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Design of the Lower Error Fixed-Width Multiplier than that using other fixed-width multipliers. At last, short statements
and Its Application conclude the representation of this brief.
Lan-Da Van, Shuenn-Shyang Wang, and Wu-Shiung Feng 11. DESIGN OFFIXED-WIDTH MULTIPLIERS

Considering two two’s-complement integer operands;tat multi-

Abstract—This brief develops a general methodology for designing a plicandX and ar-bit multiplierY” can be, respectively, represented by
lower-error two’'s-complement fixed-width multiplier that receives two

m-bit numbers and produces ann-bit product. By properly choosing 1 n2 ;

the generalized index, we derive the better error-compensation bias to X =—z,12 + Z ;2 Q)
reduce the truncation error and then construct a lower error fixed-width i=0

multiplier, which is area efficient for VLSI implementation. Finally, we n—2

successfully apply the proposed fixed-width multiplier to realizing a digital Y = —yns o=l 4 Z ijJ )
FIR filter, which has shown that the performance is better than that using prd h

other fixed-width multipliers.

Index Terms—Area-efficient, fixed-width multiplier, speech processing, wherez;, y; € {0, 1}. Their productsiandara can be written as

truncation error. .
Pgtandm‘d =X x1Y

n—2n—2

I. INTRODUCTION = 2nayn 12 YD a2
1=0 5=0
Low-error, small-area, and high-speed multipliers are the most n,z]
impc_;rtant processing elgment_for digital signa_l pro_cessing (DSP) 4onT | —onT 4 ZWT +1
applications [1] such as digital filters [2], [3], Moving Picture Experts =0

Group (MPEG) coding, and so on. The multipliers based on the n—2
Baugh—Wooley algorithm [4], [5] producgn-bit output with n-bit +2m7! <—2”“ + Z T2 + 1) . 3)
multiplier and»-bit multiplicand input. However, for some practical i=0

applications, we only require-bit multiplication output, which may E . . -
. . X N . quation (3) is the famous Baugh—Wooley array multiplier [4], [5],
be obtained by directly truncating theleast-significant bits and pre- in which this algorithm combines partial products with the same

serving ther most significant bits. However, by this way, S|gn|f|cantWeighting factor and places them in the same column. Fig. 1 shows the

errors introduced in the fixed-width operation are undesirable f A -
L . . r rray f multiplication. Accordin ,
many DSP applications. To reduce the introduced truncation errgg%bp oduct array fos x 8 multiplication. According to (3), a8 x 8

Kidambi et al. [6 d the bi " tructure deri %ndard multiplier structure can be obtained as shown in Fig. 2(a) in
idambi et al. [6] proposed the bias compensation structure EVERich its main symbolic cells are depicted in Fig. 2(b) and other cells

from the statistics of carry propagation, but this structure did nqt ND, HA, and FA denote amnD gate, aNAND gate, a half adder,

a_daptlvely adjust the proper b|a§ by taking account of a_varle_ty O_f mpéi'rtld a full adder, respectively. By partitioning the subproducts into two
signals. Next, Jowet al. [7] provided the carry-generating circuit to sections, (3) can be rewritten as follows:

improve the truncation error corresponding to J-Ks’ index. However,

there exist two problems that have never been discussed before. One Psiondard = MP + LP

is how to choose proper indices, and the other is whether other lower 2n—1 n—1

error multipliers exist or not. The work proposes the general method- = Z P2+ Z P2 (4)
ology for designing the lower error two’s-complement fixed-width i=n i=0

