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Abstract

Peer-to-peer technique has now become one of the ma-
jor techniques to exchange digital content between peers
of the same interest. However, as the amount of peer-to-
peer traffic increases, a network administrator would like
to control the network resources consumed by peer-to-peer
applications. Due to the use of random ports and protocol
encryption, it is hard to identify and apply proper control
policies to peer-to-peer traffic. How do we properly bound
the peer-to-peer traffic and prevent it from consuming all
the available network resources?

In this paper, we propose an algorithm that tries to
approximately bound the network resources consumed by
peer-to-peer traffic without examining packet payloads.
Our methodology especially focuses on upload traffic for
that the upload bandwidth for an ISP are usually more pre-
cious than download bandwidth. The method is constructed
in two stages. First, we observe several traffic character-
istics of peer-to-peer applications and traditional client-
server based Internet services. We also observe the generic
traffic properties in a client network. Then, based on the
symmetry of network traffic in both temporal and spatial
domains, we propose to use a bitmap filter to bound the net-
work resources consumed by peer-to-peer applications. The
proposed algorithm takes only constant storage and com-
putation time. The evaluation also shows that with a small
amount of memory, the peer-to-peer traffic can be properly
bounded close to a predefined amount.

1 Introduction

The behavior of traditional Internet applications is sim-

ple. That is, a client sends a request to an Internet server

and then receives replies from the server. Network re-
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source management for these applications is also simple.

To manage the network traffic of a specific network ser-

vice, a network administrator can easily apply traffic con-

trol policies to traffic that communicates using correspond-

ing server ports. However, as the emerging of peer-to-peer

technologies, modern popular services like file sharing and

video streaming now leverage peer-to-peer technologies to

increase the availability and the performance of the ser-

vices. Therefore, it also brings new challenges to network

resource management. The major reason is that the peer-

to-peer traffic is more difficult to identify. First, peer-to-

peer applications tend to communicate using random ports

and thus it is hard to define port-based control policies for

such network traffic. Second, as any one can develop their

own protocols, even if network administrators are able to

identify network traffic by analyzing packet payloads, it is

impossible to know all peer-to-peer protocols beforehand.

Besides, the use of “protocol encryption” (PE), “message

stream encryption” (MSE), and “protocol header encryp-

tion” (PHE) also complicates the problem. Since the PE,

MSE, and PHE encrypts the parts of peer-to-peer proto-

col messages in payloads, it also increases the difficulties

to identify peer-to-peer traffic.

Recent studies have shown that the peer-to-peer traffic

has gradually dominated the Internet traffic. While ISPs

are usually charged based on the traffic they send upstream

to their providers, they would like to keep traffic generated

by their customers within the boundaries of their own ad-

ministrative domains. However, this conflicts with the core

spirit of peer-to-peer applications, which encourages clients

to share what they possess to the public. The more the

clients share, the more the uplink bandwidth are consumed

for the share. From the view point of network adminis-

trators, the precious uplink bandwidth should be used for
client requests, not for the shares. To reserve the uplink

bandwidth for the right purposes, peer-to-peer upload traf-

fic should be properly controlled in a client network. As

we already knew that peer-to-peer traffic is hard to identify,

how do we control these unknown uplink traffic in a client

networks?

An effective method to achieve this goal is adopting a



positive listing strategy. That is, the client network allows

only outbound requests initiated by clients in the network.

At the same time, to keep peer-to-peer applications work-

ing, a limited amount of the uplink bandwidth could still be

allowed for those applications. While peer-to-peer upload

traffic are mostly triggered by inbound requests, by limiting

the inbound requests, the upload traffic can be constrained

to a given bounds. To do this, a stateful packet inspection

(SPI) filter can be installed at the entry points of a client net-

work to maintain the per-flow state of each outbound con-

nection. The SPI filter tracks the states of network flows that

pass it. It allows all outbound requests and the correspond-

ing inbound responses. However, on receipt of inbound re-

quests, the SPI filter decides to accept or reject the request

according to the uplink bandwidth throughput. Applying

such a mechanism in an ISP-like scale network may incur

a high computational cost as the required storage space and

computation complexity depends linearly on the number of

concurrent active connections, which may be in the order of

tens of thousands or even millions.

In this paper, we try to solve the above problem with an

efficient and effective method. An bitmap filter algorithm is

proposed to maintain outbound connection states and per-

mit inbound connections according to monitored bandwidth

throughput. The effectiveness of the bitmap filter is similar

to that of an SPI filter, but it requires only constant storage

space and computational resources.

