
Pipelined RLS Adaptive Architecture Using Relaxed Givens Rotations (RGR)
Lan-Da Van and Chih-Hong Chang*

Chip Implementation Center (CIC), National Science Council,

No. 1, Prosperity Rd. 1, Science-Based Industrial Park, Hsinchu, Taiwan, R.O.C.

*AT CHIP CORPORATION, Taipei, Taiwan, R.O.C.

Abstract

In this paper, we focus on developing a new relaxed Givens

rotations (RGR)-RLS algorithm and the corresponding

RGR-RLS systolic array. The resulting algorithm and

architecture possess fine-grain pipelining, nearly the same

convergence as the QRD-RLS, good robustness for , and

square-root free computation with a little area overhead.

I. Introduction

 Recursive least squares (RLS) based adaptive digital

filters have wide applications in adaptive equalization [1],

beamforming and image processing. Historically, the

gradient descent algorithms such as the least-mean-square

(LMS) and delay LMS (DLMS) [2] algorithms are very

cost-effective but unfortunately they are not suitable for all

applications. The incurred major problem based on the

LMS/DLMS algorithm is the slow convergence rate for a

broad dynamic range signal environment. The convergence

of the RLS algorithm is faster than that of the LMS and

DLMS algorithms, but its computational complexity higher

than the latter is an order of magnitude. The QR

decomposition (QRD)-RLS algorithm [3-4] using

triangularization process is the most promising RLS

algorithm since it is known to have good numerical

properties and can be mapped to a coarse-grain pipelining

systolic array. The QRD-RLS algorithm is, hence, very

suited to VLSI implementation.

The critical period of the QRD-RLS algorithm is limited

by the operation time in the recursive loop of the individual

cells. In many applications such as equalization and image

restoration, very high throughput would be desired, and the

QRD-RLS algorithm may not be capable of operating at such

high throughput. In order to overcome this drawback, some

research has provided several schemes as follows [5, 6].

However, these algorithms also have the same fine-grain

pipelining difficulty as the QRD-RLS algorithm. Apart from

being used to increase speed, fine-grain pipelining can also

be used to reduce power dissipation in low to moderate speed

applications. To increase the speed of the QRD-RLS

algorithm, the look-ahead technique leading to fine-grain

pipelining can be used. However, using look-ahead in the

QRD-RLS algorithm results in large hardware overhead.

Consequently, this technique is not practical for the

QRD-RLS algorithm. Recently, the STAR-RLS algorithm [7]

solves the fine-grain pipelining difficulty; however, it

diverges for small value of the forgetting factor. It is known

that the smaller value of the forgetting factor results in faster

convergence than the larger one. In [8], CORDIC-based

QRD-RLS needs ROM/RAM that consumes a large area to

implement the architecture. Based on these unsolved

problems, we are motivated to provide a new algorithm and

architecture. This paper is organized as follows. We propose

the RGR-RLS and Pipelined RGR-RLS (PRGR-RLS)

algorithms as well as architectures in Sections II and III,

respectively. In Section IV, comparisons and simulation

results are discussed. Conclusion is given in the last section.

II. RGR-RLS Algorithm and Architecture

We are given a time series of inputs)1(x ,)2(x , …,

)(nx , and we want to estimate some desired signal)(id

based on a weighted sum of present sample and a few of the

past samples. All the data are assumed to be real. In order to

efficiently approach the optimal solution based on least

square criterion, the QRD-RLS algorithm using the Givens

rotations can be applied, where a Givens rotation is defined

as

)()(

)()(
)(

ncns

nsnc
nG , (1)

The QRD-RLS algorithm at each boundary cell in [1] has the

following equation

)()()1()()(2/1 nxnsnrncnr , (2a)

)()1(22 nxnr , (2b)

where)(nc is to represent cos that is a function of

iteration number n in the triangularization process and

)(ns has a similar definition. At the internal cell, in addition

to Eq. (2a), another equation can be easily obtained as

)()()1()()(2/1 nxncnrnsnb , (3)

where)(nb denotes the output of the internal cell. In order

to bypass square root and achieve fine-grain pipelining, we

take some approaches to relax the Givens rotation. Therefore,

the resulting RGR is assumed in the form:

)()(

)()(
)(

22

11

ncns

nsnc
nRG . (4)

Note that)(nRG is very close to)(nG after the

verification of the adaptive equalization experiment. In Eq.

(2b), there are two cases to be investigated.

