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Design of the Lower Error Fixed-Width Multiplier
and Its Application

Lan-Da Van, Shuenn-Shyang Wang, and Wu-Shiung Feng

Abstract—This brief develops a general methodology for designing a
lower-error two’s-complement fixed-width multiplier that receives two

-bit numbers and produces an -bit product. By properly choosing
the generalized index, we derive the better error-compensation bias to
reduce the truncation error and then construct a lower error fixed-width
multiplier, which is area efficient for VLSI implementation. Finally, we
successfully apply the proposed fixed-width multiplier to realizing a digital
FIR filter, which has shown that the performance is better than that using
other fixed-width multipliers.

Index Terms—Area-efficient, fixed-width multiplier, speech processing,
truncation error.

I. INTRODUCTION

Low-error, small-area, and high-speed multipliers are the most
important processing element for digital signal processing (DSP)
applications [1] such as digital filters [2], [3], Moving Picture Experts
Group (MPEG) coding, and so on. The multipliers based on the
Baugh–Wooley algorithm [4], [5] produce2n-bit output withn-bit
multiplier andn-bit multiplicand input. However, for some practical
applications, we only requiren-bit multiplication output, which may
be obtained by directly truncating then least-significant bits and pre-
serving then most significant bits. However, by this way, significant
errors introduced in the fixed-width operation are undesirable for
many DSP applications. To reduce the introduced truncation error,
Kidambi et al. [6] proposed the bias compensation structure derived
from the statistics of carry propagation, but this structure did not
adaptively adjust the proper bias by taking account of a variety of input
signals. Next, Jouet al. [7] provided the carry-generating circuit to
improve the truncation error corresponding to J-Ks’ index. However,
there exist two problems that have never been discussed before. One
is how to choose proper indices, and the other is whether other lower
error multipliers exist or not. The work proposes the general method-
ology for designing the lower error two’s-complement fixed-width
multiplier. In addition, this new multiplier has the same area-ratio as
J-Ks’ multiplier under reasonable assumption. This brief is organized
as follows. In Section II, we propose a better error-compensation bias
to reduce the truncation error by properly choosing the generalized
index, as well as binary thresholding and then construct a simply lower
error fixed-width multiplier. In Section III, we guarantee that this
compensation bias still be held for large widthn. The performance
comparison results in terms of maximum error, average error, variance
of the error, and area ratio are discussed in Section IV. In Section V,
we apply the proposed lower error fixed-width multiplier to a low-pass
FIR digital filter [8], and it can be shown that the performance is better
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than that using other fixed-width multipliers. At last, short statements
conclude the representation of this brief.

II. DESIGN OFFIXED-WIDTH MULTIPLIERS

Considering two two’s-complement integer operands, an-bit multi-
plicandX and an-bit multiplierY can be, respectively, represented by

X = �xn�12
n�1

+

n�2

i=0

xi2
i (1)

Y = �yn�12
n�1

+

n�2

j=0

yj2
j (2)

wherexi; yi 2 f0; 1g. Their productPStandard can be written as

PStandard = X � Y

= xn�1yn�12
2n�2

+

n�2

i=0

n�2

j=0

xiyj2
i+j

+ 2
n�1 �2n�1 +

n�2

j=0

xn�1yj2
j
+ 1

+ 2
n�1 �2n�1 +

n�2

i=0

yn�1xi2
i
+ 1 : (3)

Equation (3) is the famous Baugh–Wooley array multiplier [4], [5],
in which this algorithm combines partial products with the same
weighting factor and places them in the same column. Fig. 1 shows the
subproduct array for8 � 8 multiplication. According to (3), an8 � 8

standard multiplier structure can be obtained as shown in Fig. 2(a) in
which its main symbolic cells are depicted in Fig. 2(b) and other cells
A, ND, HA, and FA denote anAND gate, aNAND gate, a half adder,
and a full adder, respectively. By partitioning the subproducts into two
sections, (3) can be rewritten as follows:

PStandard =MP + LP

=

2n�1

i=n

Pi2
i
+

n�1

i=0

Pi2
i (4)

wherePi 2 f0; 1g; MP =
2n�1

i=n
Pi2

i is the most-significant sec-
tion, andLP =

n�1

i=0
Pi2

i is the least-significant section as shown
in the upper right triangular area of Fig. 2(a). It is well known that the
simplest fixed-width multiplier is to directly truncateLP section, but
this approach leads to the largest truncation error. So, Kidambiet al.
[6] provided a constant bias method, which was derived from the carry
propagation probability ofLP . The truncated multiplier presented in
[6] yields the approximaten-bit fixed-width productPK-G-A; that is

PStandard �= PK-G-A =MP + �K-G-A � 2
n (5)

where�K-G-A represents the error-compensation bias depending on
the widthn. While the widthn is given, the error-compensation bias
�K-G-A is a constant under the uniform probability distribution of input
bits. Although this approach compensates more information than the
simplest truncated multiplier, the bias cannot be adaptively adjusted
for different input signals. Thus, the truncation error is still large. Jou
et al. [7] presented another way to analyze the error compensation,
and suggested a truncated multiplier which results in the fixed-width
productPJ-K as in (6) and (7), shown at the bottom of the next page,
where the index�J-K = xn�1y0 + xn�2y1 + � � � + x0yn�1. Note
that the index�J-K, which is a function of input signalsX andY ,
determines the error compensation bias�J-K. Though the bias�J-K

1057–7130/00$10.00 © 2000 IEEE
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Fig. 1. Subproduct array of8 � 8 multiplication.

(a)

(b)

Fig. 2. (a) Block diagram of the standard multiplier. (b) NFA gate on left and
AFA gate on right.

performs better than the bias�K-G-A, it is deeply expected to develop
a generalized methodology to further improve truncation error. It is
because that there exist two never discussed problems in [7]: how to
choose proper indices and whether other lower-error multipliers exist
or not.

It is known that the most accurate truncated product is theoretically
given by

PStandard �= MP + �Temp � 2n; (8)

�Temp = [LP ]r

=
1

2
(xn�1y0 + xn�2y1 + � � �+ x1yn�2

+ x0yn�1) +
1

22
(xn�2y0 + � � �+ x0yn�2)

+ � � �+
1

2n�1
(x1y0 + x0y1) +

1

2n
x0y0

r

(9)

where[t]r represents the rounding integer fort. It should be empha-
sized that�Temp is an ideal error-compensation term and it is infea-
sible to implement the truncated fixed-width multiplier without using
any acceptable approximation. From (9), it is observed that�Temp is
mainly affected byxn�1y0 + xn�2y1 + � � �+ x1yn�2 + x0yn�1 due
to the largest weight. Now, let us define the main-error compensation
termEmain and the remain-error compensation termEremain, respec-
tively, as

Emain
�
= xn�1y0 + xn�2y1 + � � �+ x1yn�2 + x0yn�1; (10)

Eremain
�
=

1

2
(xn�2y0 + xn�3y1 + � � �+ x0yn�2)

+ � � �+
1

2n�1
x0y0: (11)

PStandard �= PJ-K

= MP + �J-K � 2n (6)

�J-K =
(xn�2y1 + xn�3y2 + � � �+ x2yn�3 + x1yn�2) + 1; if �J-K = 0

xn�2y1 + xn�3y2 + � � �+ x2yn�3 + x1yn�2; if �J-K > 0
(7)
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Thus, we can rewrite (9) as

�Temp =
1

2
(Emain +Eremain)

r

: (12)

Note that�Temp varies while the input bitsxi’s or yi’s alternates. For
general analyzing, we first define a generalized index�index as

�index(qn�1; qn�2; . . . ; q0)
�
= hxn�1y0i

q + hxn�2y1i
q + � � �+ hx0yn�1i

q

(13)

where the binary parametersqn�1; qn�2; . . . ; andq0 2 f0; 1g, and the
operator

hT iq =
T; if qi = 0
�T ; if qi = 1

(14)

in which �T is the complement of binaryT . By utilizing (13), one can
rewrite (12) as