The remainder of this paper is organized as follows. In

Section 2, we review some previous works that are related

to our solution. In Section 3, we observe several client net-

work traffic characteristics that are useful to construct our

solution. In Section 4, we discuss the usage model and the

detailed design of the proposed solution. In Section 5, we

then evaluate the effectiveness and the performance of the

solution. Finally, in Section 6, we present our conclusions.

2 Related Works

A great deal of research effort has been devoted to peer-

to-peer networks. In [1], the authors investigate several

characteristics of peer-to-peer traffic, which includes the

bottleneck bandwidths, latencies, the degree of peer coop-

erations, etc. In [2], the authors analyze the peer-to-peer

traffic by measuring flow level information and show that

the high volume and good stability properties of peer-to-

peer traffic makes it a good candidate for being managed in

an ISP network. Authors of [3] and [4] also show that the

amount of peer-to-peer traffic keeps growing and now it has

now become one of the major Internet applications.

In contrast to our solution, authors of [5] purpose to save

the download bandwidth by caching those shared data. The

cache system works only when it can identify and under-

stand the peer-to-peer protocols. To identify peer-to-peer

traffic, besides counting on well-known ports, Sen et al. [6]

developed a signature-based methodology to identify peer-

to-peer traffic. However, the use of “protocol encryption”

(PE) makes it difficult to detect peer-to-peer traffic using

payload identification. In [4], Karagiannis et al. try to iden-

tify peer-to-peer traffic without examining the payloads.

The proposed PTP algorithm performs well on identifica-

tion of unknown peer-to-peer traffic. Nevertheless, the al-

gorithm use a table to records flow states, which may be not

suitable to operate in a real-time and large-scale environ-

ment.

To limit the peer-to-peer upload traffic, we believe that

an SPI-based filter is a possible solution for client networks.

However, since SPI-based filters have to keep all per-flow

states in detail, adopting it incurs high cost for an ISP. Take

a popular SPI implementation in the Linux open-source op-

erating system as an example. The required storage space

grows linearly according to the number of kept flows. Be-

sides, the data structures used to maintain these states are

basically link-lists with an indexed hash table. It is obvi-

ous that both the storage and computation complexities are

O(n), which is not affordable for a larger ISP containing

several client networks.

3 The Client Network Traffic Characteristics

3.1 Network Setup

Our packet traces are collected in a subnet of our campus

network. Most of hosts in the subnetwork are clients. The

trace collection environment is illustrated in Figure 1. A

traffic monitor is used to receive and analyze both inbound

and outbound traffic of the subnetwork. The traffic moni-

tor is a Fedora Core 5 Linux equipped with dual-processor

Intel Xeon 3.2G and a Broadcom BCM95721 gigabit net-

work interface. To save the storage space for packet traces,

the traces are collected in three different stages. First, we

collect full packet traces (including both packet headers

and full payloads) using the well-known tcpdump [7] pro-

gram. The full packet traces are then used to verify the

correctness of our customized traffic analyzer. The verified

analyzer is finally used to extract useful information from

packet payloads on-line and simultaneously collect header
packet traces, which contains only layer 2 to layer 4 packet

headers, for future use. The design of the customized traffic

analyzer is introduced later in Section 3.2.

3.2 The Traffic Analyzer

One purpose of the traffic analyzer is to identify net-
work applications from current network connections. A

network connection is identified by a five tuple socket pair,

which includes the layer 4 protocol (TCP or UDP), the



Uplink

Internet
Campus
Network

Port mirror

L3 switchTraffic Monitor

Figure 1. The network setup for packet trace
collection. The traffic sent to the campus
network is inbound traffic while traffic in the
other direction is outbound traffic.

source address, the source port, the destination address,

and the destination port. An example of a socket pair s
is {TCP, A, x,B, y}. Since packets of the same connec-

tion are transmitted in different directions between two end

hosts, the inverse of a socket pair, s = {TCP, B, y,A, x},

also identifies the same connection. In our traffic analyzer, it

first classifies packets into connections and then try to iden-

tify the application of each connection.

Two methods are used to identify the applications. As

we know that many modern applications, for example, peer-

to-peer applications, do not use fixed ports to communi-

cate, we first try to identify application by matching the

packet payloads against several predefined patterns. To do

so, the analyzer must have the ability to examine the pay-

loads either by reading the full packet traces collected by

the tcpdump program or by accessing packets directly

through the network interface. The analyzer focuses only

on TCP and UDP traffic for that these two are the major

data transmission protocols used over Internet. Packets with

incorrect checksum values are not considered for examina-

tion.