Case 1:)()1(2/1 nxnr

In this case, using the product relaxation, Eq. (2b) can be

modified as

2/1

2

2

2/1)
)1(

)(
1()1()(

nr

nx
nrnr

)1(

)(

2

1
)1(

2/1

2

2/1

nr

nx
nr . (5)

At the steady-state of Eq. (2b), we see that)(nr and

)1(nr have the same positive sign at the boundary cell.

Thus, Eq. (5) can be modified as

)1(

)(

2

1
)1()(

2/1

2

2/1

nr

nx
nrnr . (6)

I - 370-7803-7448-7/02/$17.00 ©2002 IEEE

Corresponding to Eq. (2a), we can obtain the relaxed

functions)(1 nc and)(1 ns , respectively, as

1)(1 nc , (7a)

)1(2

)(
)(

2/11
nr

nx
ns . (7b)

The definition of)(nc and)(ns are relaxed and then

defined, respectively, as

)1(

)(

2

1
)1(

)1(

)(

)1(
)(

2/1

2

2/1

2/12/1

nr

nx
nr

nr

nr

nr
nc

)(1 2 nc , (8a)

)1(

)(

2

1
)1(

)(

)(

)(
)(

2/1

2

2/1

nr

nx
nr

nx

nr

nx
ns

)(
)1(

)(
22/1

ns
nr

nx
. (8b)

Applying Eqs. (8a) and (8b),)(nb can be rewritten as

)()()1()()(2/1 nxncnrnsnb

)()()1()(
2

2/1

2
nxncnrns . (9)

From Eqs. (7a), (7b), (8a) and (8b), we can obtain the first

RGR as

1
)1(

)(

)1(2

)(
1

)(

2/1

2/1

nr

nx
nr

nx

nRG . (10)

Case 2:)()1(2/1 nxnr

In this case, because)()1(2/1 nxnr , we can directly

obtain the relationship)()1(22 nxnr . In similar

fashion, Eq. (2b) can be modified as

)(2

)1(
)()(

2

nx

nr
nxnr . (11)

Referring to the discussion of [9], the second RGR can be

obtained as

)(

)1(
))((

))((
2

)(2/1

2/1

nx

nr
nxsign

nxsign

nRG . (12)

Eqs. (10) and (12) are our proposed RGR. The RGR-RLS

algorithm can be mapped to RGR-RLS architecture as shown

in Fig. 1, where the boundary and internal cells are depicted

in Figs. 2(a) and 2(b), respectively. In Figs. 2(a) and 2(b), the

symbols MUX , SR , SR , and denote a multiplexer,

shift one-bit right register, shift one-bit left register, and

absolute value of , respectively. When 0 and 1 ,

MUX selects upper and lower signals, respectively, where

 is the selection signal.

III. Pipelined RGR-RLS (PRGR-RLS) Algorithm and

Architecture

We go further to debate the fine-grain pipelining issue

for the proposed boundary and internal cells in the

RGR-RLS architecture as shown in Fig. 2. Using 1D -step

look-ahead technique, the recursive loop can be written as

)()()1()()(1

2/1

1 nxnsnrncnr

11

0

11
1

11

0

1/2

1

2/

1

2/1

otherwise,)()()
2

()()
2

(

)()1(if,)()()(

D

i

iD

D

i

iD

inxinsDnr

nxnrinxinsDnr

(13)

where

otherwise,))((

)()1(if,
)1(2

)(

)(
1/2

2/1
1

nxsign

nxnr
nr

nx

ns (14)

Eq. (13) cannot be completely pipelined since the second

term in Eq. (13) cannot be pipelined. Thus, we apply the

delay relaxation to Eqs. (13) and (14) as follows

11

0

2211
1

11

0

21
1/2

221
2/

1
2/1

otherwise,)()()
2

()()
2

(

)()(if,)()()(

)(
D

i

iD

D

i

iD

iDnxiDnsDnr

DnxDnriDnxiDnsDnr

nr

 (15)

where

otherwise,))((

)()(if,
)(2

)(

)(

2

21

1/2

2

2/1

2

21

Dnxsign

DnxDnr
Dnr

Dnx

Dns

 (16)

In order to match timing sequence, the relation between
1

D

and 2D can be restricted as

12 DD . (17)

In similar fashion, Eq. (3) can be written as

)()()()()(1121

2/1

12 DnxDncDnrDnsnb ,

 (18)

where

otherwise,))((

)()(if,
)(

)(

)(

1

11

1/2

1

2/1

1

12

Dnxsign

DnxDnr
Dnr

Dnx

Dns

 (19a)

otherwise,
)(

)(

)()(if,1

)(

1

1

2/1

11

1/2

12

Dnx

Dnr

DnxDnr

Dnc (19b)

Therefore, Eqs. (15) to (19b) are called as the PRGR-RLS

algorithm, which can be mapped onto the same array as

shown in Fig. 1. The boundary and internal cells for

PRGR-RLS architecture are depicted in Figs. 3(a) and 3(b),

respectively.