multiplier. In addition, this new multiplier has the same area-ratio as ) 2n—1 i I
J-Ks’ multiplier under reasonable assumption. This brief is organize erel; € {0, 1}’,1“;[113 :,;.Zi:" b2 1S th.e. most-5|gn|f|cant sec
as follows. In Section II, we propose a better error-compensation b}é%n‘ andLP = Zi?“ Fi2"is the Iea_st-5|gn|f|ca_nt section as shown
to reduce the truncation error by properly choosing the generaliz'g_uIhe upper ”gh.t tnangul_ar_arga of F.Ig' 2(a). Itis well k”OW” that the
index, as well as binary thresholding and then construct a simply lo plest fixed-width muliiplier is to dlrectl)_/ truncater” sect_lon, bl.Jt
error fixed-width multiplier. In Section IIl, we guarantee that this[[ IS approach leads to the largest trunc_atlon error._So, Kidarii
compensation bias still be held for large widih The performance €] prowd_ed aconstr_:t_nt bias method, which was d_erl_ved from the carry
comparison results in terms of maximum error, average error, variarf pagatlon probabl!lty OLP.' The trupcated multiplier present.ed n
of the error, and area ratio are discussed in Section IV. In Section[& Yi€lds the approximate-bit fixed-width productF-c- ; that is
we apply the proposed lower error fixed-width multiplier to a low-pass Psiondard 2 Pi-cion = MP + 0k-cop X 2" (5)
FIR digital filter [8], and it can be shown that the performance is better
whereok-g-a represents the error-compensation bias depending on
the width». While the widthn is given, the error-compensation bias
oK-G-a IS aconstant under the uniform probability distribution of input
Manuscript received February 1999; revised June 2000. This work figts, Although this approach compensates more information than the
B e s oo e vcmrmontes oy o ETPES! tuncated mutile, the bas cannot be adapiively adjusted
Cheung. for different input signals. Thus, the truncation error is still large. Jou
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Fig. 1. Subproduct array & x 8 multiplication.

(b)

Fig. 2. (a) Block diagram of the standard multiplier. (b) NFA gate on left and

AFA gate on right.
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performs better than the biak-:-a, it is deeply expected to develop
a generalized methodology to further improve truncation error. It is
because that there exist two never discussed problems in [7]: how to
choose proper indices and whether other lower-error multipliers exist
or not.

It is known that the most accurate truncated product is theoretically
given by

PStandard >~ MP+ OTemp X 277 (8)
TTemp — [LP]T

1
= 5(%_1;1/0 4 Tnooyt + -+ T1Yn—2

1
+ Toyn_1) + 2—2(%172!/0 + - 2oYn—2)

1 1
+ oo ooy (e +xoyn) + Sowoyo (9)

T

where[t], represents the rounding integer forlt should be empha-
sized thatrremp iS an ideal error-compensation term and it is infea-
sible to implement the truncated fixed-width multiplier without using
any acceptable approximation. From (9), it is observed dhat., is
mainly affected byr, 130 + n—2y1 + - + T1Yn—2 + Toyn_1 due

to the largest weight. Now, let us define the main-error compensation
term Enmain and the remain-error compensation tefimm.in , respec-
tively, as

A_ _
Emain = Tn—-1Y0 + Tn—-2Y1 +---+ T1Yn—2 + ToYn—1, (10)

I3

Eromain

1,
§(£L’n72y0 +an syt + - F ToYn—2)

1
++ 277—_1[0y0 (11)

PSLaudard = PJ'K
=MP +0j-k X 2"

(6)

(Tn—2yt + Tn_sy2+ -+ 22Yn—3 + T1Yn—2)+ 1, fl;x=0

0J-K = .
{:cn_zzn + Tp—3y2 + -+ T2Yn—3 + T1Yn—2, if f3-x >0

@)
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Thus, we can rewrite (9) as 5 , j f ; : ‘
1 A | A P
O Temp — §(E1uain + Erelnaiu) - (12) : ! K1 N DY : K T :

g | 5 '

Note thatrrem,, varies while the input bits;’s or y;’s alternates. For g R | B B ! : oo
general analyzing, we first define a generalized inflgx.« as - w .‘ <

u¥6 24 - - ) ' R B 'Y B '

eindev(Qn—lw Qn—27---a40) g ' “
2 (s 190)™ (2 mayn) 7 s oy 1) s S | . Lo

o t ' i |

(13) g . : : t N I '

O';,' i . | =~ —m— Y — - - = i = = = - - ‘ ,,,,,
where the binary parameters—1, ¢n—2,...,andg, € {0,1},andthe & K2 ;
operator al : ; l