The payload of each UDP packet is always examined.

However, to guarantee the completeness of payloads in a

TCP connection, we only examine TCP connections with an

explicitly TCP-SYN packet, which indicates the beginning

of a TCP connection. Unlike the examination for UDP data

packets, the pattern matching algorithm does not match for

a single TCP data packet. Instead, it matches a concatenated

TCP data stream against the patterns. For a TCP connec-

tion, we have to concatenate payloads of several very first

data packets1 to form a short TCP stream. The algorithm

then matches the concatenated data stream against all the

patterns. The patterns used for pattern matching are writ-

ten in the form of regular expressions. Most of these pat-

terns are adopted from the L7-filter project [8]. Examples

1In our program, we concatenate at most four TCP data packets. This

is because most of the patterns used to check the connection type are short

and thus it is not necessary to store and check the full TCP data stream.

of some of these patterns are listed in Table 1. If it is failed

to identify an application by pattern matching, the analyzer

then tries to identify by matching the port numbers of the

connection against well-known port numbers.

To focus more on file exchanging applications, we use

two alternative strategies to identify peer-to-peer and FTP

applications, respectively. For the ease of explanations, a

network connection c is denoted by c = {A : x → B : y},

where A is a client that connects to a service provider B on

port y using port x. In the first strategy, if c is identified as

one of the peer-to-peer applications, all future connections

to B : y are also identified as the same application. In the

second strategy, since we know that the FTP command and

the FTP data are transmitted in separated connections, if c is

identified as an FTP application, all payloads of the identi-

fied connection are examined to identify the corresponding

FTP data connections specified in a FTP command connec-

tion.

Another purpose of the analyzer is to measure and log

some fundamental properties of network connections for

further traffic analyses. These properties include the direc-

tion (inbound or outbound) of a network connection, the

number of packets and bytes transmitted in each direction,

the lifetime of a connection, and the out-in packet delays.

To keep the original traffic patterns and save the storage

spaces, payloads of all processed packets are stripped and

then stored using the same format as the tcpdump pro-

gram.

3.3 Traffic Characteristics

Based on the information collected by the traffic ana-

lyzer, we make several observations on these traffic. The

observations are done on a 7.5-hour TCP and UDP packet

trace, which was collected in the environment introduced

in Section 3.1. In the 7.5-hour packet trace, there were

6739733 collected connections. Among all the connec-

tions, 29.8% were TCP connections and 70.1% were UDP

connections. Although there are more UDP connections,

99.5% bandwidth are contributed by TCP traffic. The av-

erage bandwidth throughput of this trace was 146.7 Mbps,

where 10.2% were download traffic and 89.8% were up-

load traffic. The first observation is the distributions of each

observed applications. Among the observed applications,

5% are HTTP/HTTP-PROXY traffic, 55% are peer-to-peer

traffic (including bittorrent, edonkey, and gnutella), 5% are

other traditional internet services, and most of traffic (35%)

are still unidentified. A brief summary of the protocol dis-

tribution can be found in Table 2.

The second observation focuses on the port number dis-

tributions of network connections. We classify all the port

numbers into four different classes, namely “ALL”, “P2P”,

“Non-P2P”, and “UNKNOWN”. For each TCP connec-



Table 1. Patterns and ports used to identify network applications.
Application PortsRegular Expressions

bittorrent \x13bittorrent protocol|d1:ad2:id20:|\x08'7P\)[RP]|^azver\x01$|^get /scrape?info_hash=

edonkey ^[\xc5\xd4\xe3-\xe5].?.?.?.?([\x01\x02\x05\x14\x15\x16\x18\x19\x1a\x1b\x1c\x20\x21\x32\
x33\x34\x35\x36\x38\x40\x41\x42\x43\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\
x53\x54\x55\x56\x57\x58[\x60\x81\x82\x90\x91\x93\x96\x97\x98\x99\x9a\x9b\x9c\x9e\xa0\
xa1\xa2\xa3\xa4]|\x59................?[ -~]|\x96....$)

fasttrack ^get (/.download/[ -~]*|/.supernode[ -~]|/.status[ -~]|/.network[ -~]*|/.files|/.hash=[0-9a-f]*/
[ -~]*) http/1.1|user-agent: kazaa|x-kazaa(-username|-network|-ip|-supernodeip|-xferid|-
xferuid|tag)|^give [0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]?[0-9]?[0-9]?

