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Abstract— Online gaming is one of the most profitable busi-
nesses on the Internet. Among various threats to continuous
player subscriptions, network lags are particularly notorious.
It is widely known that frequent and long lags frustrate game
players, but whether the players actually take action and leave
a game is unclear. Motivated to answer this question, we apply
survival analysis to a 1, 356-million-packet trace from a sizeable
MMORPG, called ShenZhou Online.

We find that both network delay and network loss significantly
affect a player’s willingness to continue a game. For ShenZhou
Online, the degrees of player “intolerance” of minimum RTT,
RTT jitter, client loss rate, and server loss rate are in the
proportion of 1:2:11:6. This indicates that 1) while many network
games provide “ping time,” i.e., the RTT, to players to facilitate
server selection, it would be more useful to provide information
about delay jitters; and 2) players are much less tolerant of
network loss than delay. This is due to the game designer’s
decision to transfer data in TCP, where packet loss not only
results in additional packet delays due to in-order delivery and
retransmission, but also a lower sending rate.

Index Terms— Human Factors, Internet Measurement, Net-
work Games, Quality of Service, Survival Analysis

I. INTRODUCTION

The prevalence of MMORPGs (Massive Multiplayer Online
Role Playing Games) has broadened the definition of net-
work games. Until recently, most real-time interactive network
games were distributed and peer-to-peer; and no more than
several dozen players could participate in a game at any time.
Nowadays, however, it is not uncommon to have thousands of
participants playing in an MMORPG world simultaneously.
The MMORPG business also plays an important part in the
economic well being of the Internet. The MMORPGs have
generated 5 billion US dollars of business worldwide in 2004
and the market is expected to double by 2009 [9]. Among
various threats to continuous player subscriptions, network
lags are particularly notorious. It is widely known that frequent
or long lags frustrate game players but whether the players will
take action and leave a game remains unclear. This work is
dedicated to answer this question.

Online games in general have been considered QoS-
sensitive Internt applications [13] and there have been studies,
although no one consensus reached, on the QoS-sensitivity of
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FPS (First-Person Shooting) games, RTS (Real Time Strategy)
games, sports games, and car racing games [2, 3, 11, 13, 16–
18] (cf. Section II-A). MMORPGs are different in that there
are no explicit victories or defeats, scores, or rankings, and the
playing time is a more appropriate indicator of the player’s
gaming experience. Therefore, in this attempt to understand
MMORPG players’ QoS-sensitivity, we ask the question:
“Once a player is in a game, how does network QoS affect his
decision to continue or leave the game?” This work is, as far
as we know, the first quantitative analysis on the relationship
between network QoS and online game playing times.

In this paper, we analyze the lifetimes of game sessions
derived from ShenZhou Online [20], a commercial MMORPG.
Using a survival analysis approach, we investigate the relation-
ship between network QoS and session times. Although, logi-
cally, the relation of cause and effect cannot be clarified from
a cross-sectional study, we assume the correlation between
game session times and network QoS implies that premature
departures are caused by unfavorable network experience. The
major findings are as follows. First, we show that both network
delay and network loss significantly affect players’ willingness
to continue a game or leave it, whereas earlier studies indicate
that players have remarkable tolerance of unfavorable network
conditions [3, 11, 18].

Second, while many network games provide “ping time,”
i.e. the round trip time (RTT), to players to facilitate server
selection, we show that the delay jitters are more important
than absolute delays in terms of playing time. Therefore,
in addition to the “ping time,” its variations should also be
considered in the server selection process.

Third, quantitatively, the degrees of player “intolerance”
to minimum RTT, RTT jitter, client loss rate, and server loss
rate are in the proportion of 1:2:11:6. To be specific, a
player’s decision to leave a game due to unfavorable network
conditions is based on the following levels of intolerance:
client packet loss (55%), server packet loss (30%), RTT
fluctuations (10%), and minimum RTT (5%). While most QoS-
sensitivity studies focus on the impact of delay, we argue
that delay jitters and the packet loss (error) rate are more
important, since, from our modeling, absolute delay times
only contribute 1/20 of the influence on average to the QoS-
intolerance of MMORPG players. Furthermore, we believe

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

1-4244-0222-0/06/$20.00 (c)2006 IEEE



that only considering transit delay times and the different
characteristics of transport protocols used, e.g., TCP or UDP,
could be the major reasons for the inconsistent results of earlier
works.

The remainder of this paper is organized as follows. Sec-
tion II describes related works and the design of the game
ShenZhou Online. We present the measurement methodology,
preprocessing, and a summary of the game traffic trace in
Section III. In Section IV, we explain why we adopt survival
analysis and present a summary of this methodology. In Sec-
tion V, we analyze the general lifetime patterns exhibited by
game sessions, and confirm the correlation between network
QoS and session duration. Next, in Section VI, we develop a
lifetime model that describes the relationship between QoS
covariates and game session times. We then discuss the
model’s results and implications. Finally, in Section VII, we
present our conclusions.

II. BACKGROUND

A. Related Work

In the QoS spectrum of network applications, realtime inter-
active network games are generally considered QoS-sensitive.
Although a QoS infrastructure is not widely available on the
Internet, network games are already prevalent. The reason is
that either QoS is unnecessary, or players usually struggle
with adverse network conditions. Motivated by the question,
Henderson and Bhatti conducted controlled experiments to
examine the QoS tolerance of network game players [13].
They found that degraded QoS affects whether a user joins
a game in the first place; however, once a user is in a
game, the decision to leave is not significantly related to
increased network delay. Henderson and Bhatti also found that
the effect of network delay is outweighed by game design
or exogenous effects, and players seem to be remarkably
tolerant of network conditions [11]. The impact of network
conditions on different game genres has been investigated
in many ways. Armitage, for example, suggests that players
prefer the Quake 3 server with a ping time of 150 to 180
milliseconds [2]. Beigbeder et al. find that typical ranges of
packet loss and latency do not significantly affect the outcome
of the game in Unreall Tournament 2003 [3]. Sheldon et al.
conclude that, overall, high latency has a negligible effect
on the outcome of Warcraft III [18]. In [16], Nichols and
Claypool show that user performance is degraded by almost
30% for latencies higher than 500 ms in NFL Football. While
most previous works suggest remarkable QoS tolerance on
the part of game players, our results show that both network
latency and network loss have a significant influence on game
playing times in MMORPG.