(T, ifga=0 : < ‘ : |

o= {T/ g1 (14) 2 : : . :
’ 4= 0 10 20 30 40 50 60 70
in which T is the complement of binar¥/. By utilizing (13), one can Allkinds of indices denoted as Qth index
rewrite (12) as Fig. 3. Values off{; and K, versus differend; .., in Type 1 thresholding
forn = 6.
1 1
O lemp = Oindex + §Emain — Hindex + §Eromain

For evaluating the resulting performance, given inpttandY’, let
e, &, andv be the absolute error between the standard multiplier and
various truncated multiplier, the average error, and the variance of error,
respectively. That is

= (<»r7172yl>qn_2 + e + <$1]}7172>(71) + [I(]r (15)
where

. 1
K= <=7:n71y()>qni1 + <1"Dynfl>q0 + §Ema‘in

. 2 | Pstandard — Prruncated| (19)

i : _A
— Bindex + §Ercma‘1n- (16) £ = E{f} (20)
v 2 B{(e - 2%} (1)

In (15), the first term in the bracket is referred to as coarse-adjustment
e TR vt 870 i 1TESE e Ut vl for e
) . ) i y ! Simp YWndard multiplier and output value for various truncated multi-
while the index is decided. On the other hand, the fine-adjustment term . . . .
. . . liers, respectively, andZ{-} is the expectation operator. Given
can be approached by the expected value in rounding operation after o - .
. L index (qn—1>qn—2,- - - » o) IN (13), in the following development, we
analyzing the statistics.

With the spirit of designing simple and realizable error-compens(zgf’EIII the indexindex (4n—1, ¢n-2, ., ¢0) as theQth index where

tion circuit, we propose two types of binary thresholding for bias es-
timation. Both types of binary thresholding &f.4.« are described as

follows. Note thatQ has a range varying from 0 ®" — 1; for example,

Type 1: See (17), at the bottom of the page. Bindex (100 001) denotes the 33th index far = 6.

Type 2: See (18), at the bottom of the page. By full search simulation fon. = 6, we obtain values ok, and K,
where K, K>, K5, and K4 are, respectively, the average Af for as shown in Fig. 3 for all possible indices. In order to design a simply
those satisfyinindex = 0, findex > 0, findex < 1, andfingex = n.  realizable error-compensation circuit, we choose the indices which sat-

Next, in order to achieve high accuracy compensation, an investigsfy [K,]. € {0,1} and[K:], € {0,1} for the6 x 6 multiplier.
tion on the choice of the generalized indgx.. is required. By ex- Interesting speaking, there exist three indices performing better error
haustive search, we can find some good generalized indices for snealinpensation than J-Ks’ result in our full search experiment. However,
width » (n < 12). For large widthn, because of high computationthese three indices (i.€lg=1, fg_gn-1, aNdfy_sn—1,,) in Type 1
load, we have to utilize statistic method to verify error-compensatighresholding resultin nonconstalit andX’, for different wordlength
equations performed by these better indices. It is notedfthatin  n. This phenomenon can be easily verified and explained by statistic
Type 1 threshoding is a special index of the generalized ifdex.  techniques similar to what addressed in Section lll. Since our goal is
by choosingyo = ¢1 = -+ = ¢gn—1 = 0. to find the fixed i'; as well ask’> independent of wordlength and

Q2 g1 X 2" o x 2" 2 4o x 20, (22)

o _ ((mn72y1>q7172 + <ﬂ7n73?/2>q7173 + -+ <'rly7172>q1) + [I(l]ra If (')indcx =0 (17)
Type 1 ({(Tn—291)7=2 + (Xn_sy2) ™2 + -+ + {21Yn=2)"") + [Ko]r, if findex > 0

e {(n—2y1)"2 4+ (Xn_3y2)? 3 + -+ + (X1Yn—2)"* + [K3]r, if findex < n (18)
fype 2 (Pn—2y1) =2 + (Zp_3y2) =3 + -+ (21Yn—2) T + [Kalr, i bindex = 0
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search simulation, it is found that Type 2 structure is an excellent struc- ) , o

ture with feasible implementation and better performance. We obtﬂ?' 5. Proposed lower-error fixed-widéhx & multiplier.