IV. Comparison and Simulation Results

 In this section, first, we compare several architectures

including the QRD-RLS, STAR-RLS, CORDIC-based RLS,

and our proposed architecture in terms of critical period,

orthogonality, robustness for , and need for memory as

well as square-root. In Table I, we can see that our proposed

architecture possesses fine-grain pipelining, nearly

orthogonality that is verified by simulation, good robustness

I - 38

for , and square-root free with a little area overhead

among the existing architectures [3, 7, 8]. Therefore, the

relaxed Givens rotations result in an efficient architecture.

Next, we verify that the convergence of our proposed

RGR-RLS algorithm is close to that of the QRD-RLS

algorithm for adaptive equalization application. The

simulation environment of the adaptive equalization is set to

the same as described in [1], where the amount of amplitude

distortion produced by the channel is set to 3.3 . For fair

comparisons, we simulate three cases: 2.0 , 5.0 ,

and 9.0 . For small value of such as 2.0 , the

learning curves as shown in Fig. 4 with 100 runs show that

the STAR-RLS cannot converge, but our proposed

RGR-RLS architecture has similar convergence performance

to the QRD-RLS architecture. For the second case 5.0 ,

this is the theoretical maximum relaxation error as proved in

[9]. From the simulation result as shown in Fig. 5, it can be

clearly seen that the RGR-RLS architecture still maintain

low relaxation error since our convergence performance is

close to that of the STAR and QRD-RLS architectures. As

compared with the LMS (for 027.0), QRD-RLS, and

STAR-RLS architectures, the simulation result as shown in

Fig. 6 reveals that our pipelined architectures (21D and

51D) have better convergence performance than that of

the LMS algorithm. From Figs. 4, 5, and 6, the proposed

RGR-RLS algorithm has better orthogonality and robustness

than the STAR-RLS algorithm.

V. Conclusion

 A new look at the Givens rotation is developed in this

paper. Using the relaxed Givens rotations, the resulting

algorithm and architecture possess fine-grain pipelining,

nearly the same convergence as the QRD-RLS, good

robustness for , and square-root free computation with a

little area overhead.

References

[1] S. Haykin, Adaptive Filter Theory, 3rd ed. Englewood

Cliffs, NJ: Prentice-Hall, 1996.

[2] L. D. Van and W. S. Feng, “An efficient systolic

architecture for the DLMS adaptive filter and its

applications,” IEEE Trans. Circuits Syst., II, vol. 48, pp.

359-366, Apr. 2001.

[3] W. M. Gentleman and H. T. Kung, “Matrix

triangularization by systolic arrays,” in Proc. SPIE:

Real Time Signal Process. IV, 1981, pp. 298-303.

[4] J. G. McWhirter, “Recursive least-squares minimization

using a systolic array,” in Proc. SPIE: Real Time Signal

Process. VI, vol. 431, 1983, pp. 105-112.

[5] S. F. Hsieh, K. J. R. Liu, and K. Yao, “A unified

square-root-free Givens rotation approach for

QRD-based recursive least squares estimation,” IEEE

Trans. Signal Processing, vol. 41, pp. 1405-1409, Mar.

1993.

[6] E. Frantzeskakis and K. J. R. Liu, “A class of

square-root and division free algorithms and

architectures for QRD-based adaptive signal

processing,” IEEE Trans. Signal Processing, vol. 42, pp.

2455-2469, Sept. 1994.

[7] K. J. Raghunath and K. K. Parhi, “Pipelined RLS

adaptive filtering using scaled tangent rotations

(STAR),” IEEE Trans. Signal Processing, vol. 40, pp.

2591-2604, Oct. 1996.

[8] J. Ma, K. K. Parhi, and E. F. Deprettere,

“Annihilation-reordering look-ahead pipelined

CORDIC-based RLS adaptive filters and their

application to adaptive beamforming,” IEEE Trans.

Signal Processing, vol. 48, pp. 2414-2431, Aug. 2000.

[9] L. D. Van, Design of Efficient VLSI Architectures:

Multiplier, 2-D Digital Filter, and Adaptive Digital

Filter, Ph. D. dissertation, Dept. of the Electrical

Engineering, National Taiwan University, Taipei,

Taiwan, R.O.C., 2001.

