectors starting from F and F’, e.g., −→FA/
−−→
F ′A′,−−→

FC/
−−−→
F ′C ′, and −−→FG/

−−−→
F ′G′, are not parallel. Therefore, both the

key points F and F’ should be removed. After finishing the
key point removing process, all the key point pairs that are
preserved in the set K are then used to identify the common
image block in the final step.

In the final step, the area of the common image block is
identified based on the selected key points in the set K. We
iteratively select a key point Pk from K, read the color value
of Pk, and make a “virtual flooding fill” starting from Pk’s
position. Instead of filling the obtained color in the image, we

A'
B' C'

D'

E' F'

A
B C D

E
F G

G'
Fig. 4. Removing incorrectly matched key points from the images.

use the flooding fill algorithm to visit all points that can be
reached by the algorithm and keep the maximum/minimum x-
and y-coordinates of visited points. A rectangle, which can be
defined by the top-left corner (min-x, min-y) and the bottom-
right corner (max-x, max-y), can be marked on finishing
running a flooding fill. When all rectangles are marked, the
common image block can be further identified by a rectangle
that covers all marked rectangles. After analyzing a website,
a number of representative image blocks can be extracted and
these image blocks is then used to detect mimicked websites.

C. Matching Against Phishing Pages

On visiting a web page, the entire HTML document is
analyzed and the matching process starts only if the HTML
page contains at least a form field, a Java applet, or a Flash
object. As phishing pages target on personal information, they
must provide interfaces for users to provide their secrets.
Therefore, a web page without form fields, Java applets, or
Flash objects are not checked. Each feature of a site signature
is used to match against the visiting web page. The result of
matching a feature is a score ranging from 0 to 10 points.
After matching all features, a weighted overall score is then
obtained by s =

∑
wiFi, using a set of predefined weights

wi for each feature Fi. A site signature is said to be matched
if the overall score is greater than a predefined threshold.

There are two strategies to match texts. One is exact match-
ing and another is similarity distance measurement. Note that
both strategies are case insensitive. In the proposed solution,
we match content keywords by exact matching. The score
of matching content keywords depends on the weight of a
matched keyword and the total number of matched keywords.

On the contrast, title keywords and URL keywords are both
matched by similarity distance measurement. The distance of
two input texts are measured by the Levenshtein algorithm
[12]. A distance of zero indicates that two texts are exactly
the same. To measure the similarity distance between a given
input string s of length |s| and a keyword k of length |k|, we
follow the two principles below:

1) If |s| ≤ |k|, we measure the similarity distance directly.
2) Otherwise, for each n ≥ |k|, we split s into (|s|−n+1)

n-gram pieces and then measure the similarity distance

Amazon

Paypal

Bank of America

Charter One Bank

eBay, Inc

BankUnited

Yahoo

Calyon

First Bank

Fig. 5. Part results of common image block extraction.

between each n-gram text and k. The measured mini-
mum similarity distance is then used as the final distance
between the string s and the keyword k.

For example, matching a string www.eday.com against a
keyword ebay would give us a similarity distance of 1 since
the minimum distance can be evaluated by the 4-gram eday
and the keyword; matching another string www.e-bay.net
against a keyword ebay also give us a similarity distance of
1 since the minimum distance can be obtained by the 5-gram
e-bay and the keyword. The score of matching title keywords
and URL keywords depends on final similarity distance. A
similarity distance of 0 get a full score of 10 points. Otherwise,
it is linearly decreased to zero if the similarity distance is
greater than or equal to |k|.

Matching image-based features is straight forward. Each
image embedded in the visiting web page is extracted and
then used to match against the common image block of a
site signature. The score of image matching is evaluated by
the ratio of matched key points to the total number of key
points identified in the common image block. If n out of m
key points from the common image block can be matched
with key points of the input image, the image matching score
is (n/m) × 10. If there are multiple common image blocks
available for a signature, the maximum score is used as the
overall image matching score.

IV. EVALUATION

A. Extraction of Common Image Blocks

We evaluate the common image block extraction algorithm
for 50 well known web sites. In addition to popular phishing
targets, most of these benchmark sites are selected from
bank websites. For each website, we crawl 16 pages within
the website and then use the proposed algorithm to identify
common image blocks.

Figure 5 shows parts of the results of common image block
extraction. We use a dashed rectangle to indicate the actual
area extracted by the algorithm. The area can be much larger
than the actual logo. This is due to the expansion made by
the flooding fill algorithm. Since the expanded area does not
affect the result of image matching, we can just ignore those
additional blank areas. In the figure, we can see that the logo

of a website can be always extracted correctly. The result
also show that that the proposed algorithm is reliable even
if the common image blocks are embedded in complicated
background images. Readers may notice that some non-logo
image blocks are extracted as well. Take the example of
“BankUnited”, besides the logo itself, the algorithm also
extracts other common image blocks that are used among all
other pages within the same domain. Such a result depends
on the design template used by the website and hence it
is unavoidable. Readers may also notice that some extract
common image blocks from “Yahoo” and “Calyon” websites
are fragmented. For the former one, it is because the key
point identification algorithm we chosen only identify key
points on the left half parts of the image. Although it only
extracts parts of a common image block, it does not affect the
effectiveness of feature matching. For the latter one, we find
the original images downloaded from the “Calyon” website are
fragmented. The fragmentation is not caused by the proposed
algorithm.