the values ofK’s and K4, as shown in Fig. 4, fon. = 6. To have a

simple and feasible compensation circuit, itis found that the 33th indgat the indexX,_,» 1., is also suitable to being adopted to design the

is one of the choices, whet€; and Iy are close to integers 1 and Ofixed-width multiplier for large width:; that is, we show thdtis], =

as possible, respectively. Followed above procedure, we can simulaténd |k ,], = 0 for large widthn. While analyzing fine-adjustment

for the wordlength: from 4 to 12 by the full-search simulation in Typejn (15), we encounter the problem in whi¢k],. depends on input

2 thresholding. After possible simulation of different widthwe ob-  signals ofEmain, Eremain. f—2n-14, and other two terms. Herein,

serve that the specific inde,_,. -1, achieves better performancethe probability of the |nput bits is assumed to be uniform distribution,

as described in Section IV in detail. Of course, the chosen index is©f we approximatél/2) Ermain, (1/2) Eremain and other terms using

satisfying[ /5], = 1 and[K4], = 0 for different width». Hence, the the analysis of output expected value of logic functions. Two cases can

simply realizable error-compensation structure with the lower truncge taken into consideratiofly_p. 1 < n andfg_n 14, = n.

tion error for Type 2 thresholding is described as in (23), shown at thecase 1 Hy—on-14 < n Itfollows from (10) that

bottom of the page, whef,_yn-11; = Tn—1%0 + 2n—2y1 +- -+ +

T1Yn—2 + Toyn—1. EQuation (23) has been completely S|mulated for 1 1 3 3

n < 12 and can be mapped to a new structure. Thus, the proposed {QE"’M} = 5 < +7 + 7 X (- 2)>
x 8 lower-error fixed-width multiplier with the 129th index can be n

depicted in Fig. 5. =3

1
+ 7 (25)

IIl. FIXED-WIDTH MULTIPLIER WITH LARGE WIDTH Note thatE{x;y,} = 1/4 andE{z:y;} = 3/4, since the probability

. o1 . . ) of input bits is assumed to be uniform distribution. Similarly, we can
Itis known that(2" " + 1)th index in Type 2 thresholding can be gp-in (26) from (11) as

expressed as

1
E _Ercrnain
{oFme)

9Q2271—1+1
=ZTp_1Yo+Tn-2yr + -+ T1Yn—2 + To¥n_1. 24 1 1 1 1 1 1
. 1yo. >y1. .1y. 2+ ToYn_1 .( ) = X X = D+ e X (=24t o x T x 1
By computer simulations, we find that this ind&X—,~-1, achieves 171 1 1
better performance for small width Itis difficult to simulate thatthe = 7 { 32 X (n =1+ 5z x (n=2)+---+ 2 +1
index s of the better performance for large widthince the exhaustive no 1 .
simulation takes significant computation time. In this section, we show = g — 7 if n > 4. (26)
T2yt + Tu-sy2+ - Fryno+ 1, floon_1y <n
OType 2,Q=27—141 = § ) | ; _ (23)
Tn—2Y1 + Tn—3Y2 +*+ + T1Yn—2, if g_on—111 =n
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Apparently, while usingg—,--1;, we find that TABLE |
COMPARISON RESULTS OFMAXIMUM ERRORE m ax
HQ:W*I'H = Tn—1%0 + To¥n—1 + ) Z 7Yy = Ermain Multiplier n=4 n=6 n=8 n=10 n=12
i T K-G-As’ Structure | 33 193 281 | 6145 | 32769
27) J-Ks’ Structure 21 107 515 2403 10979
Proposed Structure 17 89 441 2105 9785
whereg, 1 = go = landgn,—2 = ¢o—3 = --- = q1 = 0. By
applying (25)—(27), it follows from (16) that the expected valugis TABLE Il
given by COMPARISON RESULTS OFAVERAGE ERRORE
[K3) = [E{K}]- Multiplier n=4 =6 n=8 n=10 =12
1 K-G-As’ Structure 6.96 41.01 188.29 | 906.40 | 3842.06
= {E {l‘n—ﬂm + oY=t = 5 Emain + EH JKs Structure | 7.20 | 37.27 | 17046 | 736.62 | 3065.25
" " " Proposed Structure 5.17 24.07 10596 | 456.14 | 1907.36
_(3,3_r_1_=_1 =1 28)
SlitiTs T 2ts 4], 7 (
TABLE 1l
Consequently, we obtain following equation: COMPARISON RESULTS OFVARIANCE OF ERRORS®
Multiplier n=4 n=6 n=8 n=10 n=12