)(nx

)1(nb

)1(nx)2(nx)(nd

CellBoundary

)(nx

CellInternal

)(nx

)(
1

ns

)(
2

nc

)()()1()()(
1

2/1

1
nxnsnrncnr

)()()1()()(
2

2/1

2
nxncnrnsnb

;
2

)(

2/1

1
nc));(()(1 nxsignns

;1)(1 nc ;
)1(2

)(
)(

2/11
nr

nx
ns

)()1(If
2/1

nxnr

else

0)(n

1)(n

;1)(2 nc ;
)1(

)(
)(

2/12
nr

nx
ns

;
)(

)1(
)(

2/1

2
nx

nr
nc));(()(2 nxsignns

)()()1()()(
1

2/1

1
nxnsnrncnr

)1(
1

ns

)1(
2

nc

)1(n

end

B

B

I I

I

I

I

)1(1 ns

)1(
2

nc

)1(n

B

B

I

I

Fig. 1. Systolic array for the RGR-RLS algorithm.

X
U
M 1

2/
2/1

1

)(nx

SR

X
U
M

X
U
M

)(
1

ns

)(
2

nc

)(nr

)1(n

2/1

)1(
1

ns

)1(
2

nc

)sign(

1
z

1
z

1
z

1
z

)(n

(a)

I - 39

1
z

X
U
M 1

2/
2/1

)(nx

)(n

)(
1

ns

)(nr

2/1

)(nb

)(2 nc 1
z

1
z)1(1 ns

)1(2 nc

1
z)1(n

X
U
MSR

1
z

)1(nb

(b)

Fig. 2. (a) Boundary cell and (b) internal cell of the

RGR-RLS architecture.

1

)(nx

SR

X
U
M

X
U
M

)(n

)(
11

Dns

)(
12

Dnc

)(nr

)1(n

2/1

)1(
11

Dns

)1(
12

Dnc

)sign(

1
z

1
z

1
z

)(
1

Dnr

1
z

1
z

2/1

2/X
U
M

X
U
M 2/1D

1)2/(
D

1
z

2/)1(1D

X
U
M

11)2/(
D

1D
z

1D
z

(a)
)(nx

)(n

)(11 Dns

)(nr

2/1

)(nb

)(12 Dnc

)1(
11

Dns

)1(n

X
U
M

1z1z1z

2/1

2/ X
U
M

X
U
M

X
U
M 2/1D

1)2/(
D

1z

1z

1z

)(1Dnr

1z

)1(nb

SR

2/)1(1D

11)2/(D

1Dz

1D
z

)1(12 Dnc

b)

Fig. 3. (a) Boundary cell and (b) internal cell of the

PRGR-RLS architecture.

0 50 100 150 200 250 300 350 400
10

-2

10
0

10
2

10
4

Iteration Number

M
e
a
n

 S
q

u
a
re

 E
rr

o
r

QRD-RLS

STAR-RLS

RGR-RLS

Fig. 4. Comparison results of adaptive equalization using

QRD-RLS, STAR-RLS, RGR-RLS architectures for

2.0 .

0 50 100 150 200 250 300 350 400
10

-3

10
-2

10
-1

10
0

10
1

Iteration Number

M
e
a
n

 S
q

u
a

re
 E

rr
o
r

QRD-RLS

STAR-RLS
RGR-RLS

Fig. 5. Comparison results of adaptive equalization using

QRD-RLS, STAR-RLS, RGR-RLS architectures for

5.0 .

0 50 100 150 200 250 300 350 400
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Iteration Number

M
e
a
n

 S
q

u
a
re

 E
rr

o
r

LMS
QRD-RLS

STAR-RLS
RGR-RLS
PRGR-RLS (D1=2)
PRGR-RLS (D1=5)

Fig. 6. Comparison results of adaptive equalization using

LMS, QRD-RLS, STAR-RLS, RGR-RLS, and PRGR-RLS

(21D and 51D) architectures for 9.0 .

Table I: Comparison Results among Different Architectures

QRD-RLS PSTAR-RLS CORDIC-Based RLS Our Work

Critical Period
asqm TTT2

1

2

D

TTTT swadm

1

Level Wordin the
PeriodCritical

D
1

23

D

TTTT swadm

Orthogonality Exact Approximate Exact Approximate

Robustness for Good Diverges for small Good Good

Need for Memory No No Yes No

Square Root Not Free Free Free Free

I - 40