gnutella ^(gnd[\x01\x02]?.?.?\x01|gnutella connect/[012]\.[0-9]\x0d\x0a|get /uri-res/n2r\
?urn:sha1:|get /.*user-agent: (gtk-gnutella|bearshare|mactella|gnucleus|gnotella|limewire|
imesh)|get /.*content-type: application/x-gnutella-packets|giv [0-9]*:[0-9a-f]*/|queue [0-9a-f]* 
[1-9][0-9]?[0-9]?\.[1-9][0-9]?[0-9]?\.[1-9][0-9]?[0-9]?\.[1-9][0-9]?[0-9]?:[1-9][0-9]?[0-9]?[0-
9]?|gnutella.*content-type: application/x-gnutella|...................?lime)

http/http-proxy http/(0\.9|1\.0|1\.1) [1-5][0-9][0-9] [\x09-\x0d -~]*(connection:|content-type:|content-
length:|date:)|post [\x09-\x0d -~]* http/[01]\.[019]

ftp ^220[\x09-\x0d -~]*ftp TCP: 21

TCP: 80, 3128, 
8080

TCP/UDP: 4662

N/A

N/A

N/A

Table 2. Summary of Protocol Distributions in
the Trace Data

Protocol Connections Utilizations

HTTP 2.17% 5%

bittorrent 47.90% 18%

gnutella 7.56% 16%

edonkey 22.00% 21%

UNKNOWN 17.55% 35%

Others 2.82% 5%

tion, we only count the port number that is used by the

service provider, i.e. the destination port of the correspond-

ing TCP-SYN packet. This is because the source ports of

TCP connections are usually randomly generated. We also

gather the same statistics for UDP connections. However,

since there is no explicitly signals to determine the direction

of an UDP connection, for UDP connections, both source

ports and destination ports are counted. Figure 2 and Fig-

ure 3 show the cumulative distributions of TCP and UDP

port numbers, respectively. In Figure 2, we can find that

most of the “Non-P2P” connections use several well-know

ports. We also found that besides these well-known peer-to-

peer ports, a great deal of random ports between port 10000

and port 40000 are also used for peer-to-peer communica-

tions. Although there are many unidentified connections in

our trace, we found that the port distributions of these “UN-

KNOWN” connections are close to “P2P” applications. As

the development of proprietary peer-to-peer protocols and

the use of “protocol encryption” technologies, we believe

that many of those unidentified connections have a high

probability to also be peer-to-peer traffic.
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Figure 2. The port number CDF plot of TCP
connections. Only ports that used to accept
TCP connections are counted.
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Figure 3. The port number CDF plot of UDP
connections. Both source ports and destina-
tion ports of UDP connections are counted.

Figure 3 shows the results of UDP connections. While

we count both source ports and destination ports for UDP

connections, the result also reflects that the port numbers are

almost uniformly distributed. However, we can still identify

several frequently used ports, like DNS (port 53) and the

edonkey ports (port 4661, 4662, 4672, etc).

We have mentioned that 89.8% of the throughput was

contributed by outbound traffic. Among all the outbound

traffic, it should be noticed that 80% are sent along with in-

bound connections while the other 20% are actively sent out

by inner clients. In general, the design of data transmission

protocols can be classified into two categories. Data can be

delivered either within the same connection to the request

or using a different connections. This statistics show that

most applications prefer the former design.

We also examine the lifetime of connections from the

packet trace. The lifetime of TCP connections are counted

from the first TCP-SYN packet to the appearance of a valid

TCP-FIN or TCP-RST packet. The connection lifetime

varies widely from a minimum of several milliseconds to

a maximum of six hours, as shown in Figure 4 (data ex-

ceeding the 6000th second are removed, since there are no

more peaks). However, the lifetime of most connections is

short. The statistics show that 90% of connections are un-

der 45 seconds, 95% are under 4 minutes, and less than one

percent last for more then 810 seconds.