The modeling of player lifetime is one of the important
aspects in characterizing network gaming traffic. Henderson
and Bhatti model session durations in Quake and Half-Life
as an exponential distribution, the only constant failure-rate
lifetime distribution [12]. On the other hand, the duration
of Half-Life game sessions is closely fitted to a Weibull
distribution in [4]. The authors attribute the inconsistent results

Fig. 1. A screen shot of ShenZhou Online

to the influence of various game add-ons. Our modeling differs
from earlier works in that it incorporates network QoS factors
as predictors, which transforms it into a (multiple) regression
problem of lifetime hazard functions. As a result, we can
assess the influence of individual network QoS factors on game
session times.

B. Design of ShenZhou Online

ShenZhou Online is a mid-scale, commercial MMORPG in
Taiwan [20]. There are thousands of players online at any
time. To play, participants must purchase “game points” either
from a convenience store or online. A screen shot of ShenZhou
Online is shown in Fig. 1. The character played by the author
is the man in the center of the screen and with a smiling face
above his head. He is in a market place, where other players
keep stalls. As is typical of an MMORPG, the players can
engage in fights with random creatures, train themselves in
particular skills, participate in marketplace commerce, or take
on a quest.

ShenZhou Online is provided through a number of inde-
pendent game sets, each of which is equivalent in content,
but isolated. The reason for providing identical game sets
is to distribute the workload over a number of servers with
limited game content, e.g., terrain, missions, and creatures in
the virtual world. A game set is logically a “game server”
from the view point of players. Each game set comprises an
entry server, several map servers, and a database server. The
entry server guards the entrance to the game world, and game
clients must connect to it first to “recall” the specified character
from the database before their adventure. The game world is
partitioned into a number of maps, provided by several map
servers. When a character moves across map boundaries, if the
new map is provided by a different map server, the game client
will disconnect from the original map server and establish
a connection with the new map server. In addition, since a
credit account is allowed to own up to four characters in each
game set, players may switch to another character during the
game. The difference between a “character switch” and a “map
switch” is that clients must contact the entry server to save and
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load character data in the former case, while switching maps
does not require contact with the entry server.

Based on the above-mentioned mechanisms, we define three
types of session: 1) map session: the period a character remains
on a map; 2) role session: the period the same character is
used; and 3) game session: the period a player remains in a
game. Since we focus on the time players have been in the
game, i.e., the duration of game sessions, only game sessions
are considered in the rest of this paper. For brevity, we use
“session” to denote game session(s), unless otherwise stated.

ShenZhou Online uses TCP as its network transport proto-
col. Although TCP is not designed for real-time communica-
tion, it has not been proved as yet whether it is suitable for
MMORPG message transmission. However, from our analysis,
TCP’s loss recovery mechanism makes packet loss the major
component of those disturb game play, whereas the situation
could be relieved by using a more lightweight protocol which
only recovers dropped packets whenever necessary.

III. TRACE DESCRIPTION

In this section, we first describe the setup and network
topology of the traffic measurement. We then address the
method to infer game sessions from the packet-level trace.
Finally the extracted game sessions are summarized.

A. Measurement Setup

To properly evaluate the relationship between game playing
times and network conditions, a packet-level trace is necessary
to infer QoS metrics, such as packet delay times and packet
loss rates. With the assistance of ShenZhou Online staff, we
set up a traffic monitor alongside the game servers. The traffic
monitor is attached to a layer-4 switch upstream of the LAN
containing the game servers (we call it the “game LAN”). The
“port forwarding” capability of the tapped switch is enabled
so that all inbound/outbound game traffic is forwarded to our
monitor as a copy. To minimize the impact of monitoring, all
remote management operations are conducted via an additional
network path, i.e., the game traffic and management traffic
do not interfere with each other. The network configuration

TABLE II

SUMMARY OF GAME SESSIONS

Trace # Sess. # Cens. Min. Median† Max.

N1 7, 597 3, 331 (44%) 27 sec 122 min 487 min
N2 7, 543 1, 774 (24%) 22 sec 86 min 729 min

Total 15, 140 5, 105 (34%) 22 sec 100 min 729 min
† Estimated with the Kaplan-Meier curve (Equation 1).

of the game servers and the traffic monitor is depicted in
Fig. 2. The traffic monitor is a FreeBSD PC equipped with
Pentium 4, 1.5 GHz and 256 MB RAM. We use tcpdump
with kernel built-in BPF to obtain traffic traces. Because of
the restrictions of the network topology, the switch forwards
all traffic sent to and from the game LAN to the monitor,
including non-game-playing traffic such as HTTP, DNS and
SMB packets. These unwanted traffic types are filtered out
using the filtering support of tcpdump. Due to data privacy and
storage considerations, only IP and TCP headers are recorded.