�Temp = �index +
1

2
Emain � �index +

1

2
Eremain

r

= (hxn�2y1i
q + � � �+ hx1yn�2i

q ) + [K]r (15)

where

K = hxn�1y0i
q + hx0yn�1i

q +
1

2
Emain

� �index +
1

2
Eremain: (16)

In (15), the first term in the bracket is referred to as coarse-adjustment
term and the second term[K]r is referred to as fine-adjustment term.
The coarse adjustment term can be easily realized as simple circuit
while the index is decided. On the other hand, the fine-adjustment term
can be approached by the expected value in rounding operation after
analyzing the statistics.

With the spirit of designing simple and realizable error-compensa-
tion circuit, we propose two types of binary thresholding for bias es-
timation. Both types of binary thresholding of�index are described as
follows.

Type 1: See (17), at the bottom of the page.
Type 2: See (18), at the bottom of the page.

whereK1; K2; K3, andK4 are, respectively, the average ofK for
those satisfying�index = 0; �index > 0; �index < n; and�index = n.

Next, in order to achieve high accuracy compensation, an investiga-
tion on the choice of the generalized index�index is required. By ex-
haustive search, we can find some good generalized indices for small
width n (n � 12). For large widthn, because of high computation
load, we have to utilize statistic method to verify error-compensation
equations performed by these better indices. It is noted that�J-K in
Type 1 threshoding is a special index of the generalized index�index
by choosingq0 = q1 = � � � = qn�1 = 0.

Fig. 3. Values ofK andK versus different� in Type 1 thresholding
for n = 6.

For evaluating the resulting performance, given inputsX andY , let
"; �"; and� be the absolute error between the standard multiplier and
various truncated multiplier, the average error, and the variance of error,
respectively. That is

"
�
= jPStandard � PTruncatedj (19)

�"
�
= Ef"g (20)

�
�
= Ef("� �")2g (21)

wherePStandard and PTruncated represent the output value for the
standard multiplier and output value for various truncated multi-
pliers, respectively, andEf�g is the expectation operator. Given
�index(qn�1; qn�2; . . . ; q0) in (13), in the following development, we
call the index�index(qn�1; qn�2; . . . ; q0) as theQth index where

Q
�
= qn�1 � 2n�1 + qn�2 � 2n�2 + � � �+ q0 � 20: (22)

Note thatQ has a range varying from 0 to2n � 1; for example,
�index(100001) denotes the 33th index forn = 6.

By full search simulation forn = 6, we obtain values ofK1 andK2

as shown in Fig. 3 for all possible indices. In order to design a simply
realizable error-compensation circuit, we choose the indices which sat-
isfy [K1]r 2 f0; 1g and [K2]r 2 f0; 1g for the 6 � 6 multiplier.
Interesting speaking, there exist three indices performing better error
compensation than J-Ks’ result in our full search experiment. However,
these three indices (i.e.,�Q=1; �Q=2 ; and�Q=2 +1) in Type 1
thresholding result in nonconstantK1 andK2 for different wordlength
n. This phenomenon can be easily verified and explained by statistic
techniques similar to what addressed in Section III. Since our goal is
to find the fixedK1 as well asK2 independent of wordlengthn and

�Type 1 =
(hxn�2y1i

q + hxn�3y2i
q + � � �+ hx1yn�2i

q ) + [K1]r; if �index = 0

(hxn�2y1i
q + hxn�3y2i

q + � � �+ hx1yn�2i
q ) + [K2]r; if �index > 0

(17)

�Type 2 =
hxn�2y1i

q + hxn�3y2i
q + � � �+ hx1yn�2i

q + [K3]r; if �index < n

hxn�2y1i
q + hxn�3y2i

q + � � �+ hx1yn�2i
q + [K4]r; if �index = n

(18)
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Fig. 4. Values ofK andK versus different� in Type 2 thresholding
for n = 6.

lower-error in terms of average error and variance of error, we direct
our attention to Type 2 thresholding.