Although the lifetime for each connection varies greatly,

an interesting phenomenon is that the out-in packet delay
is always short. Before introducing out-in packet delay,

we define two types of packet. An outbound packet
is a packet sent from a client network, while inbound
packet is a packet received by a client network. A packet

always contains a socket pair σ of {protocol , source-
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Figure 4. Statistics for connection lifetime.
The average connection lifetime is 45.84 sec-
onds.

address, source-port , destination-address, destination-

port}. Thus, for an outbound packet with a socket pair

of σout = {protocol , saddr , sport , daddr , dport},

the socket pair of its corresponding inbound

packet should be in an inverse form, that is

σin = {protocol , daddr , dport , saddr , sport}. Note

that for an outbound packet and its corresponding inbound

packet, σin , which is the inverse of the socket pair σin , and

σout should be the same. Based on these definitions, the

out-in packet delay is then obtained as follows:

1. On receipt of an outbound packet with a socket pair

σout = {protocol , saddr , sport , daddr , dport} on an

edge router at time t, the router checks if the socket

pair has been recorded previously. If the socket pair is

new, it is associated with a timestamp of time t and

stored in the edge router’s memory. Otherwise, the

timestamp of the existed socket pair is updated with

the time t.

2. On receipt of an inbound packet with a socket pair

σin = {protocol , daddr , dport , saddr , sport} at time

t, the edge router checks if the inverse socket pair

σin has been recorded before. If it already exists, the

timestamp associated with the inverse socket pair σin

is read as t0 and the out-in packet delay is computed

as t − t0.

3. To avoid the problem of port-reuse, which affects the

accuracy of computing the out-in packet delay, an

expiry timer Te deletes existing socket pairs when

t − t0 > Te.

The out-in packet delay may be caused by network propaga-

tion delay, processing delay, queueing delay, or mechanisms
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like delayed-ACK. However, they should not be too long.

The statistics of out-in packet delay are shown in Figure 5-

b. Since we use a large expiry timer, Te = 600 seconds,

to handle expired socket pairs, in Figure 5-b, the effect of

port-reuse can be observed roughly at the peaks. Although

the port-reuse timer varies in different implementations, we

find that most of them are in multiples of 60 seconds. The

statistics also show that most out-in packet delays are very

short. In Figure 5-c, 99% of out-in packet delays are under

2.8 seconds. The result also implies that the most Internet

traffic is bi-directional and has high locality in the temporal

domain.

4 The Bitmap Filter

By definition, a client network should have only client

hosts, such as a business enterprise customer, a group of

ISP 
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Figure 6. An ISP network with bitmap filters.

DSL users, a wireless network, or buildings in a campus.

Usually client hosts only initiate requests and seldom re-

ceive requests from the Internet. However, as the peer-to-

peer softwares become more and more popular, client hosts

now also wait for inbound connections from other peers and

thus generate huge volumes of upload traffic. The bitmap

filter is a lightweight and efficient algorithm that can be used

to bounding upload traffic from client networks. In this sec-

tion, we first illustrate the usage model of our solution and

then introduce the detailed design of the algorithm.

4.1 The Usage Model

Bitmap filters should be installed in an ISP network. As

shown in Figure 6, an ISP usually has edge routers (black

nodes) and core routers (white nodes). The bitmap filter can

be installed on an edge router directly connected to a client

network or on a core router, which is an aggregate of two or

more client networks. In Figure 6, the nodes with an out-

lined circle are possible locations to install the bitmap filter.

Actually, the bitmap filter can be installed at any location

through which traffic from client networks must pass.

4.2 Construct the Bitmap Filter

The design of the bitmap filter leverages certain client

network traffic characteristics to improve the filter perfor-

mance. Based on the observations that 1) the client net-

work traffic is bi-directional, 2) most out-in packet delays

are short, and 3) most of the outbound traffic are triggered

by inbound requests, a naı̈ve solution is proposed to limit

the upload traffic. The solution basically keeps only the

outbound requests initiated by inner clients. When the up-

load bandwidth throughput is low, all the inbound packets,

either responses to previous outbound requests or inbound

requests to the client network, are permitted. However, if

the upload bandwidth throughput is high, only the inbound

packets that are responses to previous outbound requests

are permitted. The solution works as follows: Suppose

that a timer with an initial value of T is associated with

the socket pair σout = {protocol , source-address, source-
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port , destination-address, destination-port} of each out-

bound packet that is new to an edge router. If the socket

pair σout is not new to the router, the value of the associ-

ated timer is simply reset to T . The timer reduces every

time unit Δt. When the timer expires (reaches zero), the as-

sociated socket pair is deleted. For each inbound packet, the

router extracts the socket pair σin and checks if its inverse

σin exists. If it exists, the packet is bypassed; otherwise, it is

dropped under certain probability Pd. The dropping prob-

ability Pd in our algorithm varies according to the uplink

bandwidth throughput. It can be lower when the throughput

is low and higher when the uplink is fully utilized.