Owing to the large volume of game traffic, logging only
packet headers takes less than three hours to fill up our 70
GB hard disk; however, a three-hour trace is too short for a
lifetime analysis as the average session time of MMORPGs is
between 70–120 minutes according to statistics from Japan [1].
To prolong the trace time, we randomly choose a subset of
game sets for each trace—only packets corresponding to the
selected game sets are logged. We then take two packet traces,
N1 and N2, to record traffic for two- and three-game sets,
respectively. Since each game set is identical in content and
configuration, we assume players in different game sets do not
exhibit significantly different behavior. We purposely captured
two traces (one on a Sunday and one on a Monday) and
took them as representatives of lifetime patterns on weekends
and weekdays, respectively. A summary of the traffic traces is
listed in Table I.

B. Session Composition

From the packet trace, we can easily identify a map session
since it is semantically equivalent to a TCP connection.
Unfortunately, a game session cannot be easily recognized
because it involves a set of connections. However, as we
know the game’s design, we can obtain game sessions by the
following composition rules:

• If the intervals between adjacent map sessions of a game
client are less than 30 sec, and no “character switch”
request intervenes, the map sessions are combined to form
a role session.

• If the intervals between adjacent role sessions of a
game client are less than 120 sec, the role sessions are
combined to form a game session.

The thresholds, 30 sec and 120 sec, are conservative estimates
so that most map switches and character switches are finished
in the interval. We note that different threshold values do
not noticeably affect our modeling, since only a few sessions
involve long-duration map or character switches.
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TABLE I

SUMMARY OF GAME TRAFFIC TRACES

Trace Sets Date Time Period Drops Conn. Pkt. (in / out / both) Bytes (in / out / both)

N1 3 8/29/04 (Sun.) 15:00 8 hr. 0.003% 57, 945 342M / 353M / 695M 4.7TB / 27.3TB / 32.0TB
N2 2 8/30/04 (Mon.) 13:00 12 hr. ?† 54, 424 325M / 336M / 661M 4.7TB / 21.7TB / 26.5TB

† The drop count reported by tcpdump is zero, but we actually found some packets are dropped at the monitor.

TABLE III

SUMMARY OF NETWORK PERFORMANCE EXPERIENCED BY GAME SESSIONS

Trace RTTmin RTTmean RTTmax RTTsd Lossclient
† Lossserver

† Losstotal
†

N1 48.8 ms 176.8 ms 839.0 ms 63.4 ms 0.13% / 57.9% / 46.2% 0.10% / 27.0% / 61.3% 0.08% / 35.5% / 64.1%
N2 49.3 ms 176.4 ms 792.3 ms 61.9 ms 0.12% / 62.5% / 48.3% 0.10% / 18.5% / 61.5% 0.08% / 50.1% / 64.8%

Total 49.1 ms 176.6 ms 815.7 ms 62.6 ms 0.12% / 62.5% / 47.2% 0.10% / 27.0% / 61.4% 0.08% / 50.1% / 64.5%
† The format of these columns: “geometric mean / maximum / percentile of sessions with at least one packet loss.”

C. Trace Summary

We summarize the derived game sessions in Table II. A
total of 15, 140 sessions were observed with 5, 105 sessions
censored. The median session time of 100 minutes agrees with
the statistics in [1], which reports the average session time is
around 70–120 minutes for a number of Korean MMORPGs
played in Japan.

The round-trip times and packet loss rates for game sessions
are listed in Table III. The average RTT of around 180 ms
looks reasonable for playing MMORPGs [13]. However, 10%
of the sessions experienced an average loss rate ≥ 1%, and
3% of the sessions had a loss rate ≥ 5%. Does such a degree
of loss influence players to continue a game or leave it? To
answer this question, in the later sections, we progressively
demonstrate how players’ game times are related to their
network experiences.

IV. METHODOLOGY

In this paper, we analyze the relationship between game
playing times and network QoS by a survival analysis ap-
proach [14]. We adopt this statistical methodology for two
reasons: 1) a significant number (34%) of observed sessions
are censored, i.e., only a portion of a session’s duration is
observed by our measurement, while methods in survival
analysis are capable of handling such uncertainty; and 2) the
relationship between game playing times and network QoS
can be properly assessed by a transformation to a (multiple)
regression problem, which corresponds to the notable Cox
Proportional Hazards model [7] in survival analysis.

Even though our traces take 8 and 12 hours respectively,
34% of the sessions are censored. Since game servers shut-
down and carry out maintenance on a daily basis, we argue
that the censoring of sessions is inevitable, either explicitly
or implicitly. Our approach leads to explicit censoring, i.e.,
sessions are censored by the choice of trace periods (see
Fig. 3). On the other hand, if we take traces over an entire
day, players are implicitly censored by the prearranged daily
shutdown. In this scenario, some players may leave the server
ahead of the scheduled shutdown, while others may stay until
they are forcibly disconnected. For example, if the server shuts
down at 11:00 AM, a player who leaves at 10:30 may be

(T1,1)

(T3,0)

(T2,0)

(T4,0)

observation start observation end

Fig. 3. Our measurement setup leads to explicit censoring of game sessions.
The four possible censoring scenarios are depicted with notation (t, s), where
t is the observed duration and s is the censoring status.

due to the daily maintenance or other reasons. Because of the
uncertainty of implicit censoring, we use explicit censoring as
it reflects the “true” censoring status more accurately.

By the conventions of survival analysis, we denote a player’s
departure as an event or a failure. An indicator variable, si,
the censoring status, is used to indicate whether a session, i,
is censored: thus si = 1 means an event has occurred (not
censored) and vice versa, as illustrated in Fig. 3.