Type 2 is another new proposed thresholding and, by exhaustive-
search simulation, it is found that Type 2 structure is an excellent struc-
ture with feasible implementation and better performance. We obtain
the values ofK3 andK4, as shown in Fig. 4, forn = 6. To have a
simple and feasible compensation circuit, it is found that the 33th index
is one of the choices, whereK3 andK4 are close to integers 1 and 0
as possible, respectively. Followed above procedure, we can simulate
for the wordlengthn from 4 to 12 by the full-search simulation in Type
2 thresholding. After possible simulation of different widthn, we ob-
serve that the specific index�Q=2 +1 achieves better performance
as described in Section IV in detail. Of course, the chosen index is of
satisfying[K3]r = 1 and[K4]r = 0 for different widthn. Hence, the
simply realizable error-compensation structure with the lower trunca-
tion error for Type 2 thresholding is described as in (23), shown at the
bottom of the page, where�Q=2 +1 = xn�1y0 + xn�2y1 + � � �+
x1yn�2 + x0yn�1. Equation (23) has been completely simulated for
n � 12 and can be mapped to a new structure. Thus, the proposed
8 � 8 lower-error fixed-width multiplier with the 129th index can be
depicted in Fig. 5.

III. FIXED-WIDTH MULTIPLIER WITH LARGE WIDTH

It is known that(2n�1 + 1)th index in Type 2 thresholding can be
expressed as

�Q=2 +1

= xn�1y0 + xn�2y1 + � � �+ x1yn�2 + x0yn�1: (24)

By computer simulations, we find that this index�Q=2 +1 achieves
better performance for small widthn. It is difficult to simulate that the
index is of the better performance for large widthn since the exhaustive
simulation takes significant computation time. In this section, we show

Fig. 5. Proposed lower-error fixed-width8� 8 multiplier.

that the index�Q=2 +1 is also suitable to being adopted to design the
fixed-width multiplier for large widthn; that is, we show that[K3]r =
1 and[K4]r = 0 for large widthn. While analyzing fine-adjustment
in (15), we encounter the problem in which[K]r depends on input
signals ofEmain; Eremain; �Q=2 +1 and other two terms. Herein,
the probability of the input bits is assumed to be uniform distribution,
so we approximate(1=2)Emain; (1=2)Eremain and other terms using
the analysis of output expected value of logic functions. Two cases can
be taken into consideration:�Q=2 +1 < n and�Q=2 +1 = n.

Case 1:�Q=2 +1 < n It follows from (10) that

E
1

2
Emain =

1

2
�

3

4
+

3

4
+

1

4
� (n� 2)

=
n

8
+

1

2
: (25)

Note thatEfxiyjg = 1=4 andEfxiyjg = 3=4, since the probability
of input bits is assumed to be uniform distribution. Similarly, we can
obtain (26) from (11) as

E
1

2
Eremain

=
1

22
�

1

4
� (n� 1) +

1

23
�

1

4
� (n� 2) + � � �+

1

2n
�

1

4
� 1

=
1

4

1

22
� (n� 1) +

1

23
� (n� 2) + � � �+

1

2n
+ 1

�=
n

8
�

1

4
; if n � 4: (26)

�Type 2;Q=2 +1 =
xn�2y1 + xn�3y2 + � � �+ x1yn�2 + 1; if �Q=2 +1 < n

xn�2y1 + xn�3y2 + � � �+ x1yn�2; if �Q=2 +1 = n
(23)
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Apparently, while using�Q=2 +1, we find that

�Q=2 +1 = xn�1y0 + x0yn�1 + xiyj=Emain

(27)

whereqn�1 = q0 = 1 andqn�2 = qn�3 = � � � = q1 = 0. By
applying (25)–(27), it follows from (16) that the expected valueK3 is
given by