Orype 2.Qean—141 = (Tn—2y1 + -+ 21Yn—2) + 1,

, K-G-As’ Structure | 39.80 | 788.45 |22959.01| 416043 | 9204493
ifOgmon—111 <7 (29)  “JRK¢ Structure | 28.24 | 53770 [10158.54| 190805 | 3417020
Proposed Structure | 17.63 | 320.65 | 6031.32 | 112070 | 1973508

Case 2:0g=yn-14; = n This casefg_,n- 1“ = n is met only

Whenlan—1 = Tnoigo = landziyn—o = xayn—3z = +++ =
xn—29y1 = 1. Thatis, Case 2 is a conditional probablllty case and TABLE IV
thus, we deduce (30) and (31) as follows: COMPARISON RESULTS OFAREA RATIO R
1 1 1 Multiplier n=4 n=6 n=8 n=10 n=12
E {§Emain} =5 xX1lxn=gn (30)  K-G-As”Structure | 0.555 | 0536 | 0527 | 0522 | 0518
J-Ks’ Structure 0.608 0.569 0.550 0.540 0.533
E {% Emain} - Zi) C K1x241%(n— 3)> Proposed Structure | 0.608 | 0569 | 0550 | 0.540 | 0.533
“ (8]
1 /1
toslgx1x2+1lx(n—4) IV. PERFORMANCE COMPARISONS ANDAREA COMPARISON
4od 1 L ix24+1x1 In this section, it has been shown that the proposed fixed-width mul-
2n—=2 \ 3 tiplier achieves better performance than the other fixed-width multi-
1 pliers by computer simulations. The performance is evaluated in terms
t ot <3 x 1x 2) of average errof and the variance of errorsdefined in (20) and (21),
1 respectively, and the maximum error defined by
+ - <— x 1 x 1) A
1 2 _'9 Smax = IIlaX(|PSta11rlard - PTrunrated |) (35)
ol 2 4
9Ty it 2 4. (31) It is obvious that a fixed-width multiplier is more accurate ifv and
In view of (30), (31), and (16), we have £max are smaller. Tables I-lIl show the simulated results for the var-
(30). 31) (16) ious fixed-width multipliers of different widt. The K-G-As’ struc-
[K.], = [E{K}]. ture [6] is the truncated multiplier with constant compensation bias

fixed-width multiplier devised by Joet al.[7], and the proposed struc-
ture is our fixed-width multiplier of Type 2 thresholding with the index
#g=2n-141. The comparison results show that our proposed fixed-
width multiplier is more accurate than the others. The excellent per-
formance is achieved due to the fact that we derive a better error-com-
Toype 2,Q=2n—141 = Tn—2Y1 + Tn—3Y2 + -+ + T1Yn—2, pensation bias to reduce the effect of truncation error.
(33) Let Aaxp, ANAND, AORr, ANoORr, Anra, andAra be the areas of

an AND gate,NAND gate,OR gate,NOR gate, a half adder, and a full
By combining (29) and (33), we get the conclusioin in (34), showadder, respectively. Furthermore, we adopt the same notation as in [6]
at the bottom of the page. Equation (34) shows that Type 2 threshuich that letdann = ¢1 Ara, AaND = ¢2Ara, Aor = ¢340R,
olding with the chosen indef;—,—-1, is suitable to implementing Axor = ¢sAra, andAus = {Apa, Where0 < ¢1, ¢z, ¢3, 04 <