The problem of the above solution is that the complexi-

ties for both storage and computations make it infeasible to

deploy in a large scale network. Thus, a bitmap filter, which

is a composite of k bloom filters [9] of equal size N = 2n

bits, denoted as a {k × N}-bitmap filter, is used instead.

An example of a bitmap is illustrated in Figure 7. Each col-

umn in the bitmap represents a bit-vector of a bloom filter.

For the convenient of explanation, in the algorithm, the bit-

vector of the ith bloom filter is written as bit-vector [i].
At the initialization phase, all the bits on the {k × n}-

bitmap are set to zero and an index of the current bit vec-

tor idx is set to the first bit-vector. All the bloom filters in

the bitmap share the same m hash functions, each of which

should only output an n-bit value. An output that exceeds n-

bit should be truncated. The bitmap filter comprises two al-

gorithms, the b.rotate algorithm, which clears expired bits

from the bitmap, and the b.filter algorithm, which marks

and looks up bits in the bitmap. The algorithms are detailed

in Algorithm 1 and Algorithm 2, respectively. The b.rotate
algorithm is quite simple. The algorithm runs every time

unit Δt. When it is activated, the index of the current bit

vector idx is set to the next bit vector and all bits in the pre-

vious bit vector are set to zero. For example, assume there

are k bit vectors in a bitmap filter indexed from {1, · · · , k}.

If the current index is set to the 1st bit vector, then the last

bit vector will be the kth bit-vector; however, if the current

index is set to the jth(1 < j ≤ k) bit vector, then the last

bit vector will be the (j − 1)th bit-vector.

Algorithm 1 The Timer Handler - b.rotate()
Require: An initialized {k × n}-bitmap and an index to

current bit vector idx.

1: last = idx
2: idx = (idx + 1) (mod k)

3: set all bits in bit-vector [last ] to zero

4: return idx

The bitmap is marked and looked up using the b.filter
algorithm, as shown in Algorithm 2. When a packet is

received by an edge router, the b.filter algorithm is ap-

plied to determine whether the packet should be bypassed

or dropped. For an outbound packet, the b.filter iteratively

applies all the m hash functions on the socket pair σout and

marks the corresponding bits in all bit vectors to a value of

1. Outbound packets are always bypassed. On the other

hand, when an inbound packet is received, the b.filter iter-

atively applies all the hash functions on the socket pair σin

and checks if the corresponding bit in the current bit vec-

tor indicated by the index idx is marked or not. If a bit is

not marked, then the packet will be dropped under a prob-

ability of Pd. The value of Pd can be dynamically adjusted

according to the upload bandwidth throughput. An exam-

ple of generating Pd is a similar form to the random early

detection (RED) algorithm [10]. Given two threshold L, H
(L < H), and an indicator of upload bandwidth throughput

b, the Pd is computed by Equation 1.

Pd =

⎧⎨
⎩

0 , if b ≤ L
b−L
H−L , if L < b < H

1 , if b ≥ H
(1)

Note that the bitmap filter is not necessary to use

all fields in the socket pair σ to compute the hash

value. Instead, for an outbound packet, the hash func-

tions can be applied only to the parts of {protocol , source-

address , source-port , destination-address}. In con-

trast, for an inbound packet, only {protocol , destination-

address , destination-port , source-address} are used to

compute the hash value. The reason not to use all fields

is to support the “hole-punching” [11] technique, which is

usually used for a client host to create bypass rules on the

network address translation (NAT) or firewall device for fu-

ture inbound connections. The support to “hole-punching”

can be enabled or disabled depending on the network ad-

ministrator’s choice.

In summary, the “mark” action is always performed on

all bit vectors, the “look up” and the “clean up” actions are

only performed for the current bit vector and the last bit

vector, respectively. The combination of these operations

achieves the same purpose as the naı̈ve solution described



Algorithm 2 The Filtering Function - b.filter()
Require: An initialized {k × n}-bitmap, an index of cur-

rent bit vector idx, a conditional dropping probability

Pd, and a packet pkt to be inspected.

1: if pkt is an outbound packet then
2: for h ∈ hash-function list do
3: j = h(σout)
4: mark the jth bit in all bit vectors as 1

5: end for
6: else if pkt is an inbound packet then
7: for h ∈ hash-function list do
8: j = h(σin)
9: if the jth bit in bit-vector [idx] is 0 then

10: p = a randomly generated number in [0, 1]

11: if p < Pd then
12: return DROP

13: end if
14: end if
15: end for
16: end if
17: return PASS

at the beginning of this sub-section, which effectively limits

the upload traffic sent from a client network.