A survival function is commonly used to describe the
lifetime pattern of an object or a set of observations. In our
context, the survival function is defined as:

S(t) = Pr(a session that survives longer than time t)
= 1 − Pr(a session that fails before,

or is equal to time t)
= 1 − F (t),

where F (t) is the cumulative distribution function (CDF) of
session times. A standard estimator of the survival function,
proposed by Kaplan and Meier [15], is called the Product-
Limit estimator or the Kaplan-Meier estimator. Suppose there
are n distinct session times t1, t2, . . . , tn in ascending order
such that t1 < t2 < . . . < tn, and that at time ti there are di

events and Yi active sessions. The estimator is then defined as
follows for all values of t ≤ tn:

Ŝ(t) =
∏

ti≤t
Pr[T > ti|T ≥ ti]

=
{

1 if t < t1,∏
ti≤t [1 − di

Yi
] if t1 ≤ t.
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Ŝw0(t): weekday
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For observations with ties, if the times are continuous in
essence and later discretized by measurement, which is the
case with game session times, a practical solution is to add a
small amount of “noise” so that all times are unique. Following
the estimate of the survival function, the pth quantile of the
lifetime, tp, can then be obtained by

tp = inf{t : Ŝ(t) ≤ 1 − p}. (1)

We use this equation repeatedly to estimate the median session
time as t0.5 for a group of sessions.

In addition to the survival function, a frequently used
quantity in survival analysis is the hazard function, or the
hazard rate. It is also known as the conditional failure rate in
reliability engineering, or the intensity function in stochastic
processes. The hazard rate is defined by

h(t) = lim
∆t→0

Pr[t ≤ T < t + ∆t|T ≥ t]
∆t

.

A related quantity is the cumulative hazard function H(t)
which is defined by

H(t) =
∫ t

0

h(u)du = − ln[S(t)].

The hazard function gives the instantaneous rate at which
failures occur for observations that have survived at time t.
The quantity h(t)∆t may therefore be seen as the approximate
probability that a player who has been in a game for time t
will leave the game in the next ∆t period, given that ∆t is
small. The hazard function plays an important role in the Cox
regression model in that the hazard rate of session times h(t)
is taken as the response variable of network QoS factors, as
we shall discuss in Section VI.

V. SESSION CHARACTERISTICS

In this section, we first examine the day of the week effect.
We then clarify the correlation between game playing times
and network QoS by correlational plots and statistical tests.

A. The Day of the Week Effect

Having two traces, captured on a weekend day and a week-
day respectively, an intuitive question we want to answer is:
Do game playing times on these two days differ significantly?
We use the estimated survival functions for sessions on both
days to answer the question. As depicted in Fig. 4, the median
lifetimes are 123 minutes and 84 minutes for the weekend
and weekday, respectively. We can highlight this difference in
another way: while 30% of users play for more than 5 hours
on a weekend, only 18% of users stay for the same time on a
weekday.

We use the the Mantel-Haenszel test (also known as the
log-rank test) [10] to judge whether a set of survival functions
is statistically equivalent. The log-rank test, with the null
hypothesis that both survival functions are equivalent, reports
p = 1 − Prχ2,1(245) ≈ 0, which strongly suggests the
existence of a day of the week effect.

B. Correlation with Network QoS

MMORPGs are different in that there are no explicit
victories or defeats, scores, or rankings, and the playing
time is a more appropriate indicator of the player’s gaming
experience. Therefore, we expect players’ staying times in
MMORPGs will be affected, to some extent, by the network
QoS. Instead of asking how network QoS affects game playing
times, we begin with a more fundamental question: “Do
lifetime patterns differ significantly under different network
conditions?” To answer this, we plotted the survival curves for
sessions grouped by the minimum RTT experienced by each
session, and then checked the significance of the differences
between the groups. In Fig. 5, the survival curves of three
session groups, divided by 25% (38 ms) and 75% (56 ms)
percentiles, are plotted. Visually these three curves diverge
significantly from each other, and the log-rank test reports
p = 1 − Prχ2,2(342) ≈ 0, which indicates the sessions in
these groups were far from equivalent. The median session
times of groups 1 and 3 were 145 minutes and 66 minutes,
respectively, which gives a high ratio of 2.2. Therefore, we
confirm a pronounced correlation between game session times
and the minimum RTT the sessions experienced.

In addition to network latency, network loss is also consid-
ered an important QoS factor related to gaming experience.
Thus, we also assess the relevance of network loss to session
times by contrasting the survival curves of sessions that
experience different levels of network loss, as shown in Fig. 6.
The sessions are classified into three groups by zero loss
rate and 0.5% (≈ 90 percentile). Intuitively we expect that
higher loss rates lead to shorter game sessions; however,
group 1, which incurs no packet loss, has a much shorter
average duration (52 minutes) than groups 2 and 3 (191 and
97 minutes respectively). This can be explained by the fact
that short sessions are more likely to be lucky enough not to
incur any packet loss. If we focus on those sessions with at
least one packet loss, the median session time in group 3 is
almost half that in group 2. Also, the log-rank test reports
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Ŝ3(300)=0.16
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Ŝ3(66)=0.5

Fig. 5. Survival curves for sessions with different levels of minimum RTT

0 200 400 600

0.
2

0.
4

0.
6

0.
8

1.
0

Session time (minutes)

S
ur

vi
va

l f
un

ct
io

n

0 100
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p = 1 − Prχ2,2(1277) ≈ 0, which suggests a significant
connection between packet loss rates and session times.