1 only depending on the width of the multiplier, the J-Ks’ structure is the
Eremaln } :| =0

1
= |:E {:En—1y0 + ZoYn—1 — §E111ain +

|

" (32)

Thus,orype 2. gman—141 fOr6g_9»—1.4 = n can be written as

if 0goon-111 =0

the fixed-width multiplier with large width. 0.1 and0 < ¢ < 0.5. For convenience of comparison, we reasonably
- S am—oyi Fan—zy2+ -t aryn—2+ 1, ifOpgn-14 <n (34)
Type 2,Q=2n—141 — Tn_21 + Tn—3Y2 4+ T1Yn—2, if 9Q:2”71+1 =n
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Fig. 6. Block diagram of a 35-tap FIR digital filter.
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Fig. 7. Original input voice signal with 1000 samples. Fig. 8. Standard voice output signal without loss.

V. DSP APPLICATION OF FIXED-WIDTH MULTIPLIERS
assumep = ¢1 = g2 = ¢3 = ¢4. The areas of the standandx » ) ) ] ) o
multiplier is given as In this section, we apply the proposed fixed-width multiplier to the

35-tap FIR filter as shown in Fig. 6 for speech processing. The behavior

Y . of a digital FIR filter can be represented as follows:
ASpandard = 120 Apa + (n — 1)EApa + (n = 1)* Apa. (36) d P

L—-1
On the other hand, the maximum areanok n, K-G-As’ multiplier, o" = Z X'yt (41)
J-Ks’ multiplier, and the proposed multiplier are briefly formulated as =0
where
@37) X” input sequence;
Y filter coefficient;
Ajg = 1”(,,,, —1)(¢+1)Ara + (20 — 1)0Ara  (38) o output sequence ath discrete time.
% The superscript, is the time index. First, for practical consideration

Agegn-141 = §n(n —1)(¢+1)Apa + (2n — 1) Ara [8], the maximum input voice data and filter coefficient in two’s com-

(39) plement are normalized to the same value 127 with 8-bit quantization.

In the experimental simulation, the temporary output is an accumu-
ed value using 32 bits. Finally, the output¥’, are then obtained
y scaling the accumulated values. For convenience of comparison of

various fixed-width multipliers, we take 1000 samples for the conso-
nant part and vowel part of “Chicken,” as shown in Fig. 7. We are con-
cerned with whether the filtered waveform is accurate via our proposed
fixed-width multiplier, so the correct standard output is required. We
Substituting (36)—(39) into (40) to evaluate area-ratio with= 0.09  use error-free output as a standard, which is used to compare the ac-
and¢ = 0.45, we tabulated as Table IV. The area ratio in Table I\turacy performances of fixed-width multipliers. Fig. 8 shows the stan-
shows that our proposed multiplier is area efficient since closely to halérd filtering output signals and Figs. 9-11 show the filtering output
the area of the standard multiplier. signals processed by the 35-tap low-pass FIR filter applying a variety

1
Ag-g-a = 5"(” = D(o+1)Ara

where subscripts denote the corresponding fixed-width multipliers. T
area ratio is defined as follows:

R é -4'1‘runcatod (40)

44St,an dard
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Fig. 9. Output signals using K-G-As’ structure [6]. Fig. 11. Output signals using the proposed structure.
such as ceiling [9] or flooring operators, to devise another useful and
150 : , . : realizable fixed-width multiplier.
100}
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Fig. 11.
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VI. CONCLUSION

This brief develops the general methodology for designing a lower-
error two’s-complement fixed-width multiplier. By properly choosing
the generalized index, we derive a better error-compensation bias to re-
duce the truncation error and then construct a lower error fixed-width
multiplier, which is area-efficient for VLSI realization. Finally, we suc-
cessfully apply the proposed fixed-width multiplier to a digital FIR
filter for speech processing application. It has shown that the perfor-
mance for consonant part is better than that using other fixed-width
multipliers. On the other hand, interested readers can study other bi-
nary thresholding with generalized indices and use different operators,




