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Abstract 

In this paper, we focus on developing a new relaxed Givens 

rotations (RGR)-RLS algorithm and the corresponding 

RGR-RLS systolic array. The resulting algorithm and 

architecture possess fine-grain pipelining, nearly the same 

convergence as the QRD-RLS, good robustness for , and 

square-root free computation with a little area overhead. 

I. Introduction 

 Recursive least squares (RLS) based adaptive digital 

filters have wide applications in adaptive equalization [1], 

beamforming and image processing. Historically, the 

gradient descent algorithms such as the least-mean-square 

(LMS) and delay LMS (DLMS) [2] algorithms are very 

cost-effective but unfortunately they are not suitable for all 

applications. The incurred major problem based on the 

LMS/DLMS algorithm is the slow convergence rate for a 

broad dynamic range signal environment. The convergence 

of the RLS algorithm is faster than that of the LMS and 

DLMS algorithms, but its computational complexity higher 

than the latter is an order of magnitude. The QR 

decomposition (QRD)-RLS algorithm [3-4] using 

triangularization process is the most promising RLS 

algorithm since it is known to have good numerical 

properties and can be mapped to a coarse-grain pipelining 

systolic array. The QRD-RLS algorithm is, hence, very 

suited to VLSI implementation. 

The critical period of the QRD-RLS algorithm is limited 

by the operation time in the recursive loop of the individual 

cells. In many applications such as equalization and image 

restoration, very high throughput would be desired, and the 

QRD-RLS algorithm may not be capable of operating at such 

high throughput. In order to overcome this drawback, some 

research has provided several schemes as follows [5, 6]. 

However, these algorithms also have the same fine-grain 

pipelining difficulty as the QRD-RLS algorithm. Apart from 

being used to increase speed, fine-grain pipelining can also 

be used to reduce power dissipation in low to moderate speed 

applications. To increase the speed of the QRD-RLS 

algorithm, the look-ahead technique leading to fine-grain 

pipelining can be used. However, using look-ahead in the 

QRD-RLS algorithm results in large hardware overhead. 

Consequently, this technique is not practical for the 

QRD-RLS algorithm. Recently, the STAR-RLS algorithm [7] 

solves the fine-grain pipelining difficulty; however, it 

diverges for small value of the forgetting factor. It is known 

that the smaller value of the forgetting factor results in faster 

convergence than the larger one. In [8], CORDIC-based 

QRD-RLS needs ROM/RAM that consumes a large area to 

implement the architecture. Based on these unsolved 

problems, we are motivated to provide a new algorithm and 

architecture. This paper is organized as follows. We propose 

the RGR-RLS and Pipelined RGR-RLS (PRGR-RLS) 

algorithms as well as architectures in Sections II and III, 

respectively. In Section IV, comparisons and simulation 

results are discussed. Conclusion is given in the last section. 

II. RGR-RLS Algorithm and Architecture 

We are given a time series of inputs )1(x , )2(x , …, 

)(nx , and we want to estimate some desired signal )(id

based on a weighted sum of present sample and a few of the 

past samples. All the data are assumed to be real. In order to 

efficiently approach the optimal solution based on least 

square criterion, the QRD-RLS algorithm using the Givens 

rotations can be applied, where a Givens rotation is defined 

as 

)()(

)()(
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ncns

nsnc
nG , (1) 

The QRD-RLS algorithm at each boundary cell in [1] has the 

following equation 

)()()1()()( 2/1 nxnsnrncnr , (2a) 

)()1( 22 nxnr , (2b) 

where )(nc  is to represent cos  that is a function of 

iteration number n  in the triangularization process and 

)(ns  has a similar definition. At the internal cell, in addition 

to Eq. (2a), another equation can be easily obtained as 

)()()1()()( 2/1 nxncnrnsnb , (3) 

where )(nb  denotes the output of the internal cell. In order 

to bypass square root and achieve fine-grain pipelining, we 

take some approaches to relax the Givens rotation. Therefore, 

the resulting RGR is assumed in the form: 
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Note that )(nRG  is very close to )(nG  after the 

verification of the adaptive equalization experiment. In Eq. 

(2b), there are two cases to be investigated.  

Case 1: )()1(2/1 nxnr

In this case, using the product relaxation, Eq. (2b) can be 

modified as 

2/1

2

2

2/1 )
)1(

)(
1()1()(

nr

nx
nrnr

)1(

)(

2

1
)1(

2/1

2

2/1

nr

nx
nr . (5) 

At the steady-state of Eq. (2b), we see that )(nr  and 

)1(nr  have the same positive sign at the boundary cell. 