[K3]r = [EfKg]r

= E xn�1y0 + x0yn�1 �
1

2
Emain +

1

2
Eremain

r

=
3

4
+

3

4
�

n

8
�

1

2
+

n

8
�

1

4
r

= 1: (28)

Consequently, we obtain following equation:

�Type 2;Q=2 +1 = (xn�2y1 + � � �+ x1yn�2) + 1;

if �Q=2 +1 < n (29)

Case 2:�Q=2 +1 = n This case�Q=2 +1 = n is met only
whenx0yn�1 = xn�1y0 = 1 andx1yn�2 = x2yn�3 = � � � =
xn�2y1 = 1. That is, Case 2 is a conditional probability case and,
thus, we deduce (30) and (31) as follows:

E
1

2
Emain =

1

2
� 1� n =

1

2
n (30)

E
1

2
Eremain =

1

22
1

3
� 1� 2 + 1� (n� 3)

+
1

23
1

3
� 1� 2 + 1� (n� 4)

+ � � �+
1

2n�2
1

3
� 1� 2 + 1� 1

+
1

2n�1
1

3
� 1� 2

+
1

2n
1

9
� 1� 1

�=
1

2
n�

5

3
; if n � 4: (31)

In view of (30), (31), and (16), we have

[K4]r = [EfKg]r

= E xn�1y0 + x0yn�1 �
1

2
Emain +

1

2
Eremain

r

= 0:

(32)

Thus,�Type 2;Q=2 +1 for �Q=2 +1 = n can be written as

�Type 2;Q=2 +1 = xn�2y1 + xn�3y2 + � � �+ x1yn�2;

if �Q=2 +1 = n (33)

By combining (29) and (33), we get the conclusioin in (34), shown
at the bottom of the page. Equation (34) shows that Type 2 thresh-
olding with the chosen index�Q=2 +1 is suitable to implementing
the fixed-width multiplier with large widthn.

TABLE I
COMPARISONRESULTS OFMAXIMUM ERROR"

TABLE II
COMPARISONRESULTS OFAVERAGE ERROR�"

TABLE III
COMPARISONRESULTS OFVARIANCE OF ERRORS�

TABLE IV
COMPARISONRESULTS OFAREA RATIO R

IV. PERFORMANCECOMPARISONS ANDAREA COMPARISON

In this section, it has been shown that the proposed fixed-width mul-
tiplier achieves better performance than the other fixed-width multi-
pliers by computer simulations. The performance is evaluated in terms
of average error�" and the variance of errors� defined in (20) and (21),
respectively, and the maximum error defined by

"max
�
= max(jPStandard � PTruncatedj): (35)

It is obvious that a fixed-width multiplier is more accurate if�"; � and
"max are smaller. Tables I–III show the simulated results for the var-
ious fixed-width multipliers of different widthn. The K-G-As’ struc-
ture [6] is the truncated multiplier with constant compensation bias
only depending on the width of the multiplier, the J-Ks’ structure is the
fixed-width multiplier devised by Jouet al.[7], and the proposed struc-
ture is our fixed-width multiplier of Type 2 thresholding with the index
�Q=2 +1. The comparison results show that our proposed fixed-
width multiplier is more accurate than the others. The excellent per-
formance is achieved due to the fact that we derive a better error-com-
pensation bias to reduce the effect of truncation error.

Let AAND; ANAND; AOR; ANOR; AHA, andAFA be the areas of
an AND gate,NAND gate,OR gate,NOR gate, a half adder, and a full
adder, respectively. Furthermore, we adopt the same notation as in [6]
such that letAAND = �1AFA; AAND = �2AFA; AOR = �3AOR;

ANOR = �4AFA, andAHA = �AFA, where0 < �1; �2; �3; �4 <

0:1 and0 < � < 0:5. For convenience of comparison, we reasonably

�Type 2;Q=2 +1 =
xn�2y1 + xn�3y2 + � � �+ x1yn�2 + 1; if �Q=2 +1 < n

xn�2y1 + xn�3y2 + � � �+ x1yn�2; if �Q=2 +1 = n
(34)
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Fig. 6. Block diagram of a 35-tap FIR digital filter.