As the relevance of network QoS has been established, we
can now check the correlation between gaming times and
various QoS factors, namely, minimum RTT, average RTT,
standard deviation of RTT (RTT std dev for short), mean
queueing delay, client packet loss rates, and server packet
loss rates. For brevity, hereafter, we use “client loss rate” for
the estimated loss rate of client packets; “server loss rate” is
similarly used. In Fig. 7, the median times for session groups
with different levels of network quality as well as smoothed
lowess curves [6] are plotted. For network delay factors, we
first detect a “threshold” effect, that is, a negative correlation
between playing times and network delay is only apparent
within certain range. For example, the negative correlation
of session times with minimum RTT exists only when the
minimum RTT is smaller than 120 ms (cf. Fig. 7(a)). Despite
the threshold effect, all network delay factors show a negative
correlation with game times within certain ranges. On the
other hand, the network loss shows a more consistent negative
correlation with gaming times without the threshold effect,
while the slope of the downward trend gradually becomes
flatter for higher loss rates.
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Fig. 7. Correlation of session times with network QoS factors

However, we note that simple correlational analysis does not
reveal the true impact of individual QoS factors, because they
are highly collinear. For example, the correlation coefficient
between average RTT and minimum RTT and that between
average RTT and RTT std dev are both higher than 0.6.
Given that all the three RTT-related factors have significant
correlations with session times, which one is the “true source”
of user dissatisfaction is unclear. Players could be particularly
unhappy because of one of the factors, or be sensitive to all of
them. Thus, to determine the impact of individual factors, we
adopt regression analysis, which models game playing times
as responses to various QoS factors, in the next section.

VI. PROPORTIONAL HAZARDS REGRESSION

In this section, using the Cox proportional hazards model, a
semi-parametric regression method, we assess how each indi-
vidual QoS factor influences players’ willingness to continue
with a game or leave it. In the following, we briefly introduce
the Cox regression model. Before the model can be fitted, we
check the validity of the assumptions and carry out necessary
adjustments. Then after developing the model, we assess its
adequacy by checking the outliers and performing goodness-
of-fit tests. Finally we validate the model by prediction, and
conclude this section with a discussion on the modeling
results.

In the correlational analysis (Section V-B), we showed that
sessions with and without packet loss exhibit different lifetime
patterns. To make the regression model parsimonious, and
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since sessions that incur no packet loss are of no interest to us
as they contain no information about the relationship between
session times and network loss, we exclude those sessions
from our modeling. As a result, 6, 680 out of 15, 140 sessions
remain.

A. The Cox Regression Model

The Cox proportional hazards model [7] has long been the
most used procedure for modeling the relationship between
covariates and censored outcomes. In the Cox model, we treat
potential network QoS factors, e.g., the average RTT, as risk
factors or covariates; in other words, as variables that could
cause failures. In this model, the hazard function of each
session is decided completely by a baseline hazard function
and the risk factors related to that session. We define the risk
factors of a session as a risk vector Z. Cox’s basic model is
defined as:

h(t|Z) = h0(t) exp(βtZ) = h0(t) exp(
p∑

k=1

βkZk), (2)

where h(t|Z) is the hazard rate at time t for a session
with risk vector Z; h0(t) is the baseline hazard function,
which is computed during the regression process; and β =
(β1, . . . , βp)t is the coefficient vector that corresponds to the
influence of each risk factor. Dividing both sides of Equation 2
by h0(t) and taking the logarithm, we obtain

log
h(t|Z)
h0(t)

= β1Z1 + · · · + βkZk =
p∑

k=1

βkZk = βtZ, (3)

where Zp is the pth factor of the session. The right side of
Equation 3 is a linear function of covariates and their respec-
tive coefficients, i.e., it is transformed to a linear regression
problem. The Cox model possesses the property that, if we
look at two sessions with risk vectors Z and Z′, the hazard
ratio (ratio of their hazard rates) is

h(t|Z)
h(t|Z′)

=
h0(t) exp[

∑p
k=1 βkZk]

h0(t) exp[
∑p

k=1 βkZ ′
k]

= exp[
p∑

k=1

βk(Zk − Z ′
k)], (4)

which is a time-independent constant, i.e., the hazard ratio of
the two sessions is independent of time. For this reason the
Cox model is often called the proportional hazards model. On
the other hand, this imposes the most strict restriction when
applying the Cox model, because the validity of the model
relies on the assumption that the hazard rates for any two
sessions must be in proportion all the time.

B. Proportional Hazards Check for Categorical Variables

We begin the model development by checking whether the
proportional hazards assumption is met for our data set. We
first check the assumption for the categorical variables in
this subsection and for the continuous factors in the next
subsection.
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Fig. 8. Graphical check for proportionality of the weekend factor

TABLE IV

TIME-DEPENDENT COEFFICIENTS BEFORE ADJUSTMENT

Variable tho chisq p Variable tho chisq p

rtt.min -0.04 5.40 0.02 cl -0.17 114.17 0.00
rtt.sd 0.03 3.03 0.08 sl -0.34 5.61 0.02

TABLE V

TIME-DEPENDENT COEFFICIENTS AFTER ADJUSTMENT

Variable tho chisq p Variable tho chisq p

rtt.min 0.01 0.38 0.54 cl -0.03 1.85 0.17
rtt.sd 0.01 0.21 0.65 cl.med -0.01 0.19 0.67
sl -0.03 1.60 0.21 cl.hi 0.01 0.11 0.74
sl.hi 0.01 0.34 0.56

For modeling purposes, we set a dichotomous variable,
weekend, indicating if a session was observed on the week-
end. A graphical check for the proportional hazards assump-
tion is first performed by grouping sessions by the categorical
variable, and plotting the cumulative hazard function Hi(t)
versus t for each group i in a log-log scale. If the proportional
hazards assumption is met, the log survival curves should
steadily drift apart. Specifically, for a dichotomous variable,
the assumption requires that the hazard ratio between “true”
and “false” sessions is a constant. As Fig. 8 shows, the two
curves intersect at t = 2 minutes and gradually deviate from
each other thereafter, which indicates that weekend violates
the proportionality assumption.

Now that a non-proportional categorical variable is present,
to accommodate the variable, we use the stratified Cox model.
The model augments the basic Cox model by incorporating
the support of strata, where each stratum has its own baseline
hazard function. For a Cox model with m strata (m = 2 in
our modeling), Equation 3 is generalized to

hi(t|Z) = h0i(t) exp(βtZ), i = 1, . . . , m.