4.3 Choose Proper Parameters

As stated in Section 4.2, several parameters for the

bitmap filter must be decided. They are the k - the num-

ber of bit vectors in a bitmap, the N - the size of a bit vec-

tor, the Δt - the time unit to clean up a bit vector, and the

m - the number of hash functions used in the bitmap filter.

The k and N parameters decide how much storage space

is required for the bitmap filter; and the k and Δt parame-

ters decide the countdown time of the timer Te mentioned

in Section 3.3. Thus, given a moderate expiry timer Te and

a proper time unit Δt, the value k can be decided by � Te

Δt�.

Recall the result in Section 3.3. Te should not be too

long, since the port-reuse effect may incur more false pos-

itives2, which decrease the precision of the bandwidth lim-

iter. In other words, a packet that should be dropped may

be accepted by the limiter. However, to prevent overkilling

connections with longer delays, Te should not be too short

either. A value below 60 seconds, such as 20 or 30 seconds,

would be acceptable. On the other hand, the time unit Δt
need not to be too short. Although a shorter Δt improves

the timer’s granularity, a Δt that is too short may raise the

frequency of running bitmap clean-ups too much and thus

reduce the overall performance of the system. A value of 4

or 5 seconds would be appropriate.

2The definition of false positives is defined in Section 5

The n is a flexible parameter. A network administrator

can decide the value according to the number of concur-

rently active connections and the memory space that they

are willing to devote to the system. Note that a small n
will raise the possibility of false positives and reduce the

effectiveness of traffic limiter. To avoid the problem, more

hash functions (i.e., m) may be used to reduce false posi-

tives. When deploying such a system, administrators should

consider a trade-off between storage space and computation

power to decide the value of n and m. We further evaluate

the effects of different sets of parameters in the next section.

5 Evaluations

In this section, we evaluate several aspects of the pro-

posed solution by analyses and simulations.

5.1 False Positives and False Negatives

As our solution adopts an approximate algorithm to

maintain outbound connection states, it may incur false pos-

itives and false negatives. The definition of a false positives

is similar to that used in the original bloom filter paper [9].

That is, an inbound packet that should be dropped is ac-

cepted by the filter. In contrast, a false negative is an in-

bound packet that should be accepted is dropped. Since the

bitmap filter works in flavor of a positive listing, only in-

bound packets with an out-in packet delay longer than the

expiry timer Te are filtered out. Thus, the number of false

negatives is very low. As the result in Section 3.3 shows,

false negatives should be lower than 1% when Te is greater

than 3.61 seconds.

However, we should focus more on false positives. As-

sume m hash functions are applied to a single inbound

packet and the utilization of the current bit vector is U = b
N ,

where b is the number of marked bits in a bit vector. The

probability p that a random inbound socket pair σ will pen-

etrate the bitmap filter is

p = Um =
(

b

N

)m

. (2)

The number of marked bits on the bit vector should be pro-

portional to the number of active connections c inside a time

unit of Te. If we assume that the results of the hash func-

tions seldom collide when the utilization of the bit vector is

low, Equation 2 can be rewritten as

p 	
(c · m

N

)m

. (3)

Given a bit vector size N and the expected max number of

active connections c, then to minimize the desired penetra-

tion probability p, we differentiate Equation 3 and get

p′ =
( c

N
· m

)m (
1 + ln

( c

N
· m

))
. (4)



Thus, m that minimizes the penetration probability p can be

obtained by solving 1 + ln( c
N · m) = 0, which is

m =
e−1 · N

c
, (5)

where e is the base for the natural logarithm. By replacing

m in Equation 3 with e−1·N
c when m minimizes the pene-

tration probability p, the ratio of the expected max number

of active connections c should satisfy

c

N
≤ − 1

e ln p
. (6)

For example, if we adopt a bitmap filter of size N = 220

(about 1-million bits) with k = 4, and Δt = 5 seconds, and

set the desired penetration probability to be roughly 10%,

5%, and 1%, the number of active connections inside a time

unit Te = 20 seconds should be less than 167K, 125K, and

83K, respectively. Compared with our trace data, which has

only average 15K active connections inside a time unit of 20

seconds, these upper bounds are much higher than the actual

traffic. The number of used hash functions m in the setup

can be 3, and the memory space required by the bitmap filter

is only (k × N)/8 = 512K bytes.