Fig. 7. Original input voice signal with 1000 samples.

assume� = �1 = �2 = �3 = �4. The areas of the standardn � n

multiplier is given as

AStandard = n
2
�AFA + (n� 1)�AFA + (n� 1)2AFA: (36)

On the other hand, the maximum area ofn � n, K-G-As’ multiplier,
J-Ks’ multiplier, and the proposed multiplier are briefly formulated as

AK-G-A =
1

2
n(n� 1)(�+ 1)AFA (37)

AJ-K =
1

2
n(n� 1)(�+ 1)AFA + (2n� 1)�AFA (38)

AQ=2 +1 =
1

2
n(n� 1)(�+ 1)AFA + (2n� 1)�AFA

(39)

where subscripts denote the corresponding fixed-width multipliers. The
area ratio is defined as follows:

R
�
=

ATruncated

AStandard
: (40)

Substituting (36)–(39) into (40) to evaluate area-ratio with� = 0:09
and� = 0:45, we tabulated as Table IV. The area ratio in Table IV
shows that our proposed multiplier is area efficient since closely to half
the area of the standard multiplier.

Fig. 8. Standard voice output signal without loss.

V. DSP APPLICATION OFFIXED-WIDTH MULTIPLIERS

In this section, we apply the proposed fixed-width multiplier to the
35-tap FIR filter as shown in Fig. 6 for speech processing. The behavior
of a digital FIR filter can be represented as follows:

O
m =

L�1

i=0

X
i
Y
(m�i) (41)

where
Xi input sequence;
Y i filter coefficient;
Oi output sequence atith discrete time.

The superscripti, is the time index. First, for practical consideration
[8], the maximum input voice data and filter coefficient in two’s com-
plement are normalized to the same value 127 with 8-bit quantization.
In the experimental simulation, the temporary output is an accumu-
lated value using 32 bits. Finally, the outputs,Oi, are then obtained
by scaling the accumulated values. For convenience of comparison of
various fixed-width multipliers, we take 1000 samples for the conso-
nant part and vowel part of “Chicken,” as shown in Fig. 7. We are con-
cerned with whether the filtered waveform is accurate via our proposed
fixed-width multiplier, so the correct standard output is required. We
use error-free output as a standard, which is used to compare the ac-
curacy performances of fixed-width multipliers. Fig. 8 shows the stan-
dard filtering output signals and Figs. 9–11 show the filtering output
signals processed by the 35-tap low-pass FIR filter applying a variety
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Fig. 9. Output signals using K-G-As’ structure [6].

Fig. 10. Output signals using J-Ks’ structure [7].

of fixed-width multipliers. Using constant bias K-G-As’ multiplier, it
is seen from Fig. 9 that there are larger average error and variance of
errors in consonant part. Fig. 10 is obtained by applying J-Ks’ mul-
tiplier and it shows better performance than that of Fig. 9. However,
compared to standard output, we find that output signals in Fig. 10 still
have large average error as well as variance of the errors. The smaller
average error and variance of the errors especially for consonant part
is obtained by using our proposed fixed-width multiplier as shown in
Fig. 11.

VI. CONCLUSION

This brief develops the general methodology for designing a lower-
error two’s-complement fixed-width multiplier. By properly choosing
the generalized index, we derive a better error-compensation bias to re-
duce the truncation error and then construct a lower error fixed-width
multiplier, which is area-efficient for VLSI realization. Finally, we suc-
cessfully apply the proposed fixed-width multiplier to a digital FIR
filter for speech processing application. It has shown that the perfor-
mance for consonant part is better than that using other fixed-width
multipliers. On the other hand, interested readers can study other bi-
nary thresholding with generalized indices and use different operators,

Fig. 11. Output signals using the proposed structure.

such as ceiling [9] or flooring operators, to devise another useful and
realizable fixed-width multiplier.
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