Note that, although the baseline hazard function for each
stratum can be different, the coefficient vector β is shared
by all strata.
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Fig. 9. The original (before adjustment) functional form of the four factors

C. Functional Form Identification and Adjustment

For a continuous variable, Cox’s proportional hazards as-
sumption implies that a linear relationship between the co-
variates and the hazard function, i.e., it implies that the ratio
of risks between a 20 ms- and a 30 ms-average RTT session is
the same as that between a 90 ms- and 100 ms-average RTT
session. Thus, to proceed with the Cox model, we must ensure
our predictors have a linear influence on the hazard functions.

We explore the correct functional form for the covariates by

E[si] = exp(βtf(Z))
∫ ∞

0

I(ti � s)h0(s)ds (5)

where f(z) is the “true” functional form for the covariate z.
This is just a Poisson regression model if h0(s) is known,
while the value of h0(s) can be approximated by fitting a
Cox model with unadjusted covariates. We can then fit the
Poisson regression model with smoothing spline terms for each
covariate [19]. The fitted terms for our QoS factors, as well
as their two-standard-error confidence bands, are plotted in
Fig. 9. Note that the average RTT and mean queueing delay
are not included in the model, since these two terms become
insignificant once the minimum RTT is incorporated into the
model. Also, the minimum RTT, which can be seen as an
approximation of round-trip propagation delay time, describes
the observations much better from a log-likelihood point of
view. From the graph, we observe that both the minimum
RTT and RTT std dev have roughly proportional influence
in the dense region, i.e., the region where observations are
concentrated (note the “rugs” at the bottom of each plot). The
vertical dashed lines denote a possible cutoff line that reflects
the “threshold” effect we observed in Section V-B. However,
the influence of loss rates is not proportional to their magnitude
in any case; thus, modeling their influence as linear would
not be realistic or accurate. A solution for non-proportional
variables is the scale transformation. We find that after taking
logarithms, the transformed variables, cl and sl, for client loss
rates and server loss rates respectively, have a smoother and

−
0.

2
0.

0
0.

2
0.

4

Minimum RTT (ms)

Im
pa

ct

20 50 100 200

45 ms

70 ms

(removed area) (removed area)

Estimated impact
2SE conf. band
Approximation

Fig. 10. The functional form of the rtt.min factor

approximately proportional influence on the failure rate. That
is, the failure rate is proportional to the scale of the loss rate,
rather than their magnitude (Figs. 12 and 13).

Despite the threshold effect and the non-strict-linearity of
our covariates, we first test whether the proportional hazard
assumption holds. One test is to fit the same data to a
more generalized Cox model which allows time-dependent
coefficients [19]. In this model, Equation 3 is extended to

log
h(t|Z)
h0(t)

=
p∑

k=1

β(t)kZk =
p∑

k=1

(βk + θk ln(t))Zk,

where the coefficient vector β(t) is not constant, but time-
dependent. The null hypothesis, which indicates the confor-
mance of the proportional hazards assumption, corresponds
to θk ≡ 0, k = 1, . . . , p. In this case, β(t) in the extended
model reduces to β in the standard model. The test is similar
to a standard linear trend test in that it tests whether a
significant non-zero slope exists by a ordinary least square
regression. The test results of our current model are listed
in Table IV. In the table, the column rho is the Pearson
product-moment correlation between the scaled Schoenfeld
residuals and ln(t); chisq gives the test statistics, which has
an asymptotic χ2

1 distribution. The significance values show
that, except for rtt.sd, other covariates reject the proportional
hazards assumption at significance level 0.05, and all are
rejected at level 0.1. Thus, we need some adjustments for these
covariates so that the proportionality assumption holds.

First we inspect the functional form of rtt.min shown in
Fig. 10. We consider the pronounced threshold effect is plau-
sible in that a minimum RTT smaller than a certain threshold
will not make a difference to the gaming experience, i.e., a 10
ms- and 20 ms-minimum-RTT should be indistinguishable by
players. On the other hand, for large minimum-RTTs, which
are nearly always experienced by sessions initiated in other
countries, players must be accustomed to struggling against
large network latency which is unavoidable. Therefore, to put
rtt.min into the Cox model, we need to cut out the non-
proportional-influence sections. For this purpose, we search
for the best thresholds (cut-off points) by minimizing the
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chisq statistic in the above proportional hazard test. The
resulting thresholds of 45 and 70 ms, shown in Fig. 10,
bracket the linearly influential section of rtt.min. By similar
arguments, rtt.sd also exhibits a threshold effect, but it only
applies to large RTT fluctuations, i.e., RTT std dev causes
players approximately proportional discomfort as long as its
magnitude is not too high. The computed threshold is 470 ms.
It can be shown that a linear approximation to RTT std dev’s
true influence with rtt.sd ≤ 470 ms is appropriate, as the line
is consistently within the confidence band (Fig. 11).