B. Detection of Phishing Web Pages

For the detection rate of phishing web pages, the evaluation
is done for both phishing sites and benign websites. For
phishing sites, we collect 200 phsihing samples from Phish-
Tank [20]. The samples contain top 10 well known phishing
pages including Amazon, Bank of America, eBay, Paypal,
and Yahoo. We also collect another 270 benign websites from
Alexa [1] that are not included in site signatures to evaluate
the false positive rates of the proposed solution. The 186 out of
the 200 phishing samples can be detected and then redirected
to the correct websites accurately. The error rates are 1% and
6% in terms of false positives and false negatives, respectively.

V. CONCLUSION

The goal of web phishing is to steal users’ personal secrets,
such as account names, passwords, and credit card numbers.
Although there are a number of methods for detecting phishing
behavior and protecting users from attacks, most of them are
based on text features or visual similarities of whole web
pages. In this paper, we propose a solution that tries to reduce
the number of password phishing attacks by redirecting users
to a correct web pages. A site signature, including text- and
image-based features, are extracted accurately and used to
identify the real domain name of the visiting web page. While
only common stable features are extracted as site signatures,
a single signature can be used for variants of a web site. This
reduces the required space to store signatures without killing
the accuracy rate for detecting phishing pages. Experiments
show that the proposed solution is able to detect 94% phishing
attacks and has low error rates.

VI. ACKNOWLEDGEMENT

This work was conducted under the “Next Generation
Security Technology Deployment and Enablement Project”
of Institute for Information Industry which is subsidized by
the Ministry of Economy Affairs of the Republic of China.

We also thank the anonymous reviewers for their valuable
comments and suggestions.

REFERENCES

[1] Alexa. Alexa: The web information company. [online] http://www.alexa.
com/.

[2] K.-T. Chen, J.-Y. Chen, C.-R. Huang, and C.-S. Chen. Fighting phishing
with discriminative keypoint features of webpages. IEEE Internet
Computing, pages 30–37, May 2009.

[3] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J. C. Mitchell.
Client-side defense against web-based identity theft. In NDSS ’04:
Proceedings of the 11th Annual Network and Distributed System Security
Symposium, 2004.

[4] L. Cranor, S. Egelman, J. Hong, and Y. Zhang. Phinding phish: An
evaluation of anti-phishing toolbars. In NDSS ’07: Proceedings of the
14th Annual Network and Distributed System Security Symposium, 2007.

[5] D. Danchev. DIY phishing kits introducing new features. ZDNet, May
2008. [online] http://blogs.zdnet.com/security/?p=1104.

[6] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In
CHI ’06: Proceedings of the SIGCHI conference on Human Factors in
computing systems, pages 581–590, New York, NY, USA, 2006. ACM.

[7] I. Fette, N. Sadeh, and A. Tomasic. Learning to detect phishing emails.
In WWW ’07: Proceedings of the 16th international conference on World
Wide Web, pages 649–656, New York, NY, USA, 2007. ACM.

[8] A. Y. Fu, W. Liu, and X. Deng. Detecting phishing web pages with
visual similarity assessment based on earth mover’s distance. IEEE
Transactions on Dependable and Secure Computing, 3(4):301–311,
2006.

[9] Google, Inc. Google safe browsing for Firefox. [online] http://www.
google.com/tools/firefox/safebrowsing/.

[10] C.-R. Huang, C.-S. Chen, and P.-C. Chung. Contrast context histogram
- an efficient discriminating local descriptor for object recognition and
image matching. Pattern Recognition, 41(10):3071–3077, October 2008.

[11] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner. Dynamic pharming
attacks and locked same-origin policies for web browsers. In CCS ’07:
Proceedings of the 14th ACM conference on Computer and communi-
cations security, pages 58–71, New York, NY, USA, 2007. ACM.

[12] V. I. Levenshtein. Binary codes capable of correcting spurious insertions
and deletions of ones. Problems of Information Transmission, 1(1):8–17,
1965.

[13] S. McDonnell. Bank of Ireland - Statement. Bank of Ireland,
September 2006. [online] http://www.bankofireland.com/press room/
latest releases/2006/press releases news 154758 11.html.

[14] R. McMillan. ’Rock Phish’ blamed for surge in phishing. InfoWorld,
December 2006. [online] http://www.infoworld.com/article/06/12/12/
HNrockphish 1.html.

[15] Microsoft Corporation. PhishingFilter: Help protect yourself from online
scams. [online] http://www.microsoft.com/protect/products/yourself/
phishingfilter.mspx.

[16] K. Mikolajczyk and C. Schmid. A performance evaluation of local
descriptors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(10):1615–1630, October 2005.

[17] Mozilla Project. Firefox phishing and malware protection. [online]
http://www.mozilla.com/en-US/firefox/phishing-protection/.

[18] NetCraft, Ltd. Netcraft anti-phishing toolbar. [online] http://toolbar.
netcraft.com/.

[19] C. O’Brien. Bank of Ireland to refund phishing victims. ZD-
Net, September 2006. [online] http://news.zdnet.co.uk/security/0,
1000000189,39283133,00.htm.

[20] OpenDNS. PhishTank: Join the fight against phishing. [online] http:
//www.phishtank.com/.

[21] G. Salton and M. J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[22] stopbadware.org. Badware website clearinghouse. [online] http://
stopbadware.org/home/clearinghouse.

[23] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security toolbars actually
prevent phishing attacks? In CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems, pages 601–610,
New York, NY, USA, 2006. ACM.

[24] Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: a content-based approach
to detecting phishing web sites. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 639–648, New York,
NY, USA, 2007. ACM.