5.2 Performance

The bitmap filter is efficient because almost all opera-

tions can be performed in constant time. The processing

time for an outbound packet is O(m× th)+O(m ·k× tm),
where m is the number of used hash functions, th is the

time taken to execute a hash function, k is the number of

bit vectors to be marked, and tm is the processing time

to mark a bit. Processing inbound packets is simpler than

for outbound packets. The required processing time is

O(m × th) + O(m × tc) where tc is the processing time

need to check whether a bit on a bit vector is marked or not.

Inbound packet processing is also a constant time opera-

tion. When an inbound packet is considered to be dropped,

the bitmap filter drops the packet according to the dropping

probability Pd. Computing the Pd requires only the knowl-

edge of current bandwidth throughput, which is an essential

component in off-the-shelf network devices.

The most time consuming operation may be the b.rotate
algorithm, which executes every Δt seconds. The algorithm

first advances the current index idx to set to the next bit

vector, and then resets all bits in the last bit vector to zero.

Thus, the operation is proportional to the size of a bit vec-

tor, which is O(n). However, since the memory space of a

bit vector is fixed and continuous, implementing such an al-

gorithm in software is simple and efficient. As all the com-

ponents used in the algorithm already have corresponding

hardware implementations, it is also easy to accelerate the

algorithm by using hardware coprocessors.
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Figure 8. Comparison of the packet drop
rates of the SPI and the bitmap filters. The
gray-dashed line has a slope of 1.0.

5.3 Simulation with the Packet Trace

We also perform several simulations to verify the effec-

tiveness of the bitmap filter. A bitmap filter and an SPI-

based filter are both implemented. The input to both filters

is the packet trace used in Section 3.3. First, we compare

the packet drop rate of the two filters. The SPI filter is set to

delete idle connections after 240 seconds, which is the de-

fault TIME WAIT timeout used in the Microsoft windows

operating system The bitmap filter is configured as follows:

N = 220, k = 4, Te = 20, Δt = 5, and drop all inbound

packets without states. This constructs a 512K-byte bitmap

filter that handles the out-in packet latency shorter than 20

seconds. As Figure 8 shows, the filters have similar packet

drop rates, and the gray-dashed line has a slope of 1.0. The

SPI filter has an average drop rate of 1.56% compared to

1.51% for the bitmap filter. This is because that the SPI

filter knows the exact time of closed connections and can

therefore drop packets precisely than the bitmap filter.

The second simulation is to show the effectiveness of

the bitmap filter on the same packet trace data. The bitmap

filter now monitors the bandwidth throughput of upstream

traffic and blocks incoming connections when the uplink

bandwidth throughput is high. The dropping probability Pd

is generated by Equation 1 with a upper bound bandwidth

limit H of 100Mbps and a lower bound bandwidth limit L
of 50Mbps. To simulate a blocked connection, when an in-

bound packet is decided to be dropped by the bitmap filter,

the socket pair σ of that packet is stored and all the future

packets that match any stored σ or σ are all dropped with-

out checking the bitmap. The configuration of the bitmap

filter tries to control peer-to-peer upload traffic below an up-

per bound of 100Mbps. Figure 9-a and Figure 9-b show the
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Figure 9. The performance of the bitmap filter
to limit upload traffic.

original and the filtered bandwidth throughput, respectively.

In the two figures, the black line indicates the downlink

throughput and the gray part indicates the uplink through-

put. It should be noted that both parts of the downlink and

uplink traffic are limited. This is because some download

peer-to-peer traffic are transfered in different inbound con-

nections. Since the simulation is done with replayed packet

trace, as the simulation is unable to block the outbound con-

nections that may triggered by previously blocked inbound

requests, the effect of the traffic filtering is limited. We be-

lieve that the filter can perform better in a real network envi-

ronment. The result of simulation also shows that the 512K

bytes {4×220}-bitmap filter with 3 hash functions can prop-

erly limit uplink traffic for the small- or medium-scale client

network.

6 Conclusions

The core spirit of peer-to-peer applications is to share

with the public. Thus, a client host that running peer-to-peer

applications always generates a considerable amount of up-

load traffic, which should be limited in a client network.

However, with randomly selected port numbers and the use

of protocol encryption, peer-to-peer traffic is hard to iden-

tify and manage. As the upload traffic are usually triggered

by inbound request, in this paper, we propose a bitmap fil-

ter to bound the peer-to-peer upload traffic by controlling

inbound requests. The proposed algorithm requires only

constant storage and computation power. Analyses and sim-

ulations show that with a small amount of resources, an ISP

can efficiently prevent the peer-to-peer traffic from affecting

the normal operations of traditional Internet services.
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