The covariates of the packet loss rates, cl and sl, shown
in Figs. 12 and 13 respectively, do not exhibit the threshold
effect, but their influence is clearly non-linear. We choose to
approximate their influence by linear splines, that is, piecewise
linear segments connected by “knots,” while the locations of
the knots are obtained using a minimum partial log-likelihood
approach. By incorporating new covariates, cl.med and cl.hi,
for cl, and sl.hi for sl, we model the influence of cl and sl
by three- and two-segment-linear splines, respectively, so that
the whole linear spline function is within the corresponding
confidence bands (see Fig. 12 and Fig. 13). The new covariates
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Fig. 13. The functional form of the sl factor with a linear-spline approxi-
mation

are defined by

cl.med =
{

cl − (−3.72) if cl ≥ −3.72,
0 otherwise;

cl.hi =
{

cl − (−2.37) if cl ≥ −2.37,
0 otherwise;

sl.hi =
{

sl − (−3.71) if sl ≥ −3.71,
0 otherwise,

where the knots of cl are −3.72 (≈ 0.02%) and −2.37 (≈
0.43%) respectively, and the knot of sl is −3.71 (≈ 0.02%).
The integrated influence of the client loss rate and the server
loss rate can then be computed by cl × βcl + cl.med ×
βcl.med+cl.hi×βcl.hi and sl×βsl+sl.hi×βsl.hi respectively.
Incorporating these new covariate reduces the log-likelihood
by 25.7, which is significant for a chi-square distribution with
three degrees of freedom. After the covariates are adjusted
for proportionality assumption, we perform the proportional
assumption test again, and list the results in Table V. Ac-
cording to the table, all covariates do not reject the linearity
hypothesis at significance level 0.1 after the adjustments,
i.e., all covariates are approximately linear in terms of their
influence on game playing times.

Now that the proportional hazards assumption is affirmed,
we adopt a stepwise approach for the selection of significant
interaction terms. As no interaction terms are significant at
0.05, we keep the model intact with the original seven co-
variates. We defer the presentation and discussion of the fitted
model to later sections (Section VI-F and VI-G), following
a check for outliers and a goodness-of-test for the model’s
adequacy.

D. Outlier Detection

To assess the impact of individual sessions in a regression
model, the most direct measure of influence is the jackknife
value Ji = β̂ − β̂(i), where β̂(i) is the result of a fit
that includes all observations, except session i. Because the
jackknife involves a significant amount of computation, we use
the dfbeta residuals to approximate the jackknife value [19].
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Fig. 14. Cox-Snell residuals plot for overall goodness of test

Note that dfbeta residuals have the opposite implication of
the jackknife, i.e., they indicate the change of β with the
inclusion of a particular individual. The potential outliers we
identified are mostly sessions that experience unfavorable net-
work conditions, but have rather long durations. We determine
whether a session is “reasonable” by two metrics: cli.prate,
the average client data packet rate; and srv.prate, the average
server data packet rate. The former can be seen as an indicator
of player activities, such as movement and attack, while the
latter indicates the degree of interaction, since server packets
primarily contain status updates of the nearby environment. We
treat potential outliers whose cli.prate or srv.prate is smaller
than their 20% percentile as actual outliers and remove them
from the trace. The rationale behind this is that low cli.prate
and srv.prate indicate that the participants did not actively
play the game, or even left the game idle for some period;
therefore their corresponding session times are less reliable.
As a result, 38 out of 3, 027 sessions were removed according
to the above rules.

E. Assessment of Model Adequacy

We use the Cox and Snell residuals to assess the overall
goodness-of-fit of our model [8]. If the model is correctly
fitted, the random variable ri = Ĥ(ti,Zi) has an exponential
distribution with a hazard rate of 1, where Ĥ(ti,Zi) is the
estimated cumulative hazard rate for session i with risk vector
Zi. Accordingly, the plot of ri and its Kaplan-Meier estimate
of survival function Ŝ(r) will be a straight line through the
origin with a slope of 1. The graphical check is plotted in
Fig. 14, in which most sessions are along a 45◦ straight
line, especially in the dense area. A few sessions (≈ 4%)
deviate from the straight line. We believe these sessions are
due to QoS-tolerant game fans who experience higher delay
variations and loss rates, but still play the game about four
times longer than regular players. Except for the divergence
due to such game fans, most sessions fit the model very well;
therefore, the adequacy of the fitted model is confirmed.

TABLE VI

COEFFICIENTS IN THE FINAL MODEL

Variable Coef Exp(Coef) Std. Err. z P > |z|
rtt.min 19.20 2.2e+08 3.90 4.93 8.29e-07
rtt.sd 4.54 94 0.52 8.70 0.00e+00
cl 0.70 2 0.15 4.85 1.23e-06
cl.med -0.52 0.59 0.18 -2.87 4.07e-03
cl.hi 0.64 1.9 0.11 5.76 8.29e-09
sl 0.45 1.6 0.16 2.88 4.00e-03
sl.hi -0.35 0.7 0.17 -2.03 4.25e-02
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Fig. 15. Predicted times vs. actual median times for session groups sorted
by their risk scores

F. Model Validation and Interpretation

In Table VI, we present the estimated coefficients along
with their standard errors and significance values for the final
model. All covariates in the model are significant at level 0.05.
We can validate the model by prediction; that is, given a net-
work QoS vector Z, we can predict the most probable session
time as the median time of the estimated survival curve, i.e.,
inf{t : S(t|Z) ≤ 0.5}, while S(t|Z) = exp(−H(t|Z)) is the
computed survival function for the session with risk vector Z.
By the relation, we sort and group all sessions by their risk
scores, βtZ, and predict session times based on the median
risk score in each group. The actual median times, predicted
times, and their 50% confidence bands are depicted in Fig. 15.
Note the confidence bands are asymmetric, since the standard
errors are in the form of hazard rates. We find that the predicted
times are rather close to the actual median times, especially
on weekdays, and for most groups the actual median times are
within the 50% predicted confidence bands.