Thus, Eq. (5) can be modified as 
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Corresponding to Eq. (2a), we can obtain the relaxed 

functions )(1 nc  and )(1 ns , respectively, as 

1)(1 nc , (7a)  
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The definition of )(nc  and )(ns  are relaxed and then 

defined, respectively, as 
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Applying Eqs. (8a) and (8b), )(nb can be rewritten as 

)()()1()()( 2/1 nxncnrnsnb

)()()1()(
2
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nxncnrns . (9) 

From Eqs. (7a), (7b), (8a) and (8b), we can obtain the first 

RGR as  

1
)1(

)(

)1(2

)(
1

)(

2/1

2/1

nr

nx
nr

nx

nRG . (10) 

Case 2: )()1(2/1 nxnr

In this case, because )()1(2/1 nxnr , we can directly 

obtain the relationship )()1( 22 nxnr . In similar 

fashion, Eq. (2b) can be modified as  

)(2
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Referring to the discussion of [9], the second RGR can be 

obtained as 
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Eqs. (10) and (12) are our proposed RGR. The RGR-RLS 

algorithm can be mapped to RGR-RLS architecture as shown 

in Fig. 1, where the boundary and internal cells are depicted 

in Figs. 2(a) and 2(b), respectively. In Figs. 2(a) and 2(b), the 

symbols MUX , SR , SR , and  denote a multiplexer, 

shift one-bit right register, shift one-bit left register, and 

absolute value of , respectively. When 0  and 1 ,

MUX  selects upper and lower signals, respectively, where 

 is the selection signal. 

III. Pipelined RGR-RLS (PRGR-RLS) Algorithm and 

Architecture 

We go further to debate the fine-grain pipelining issue 

for the proposed boundary and internal cells in the 

RGR-RLS architecture as shown in Fig. 2. Using 1D -step

look-ahead technique, the recursive loop can be written as 
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where 
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Eq. (13) cannot be completely pipelined since the second 

term in Eq. (13) cannot be pipelined. Thus, we apply the 

delay relaxation to Eqs. (13) and (14) as follows 
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where 

otherwise,))((

)()(if,
)(2

)(

)(

2

21

1/2

2

2/1

2

21

Dnxsign

DnxDnr
Dnr

Dnx

Dns

 (16) 

In order to match timing sequence, the relation between 
1

D

and 2D  can be restricted as 

12 DD . (17) 

In similar fashion, Eq. (3) can be written as 
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Therefore, Eqs. (15) to (19b) are called as the PRGR-RLS 

algorithm, which can be mapped onto the same array as 

shown in Fig. 1. The boundary and internal cells for 

PRGR-RLS architecture are depicted in Figs. 3(a) and 3(b), 

respectively. 

IV. Comparison and Simulation Results 

  In this section, first, we compare several architectures 

including the QRD-RLS, STAR-RLS, CORDIC-based RLS, 

and our proposed architecture in terms of critical period, 

orthogonality, robustness for , and need for memory as 

well as square-root. In Table I, we can see that our proposed 

architecture possesses fine-grain pipelining, nearly 

orthogonality that is verified by simulation, good robustness 

I - 38



for , and square-root free with a little area overhead 

among the existing architectures [3, 7, 8]. Therefore, the 

relaxed Givens rotations result in an efficient architecture. 

Next, we verify that the convergence of our proposed 

RGR-RLS algorithm is close to that of the QRD-RLS 

algorithm for adaptive equalization application. The 

simulation environment of the adaptive equalization is set to 

the same as described in [1], where the amount of amplitude 

distortion produced by the channel is set to 3.3 . For fair 

comparisons, we simulate three cases: 2.0 , 5.0 ,

and 9.0 . For small value of  such as 2.0 , the 

learning curves as shown in Fig. 4 with 100 runs show that 

the STAR-RLS cannot converge, but our proposed 

RGR-RLS architecture has similar convergence performance 

to the QRD-RLS architecture. For the second case 5.0 ,

this is the theoretical maximum relaxation error as proved in 

[9]. From the simulation result as shown in Fig. 5, it can be 

clearly seen that the RGR-RLS architecture still maintain 

low relaxation error since our convergence performance is 

close to that of the STAR and QRD-RLS architectures. As 

compared with the LMS (for 027.0 ), QRD-RLS, and 

STAR-RLS architectures, the simulation result as shown in 

Fig. 6 reveals that our pipelined architectures ( 21D  and 

51D ) have better convergence performance than that of 

the LMS algorithm. From Figs. 4, 5, and 6, the proposed 

RGR-RLS algorithm has better orthogonality and robustness 

than the STAR-RLS algorithm.  

V. Conclusion 

   A new look at the Givens rotation is developed in this 

paper. Using the relaxed Givens rotations, the resulting 

algorithm and architecture possess fine-grain pipelining, 

nearly the same convergence as the QRD-RLS, good 

robustness for , and square-root free computation with a 

little area overhead. 
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Fig. 1. Systolic array for the RGR-RLS algorithm. 
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PRGR-RLS architecture. 
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Table I: Comparison Results among Different Architectures 

QRD-RLS PSTAR-RLS CORDIC-Based RLS Our Work 

Critical Period 
asqm TTT2

1

2

D

TTTT swadm

1

Level Wordin the
PeriodCritical

D
1

23

D

TTTT swadm

Orthogonality Exact Approximate Exact Approximate 

Robustness for Good Diverges for small Good Good 

Need for Memory No No Yes No 

Square Root Not Free Free Free Free 
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