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, Abstract:
In this -paper, we propose two. efficient systolic
architectures for 1-D and 2-D Delay Least-Mean-Square
(DLMS) adaptive digital filters. Using our developed
architectures, higher convergence rate and Signal-to-Noise
Ratio ( SNR ) than those of the conventional DLMS
" structure can be obtained without sacrificing the properties
of the 'systolic architecture, Furthermore, the adaptive
digital filters operate at the highest throughout due to the
/ new tree-systolic processing element. Besides, based on
our proposed optimized rule, one can easily design N th
tap and window size -N x N systolic adaptive digital
Silters -with the .compromise of minimum delay and high

regularity under the constraint of the maxfmym number of

tap-connections of the feedback signal.

I. Introduction .

Adaptive digital filters have a wide range of
communication and DSP applications such as adaptive
equalizer, image restoration, and so on. The most widely
used algorithm for adaptive digital filters is the
Least-Mean-Square (LMS) algorithm due to its superior
performance and simple calculation. However, owing to
the maximum connections of the feedback error signal and
the requirement of the local connection in hardware, it is
difficult to directly implement the LMS algorithm via
VLSI techniques without considering delays. Thus, Long et
al. [1] developed the DLMS algorithm such that VLSI
design of an approximating LMS adaptive filter could be
. possible. Therefore, some  researches {2, 3] have been
conducted on the systolic-array architecture of the DLMS
adaptive filter. In [1-3], they either require shorter delay
without considerations of systolic array or longer delay via
entire taps of the systolic array. Recently, Douglas et al. [4]
and Matsubara et al. [5) proposed new structures that can
approach well to the convergence of LMS algorithm.
Nevertheless, it additionally requires a larger area to
calculate the new derived feedback error .and has low
throughput rate if delay D decreases. On the other hand,
2-D signal processing requires a much larger amount of
computations than the 1-D adaptive digital filter, so high
throughpupt and realizable features are desirable. It is our
motivation to propose two efficient systolic architectures of

I-D and 2-D DLMS algorithm for DSP applications.

11. Efficient 1-D and 2-D Systolic Architectures

The LMS adaptive algorithm minimizes the
mean-square error by recursively -altering the weights at
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each sampling instance. The 1-D LMS adaptive digital
filter can be described as

N-|
W)= D WDt = k), S
k=0
e(i) = d(i) - y(i)» @
Wi+ 1) = w (i) + pe(i)x(i — k), 3)

where w, (i) and x(i) denote the kth tap weight and
the i th input sample for an N th-tap adaptive digital filter,

* respectively. On the other hand, d(i) and y(i) represent

the desired signal and output signal, respectively. The
step-size u is used for adaptation of the weights, and
e(f) is the feedback error. The coefficient updates using
the DLMS algorithm can be represented as:

Wi (i +1) = wy (i) + pe(i — D)x(i =k — D), 4)
where D is a delay value in weight adaptation.

Here, we apply tree concept to devise a new
tree-systolic PE such like PE, as shown in Fig. I,

where unit delay elements painted with cross section are
inserted to obtain the lowest critical period (i.e., highest

throughput rate). Note that the symbol, I, denotes the
unit delay element. The critical period is defined as the
minimum operation cycle-time for correct responses. The

subscript 2 of PE, is the number of the tree level, that is,
PE, allows us to concurrently adjust 4 taps per each clock
and other PE/, s
obtained by the similar technique. Note that p< p, .. .

for p € nonnegative integers, can be

The maximum value of p,. is based on practical
maximum number of tap-connections of the feedback
signal. Hence, the new PE with finite and local
connections leads to higher degree of realization unlike
other structures in [1-5]. Although we had proposed similar
PE [6], the ever proposed PE cannot be exactly
mapped to weight update equation, Eq. (4), so we modified

it to Fig. 1. Thus, the generalized 1-D systolic architecture

of the adaptive filter is depicted in Fig. 2, where =;'

equals unit delay. It is observed that when p is equal to 0,
this architecture can be reduced to fully pipelined
architecture. According to the architecture as shown in Fig.
2, we induce the following rule:

Rule:
S, =N mod2”



Sfor
k=(p-1:-1:0
S, =S,,, mod 2¥
end
N p=1 S+
D:p+l+{2pJ+Z[—2"k—'J, 5)

k=0
where S, “is the £ th residue. The notation of |_0_i is the
maximum integer value less than or equal to e . Therefore,
the rule shows a trade-off between the minimum delay and
high regularity while varying p in the constraint of the
maximum number of tap-connections. As an example,
when N is equal to 62 and the maximum number of
tap-connections is 32 taps at each clock, we find that the
tree level could be equal to 4 or 5 for the same minimum
delay. With respect to the characteristic of the regularity,
we observe that p =4 tree level implies that fewer kinds
of PE’s are required than thatof p=5.

With the sprit of constructing an 1-D systolic adaptive
digital filter and rule, we further make an effort to design a
2-D systolic adaptive digital filter. Since the window size
N x N 2-D adaptive digital filter has been widely applied
to image application, one of the possible methods to realize
2-D DLMS algorithm [7, 8] processing an image size
M x M can be briefly described as:

N-IN-1

Hmny= 3w, G)x(m=Lin=k), ©)
1=0 k=0

L’(J-):d(m,”)‘)’(m,")a (7)

@ (JH 1) = (Y +pelj—Dopyx(mi=Lia—ky, (8)
ﬁ:l&J. F=(j~Dyy)mod M. (9)
M
where j=mM+n and [ as well as k£ are in the range
of {OSI <N, 0Zk< N-l}. d(m,n), x(m,n), y(m,n)
and e(/) represent desired, input, output, and error

feedback signals. It is known that given values, p,,., are
the same for 1-D and 2-D adaptive systems, so the
tree-level relationship can be expressed as

44 491 = Pinax » (10)
where ¢, and g, denote the horizontal and vertical
tree levels, respectively. For simplification, while ¢, =1,

the novel 2-D systolic architecture as shown in Fig. 3 in

which ="' =23 remain the similar characteristics of
1-D systolic architecture. Similarly, the total delay of the

2-D adaptive digital filter can be formulated as

N N
Dy =qy +qp +1+ +|—
241 2%

dn Sk, & Sk,
3 ) 3 2|

k=1 ky=1

an

II1. Comparison Results

In view of hardware characteristics, we provide the
comprehensive comparison results of the different
N th-tap adaptive filter structures in Table I. Since
D-Z-Ss’ structure [4] and M-N-Ks’ structure |[5]
independently utilized the same conversion of DLMS into
LMS, the proposed structures owned the similar
characteristics. Hence, we only tabulate the features of
M-N-Ks" structure regardless of D-Z-Ss’ structure. Let 7,
and 7, denote the operating time for one multiplier as

well as one adder, respectively. In [5], since & and r
have been defined, we omit here.

In terms of critical period, the proposed architecture
has the lowest period independent of other control
parameters among five structures in Table . Before
comparing the convergence performance, we define the
convergence in [2, 3] as “normal”. Of course, the
convergence of the original LMS algorithm is our aim, so
we address that the convergence of the LMS is denoted as
“best”. For convenient comparisons of convergence of
M-N-Ks’ structure with our work, we briefly show the
constraints of M-N-Ks’ pipeline design as:

Tm +I_[0g2 b‘-|7::
T, +[log,(r+ DT,
Using less r, larger D, is obtained. This condition
limits & to be smaller than D and results in the
approximation of the conventional DLMS, that is, the
approximation of normal convergence. On the contrary,
less D, is achieved while r increases. The latter
condition causes an approximation of the LMS at the
expense of the number of multipliers and critical period
compared with our work due to the larger & and .
respectively. In [5], the structure generating the new
feedback error does not consider the finite and local
connections for input, x(i), so this structure belongs to a
semi-systolic structure. In Table 1, using our efficient
systolic architecture suitable to a single chip realization,
lowest period and better convergence characteristics can be
achieved without sacrificing other features.