The coefficients in the model, as listed in Table VI, can
be interpreted by hazard ratios (Equation 4). For example,
assuming two players enter a game at the same time and
experience similar network conditions, except for minimum
RTT, where the minimum RTTs they have are 70 ms and
50 ms respectively. The hazard ratio between session times
of these two players can then be computed by exp((0.07 −
0.05)×19.2) ≈ 1.47, where 19.2 is the coefficient of covariate
rtt.min. That is, as long as both players are still online, in
every instant, the probability that player 1 will leave the game
is 1.47 times the probability that player 2 will leave. By this
rule, given QoS factors experienced by any two players, we
can compute the hazard ratio between their game sessions.
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Fig. 16. The influence of each covariate in practice, i.e., predicting duration
by quantiles of QoS factors in our game trace

G. Discussion

Since we have shown that network conditions significantly
impact on game playing times, one may ask: How do these
QoS factors influence the behaviors of game players “in
practice”? To answer this, we try to determine a factor’s actual
influence by predicting session times with measured values,
i.e., by applying the magnitude of QoS factors from their
distributions in our game trace, as shown in Fig. 16. When
observing a QoS factor, the other factors are set equal to their
respective medians. Note that we purposely place four curves
separately, since the predictions for different factors cannot
be compared directly. We observe that the RTT std dev and
client loss rate show rapidly declining trends at their tails (top
quantiles). Specifically, sessions with the top 10% RTT std
dev (≥ 80 ms) are affected by RTT fluctuations (also known
as delay jitters) much more than other sessions. Similarly,
sessions with the top 20% client loss rate (≥ 0.5%) are
affected by client packet loss much more than other sessions.
We remark that RTT fluctuations and client packet loss are
two major potential opponents to a smooth game playing
experience because of their strong impact at high quantiles.

We can also determine the factors’ actual influence by the
ratio of predicted duration between different quantiles. As
shown in Table VII, the predicted duration of 1% percentile
client loss rate (≈ 0.002%) is 9.3 times more than that of
99% percentile client loss rate (≈ 25%)! In contrast, the
same quantity for the minimum RTT is only 1.5. We can
also combine the influence of network latency and loss, the
1% versus 99% scenario shows that network loss has a much
higher impact (ratio of 6.8) than latency (ratio of 2.6).

Another of our concerns is to quantify the relative influence
of QoS factors. We assess their relative weights by computing
the risk score for each QoS factor with the other factors set
to their respective minimum values. The relative influence of
each QoS factor, which is normalized by a total risk score of
100, is shown in Fig. 17. On average, the degrees of players’

TABLE VII

RATIO OF PREDICTED DURATION BETWEEN DIFFERENT QUANTILES

Ratio rtt.min rtt.sd closs sloss

25% vs. 75% 114:96=1.2 109:105=1.0 118:98=1.2 111:102=1.1
5% vs. 95% 121:85=1.4 112:79=1.4 192:59=3.3 144:93=1.6
1% vs. 99% 122:82=1.5 117:43=2.7 252:27=9.3 171:90=1.9

Ratio rtt.min + rtt.sd closs + sloss

25% vs. 75% 128 : 123 = 1.0 173 : 147 = 1.2
5% vs. 95% 132 : 95 = 1.4 271 : 69 = 3.9
1% vs. 99% 142 : 54 = 2.6 373 : 55 = 6.8
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Fig. 17. Relative influence of different QoS factors in each session

“intolerance” to minimum RTT, RTT std dev, client loss rate,
and server loss rate are in the proportion of 1:2:11:6. That is,
a player’s decision to leave a game due to unfavorable network
conditions is based on the following levels of intolerance:
client packet loss (55%), server packet loss (30%), RTT
fluctuations (10%), and minimum RTT (5%).

The above results highlights the fact that delay jitters are
less tolerable than absolute delay. While most earlier QoS-
sensitivity studies completely neglected the impact of delay
jitters, we argue they are more relevant in players’ network
experience. Therefore, while current network games primarily
rely on a “ping time” to select a server for a smooth game play,
delay jitters should also be considered in the server selection
process. We also find that server packet loss is relatively
more tolerable than client packet loss. We consider this to be
reasonable, since client packet loss delays players’ commands
to the server, while server packet loss delays the response and
state updates. Nowadays MMORPGs are server-centric so that
no command becomes valid until it has been processed by the
server. Therefore, delaying players’ commands, such as attack
or casting spells in combat, is much more annoying than just
delaying the response and screen updates.

Comparing the influence of network loss and network
latency, we find a ratio of 17:3, or nearly six to one. However,
in an earlier study on Unreal Tournament 2003 [3], the authors
reported that though network latency in a typical range (0 ms –
200 ms) has a statistically weak impact on user performance,
network loss of a typical range (< 6%) has no impact on
user performance. We consider that the difference between
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our result and those of [3] is due to the choice of underlying
transport protocol. That is, while most FPS games transmit
messages via UDP, many MMORPGs, including ShenZhou
Online, use TCP. Since TCP provides in-order delivery and
congestion control, a lost packet will cause the subsequent
packets to be buffered until it is successfully delivered, and,
furthermore, cut down TCP’s congestion window. On the other
hand, packet loss incurs no overhead in UDP. In short, for
TCP-based online games, packet loss incurs additional packet
delay and delay jitters, and therefore causes further annoyance
to players. From this point of view, and because of TCP’s
high communication overhead [5], we consider that more
lightweight protocols would be more appropriate for realtime
interactive network games.

VII. CONCLUSION

In this paper, we analyze the lifetimes of game sessions de-
rived from ShenZhou Online, a commercial MMORPG. Using
a survival analysis approach, we investigate the relationship
between network QoS and session times, and find that both
network delay and network loss significantly affect a player’s
willingness to continue a game or leave it. For ShenZhou
Online, the degrees of player “intolerance” of minimum RTT,
RTT jitter, client loss rate, and server loss rate are in the
proportion of 1:2:11:6. This indicates that: 1) while many net-
work games provide “ping time” to players to facilitate server
selection, it would be more useful to provide information about
delay jitters; and 2) players are much less tolerant of network
loss than delay. This is due to the game designer’s decision
to transfer data in TCP, where packet loss incurs additional
delay and delay jitters, and therefore causes further annoyance
to players.
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