5<D-D,, D,,{ . (12)

LV. Applications

In this section, we simulate two examples to verify the
validity of our proposed architectures. Since the M-N-Ks’
structure whose convergence performance depends on the
selection of & . It can approximate well either to the
convergence of the LMS algorithm or DLMS algorithm.
For the convenience of comparison, we omit M-N-Ks’
convergence simulation and only simulate the LMS,
efficient systolic DLMS using optimized rule, and
conventional DLMS.

In the first application, we study the proposed 1-D
efficient systolic architecture for adaptive equalization [9]
with a linear dispersive channel that produces unknown
distortion. The random sequence | applied to the channel
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input consists of a Bernoulli sequence with zero mean and
unit variance. Another random-sequence 2 serves as the
source of additive white noise with zero mean and variance
0.001 that corrupts the channel output. These two random
sequences are independent of each other. The impulse
response of the channel is described as:

1 2r . .
b= {E[Hcos(—A—(l-b):], i=1,23

0, otherwise

(13

where the parameter A controls the degree of amplitude
distortion produced by the channel. Herein, we choose

A=31, pox =3 for N=12. The simulation result
with ensemble-average 150 runs is shown in Fig. 4 for
41 =0.033. Next, for image restoration application, we
apply 256 x256 noisy Lena image as shown in Fig, 5(a)
with SNR=3.09dB to 2-D LMS, efficient systolic
architecture with g, =1, ¢, =1, and conventional
DLMS architecture for p . =3 and N =4. Figs. 5(b),
(c), and (d) show the
corresponding to above structures at g =3 x 107" . Figs. 4
and 5 reveal that efficient systolic DLMS architectures

have better results than the conventional DLMS
“architectures in these two experiments.

separately SNR  values

V. Conclusions

Two efficient N th-tap 1-D and window size N xN
2-D  systolic adaptive digital filters utilizing the
tree-systolic PE has been presented in this paper. Under
considering maximum number of tap-connections of the
feedback error signal, the practical rule to decide the
optimized tree level without sacrificing the systolic
characteristics is provided. At last, we verify our 1-D and
2-D efficient systolic architectures via applications of
adaptive equalizer and image restoration, respectively.
From the comparisons of table and simulation, we
guarantee the proposed architectures furnish better results
than the conventional systolic-array architectures [2-3].
Furthermore, these efficient systolic architectures amenable
to VLSI implementation achieve lowest critical period

= 1) T

x(i) ~it +—i- . s
puxe(i-1) %7 b]

g
wi(i) w (i) Z(E

oy
Wi-2)
Fig. 1. The proposed tree-systolic PE,.

"

among proposed structures [2-5].
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Fig. 2. The proposed 1-D systolic adaptive digital filter.
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Fig. 4. Comparison resuilts of the adaptive equalizer at
u#=0.033 with (a) LMS, (b) efficient systolic DLMS

resulting in p=2, D=6, and (c) conventional DLMS.

Fig. 3. The proposed 2-D systolic adaptive digital filter.
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Fig. 5. (a) noisy “Lena” image, and comparison results using (b) LMS with SNR =9.10dB, (c) efficient systolic DLMS
with SNR =8.23dB, and (d) conventional DLMS with SNR =8.07dB.

Table 1: Comparison Results of the different N th-Tap Adaptive Digital Filter Architectures

LMS H-H-Bs’ M-As’ M-N-Ks’ Structure This work
Structure {2] | Structure [3] [4-5]
Architecture Non-systolic Systolic Systolic Semi-systolicb Systolic
Type

Convergence Best Normal Normal Depend on & Depend on p
Characteristic

Value of D _ 0 N N I'N/r']+1_ Eq. (5)
Critical Period | 37, +(2N +1)T,, 27, +2T, 2T, +2T, T, +[log, (r + DT, T, +T,

No. of the 2N +1 2N +1 3N 2N +1428 2N +1

Multipliers
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