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Abstract
In this paper, we develop a new methodology for designing a

lower-error and area-time efficient 2 s-complement fixed-width
Booth multiplier that receives two n-bit numbers and produces
an n-bit product. By properly choosing the generalized index and
binary thresholding, we derive a better error-cojmpensation bias
to reduce the truncation error. Since the proposed error-
compensation bias is realizable, the constructing low-error fixed-
width Booth multiplier is area-time efficient for VLSI
implementation. Finally, we successfully apply the proposed
fixed-width Booth multiplier to speech signal processing. The
simulation results show that the perfoirnance isi stiperior to that
using the direct-truncation fixed-width Booth multiplier.

1. Introduction
In many digital signal processing (DSP) applications such as

digital filters [6, 7] and wavelet transform, it is desirable to
maintain fixed-width output word through tihe arithmetic
operations. So, a low-error fixed-width multiplier [5-8] that
receives an n-bit multiplier as well as an n-bit multiplicand and
produces an n-bit output prodtict is the most important processing
element for digital computing engine. In view of the algorithm
level, most fixed-width multipliers are b-ased on either the Baugh-
Wooley algorithm [I1 or the Booth algoirithm [2, 3 1. The Baugh-
Wooley based fixed-width multipliers [5-7] have been widely
studied. King and Swartzlander [5] analyzed an adaptive error-
compensation bias and proposed an ri-bit fixed-width multiplier.
In [6, 7], we generalized this kind of Baugh-Wooley based fixed-
width multipliers by properly choosi.ng the generalized index and
binary thresholding. Thus, several 'lower-error and area-efficient
fixed-width multipliers can be obtained. However, the area-time
efficient fixed-width multiplier cfannot be filly achieved by the
Blauth-Woolcy based fixcd-wid tl nmltiplicrs. TIhercbore, thc
fixed-width Bootil algoritlihi iF, currcntly onie of the rcscarclh
topics.

The Booth algorithm is widely used in the implementation of
ASIC-oriented products because a highler-speed and smaller
multiplier can be obtained. The modified Booth algorithm was
proposed by the MacSorley [3] in which a triplet of bits is
scanned at a time. It is known that the recoding technique of the
modified Booth algorithm has two main adivantages. One is that
almost half the partial products zompared to the Baugh-Wooley
multiplier can be saved. Hence, the number of rows of the
subproduct array can be reduced by 2. The ofther is that, based on
the first advantage, the critical delay titne can, be shorter than that
of the Baugh-Wooley multiplier. Area savinig of a fixed-width
Booth multiplier can be achieved by directly truncating n least
significant product bits and ,reserving n most significant product
bits. With this method, sig,nificant truncation errors would be
introduced since no error c,ompensation is considered. Thus, the
Booth-based scheme in [8] has been proposed to reduce the

truncation error; however, the proposed scheme [8] that lacks for
systematic analysis and derivation does not be a systematic
methodology. In this paper, we are motivated to propose a
systematic design methodology for low-error area-time efficient
Booth multipliers. The methodology includes the following steps
in order: I) Propose an error-compensation bias with a new
binary thresholding; 2) simulate the value of K and error
performance of the proposed error-compensation bias using our
generalized index, and then select the best index having lower
error and satisfying the same value ofK for small width n; and 3)
construct a low-error Booth multiplier structure. Based on our
methodology, the resulting error compensation circuit can be
easily realized without any area overhead under the limited
truncation error. The organization of this paper is as follows. The
modified Booth algorithm is concisely reviewed in Section 2. In
Section 3, we propose a better error-compensation bias and
present the simulation results for small width n . The improved
error-compensation bias can be mapped to a new structure. The
performance of the proposed fixed-width Booth multiplier are
described in Section 4. Finally, brief statements in section 5
conclude the presentation.

2. Modified Bootht Mtiltiplier
Considering the multiplication of two 2 s-complemilent

integers with n-bit multiplicand A and n-bit multiplier B as
2n-I

P =AB= Z,P,2i
i=O

(1)

n-2 n-2
where A= -a 2n-1 + Eai2' , B= -bn12 + Ebj2j, and

1=O j=0

P1 denotes the 1-th output product bit. Note that a, and b,
ind(licate dlata bits of multiplicand and(i miul(iplier, respectively.
Assumne n is eveCI and the u-bit imultiplier Ii can be rewritten

(n-2)/2
B= (b2i l+b2i-2b2i+1)2 ,

i=O

(2)

where b-1 = 0 . Note that the terms in the bracket in Eq (2) have
values of {-2, -1, 0, 1, 2). Each recoded value performs a certain
operation on the multiplicand A, and then the multiple additions
at each stage would be required in order to generate the correct
partial product. It is worth mentioning that the operation of -A
can be realized by the inversion of the multiplicand and addition
of 'I at the least significant bit as illustrated in Table I.
Substituting Eq. (2) into Eq. (1), we can obtain Eq. (3) as

(n-2)/2 (n-2)/2
P=AB= E(b2i_ ±+b2i-2b2+1,)A22i = Si,

i=O i=O

(3)
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where Si =(b2,i 1 +b2i -2b2+I)A22i , and it is known that the
scanning of triplets begins from b-I to the MSB with one-bit
overlapping. Thus, only the number of n / 2 partial-product rows
needs to be computed.

Table 1: Modified Booth Encoding Table

b21+, b2i b2i-I Operation on ADD to LSB
A

o 0 0 0 0
0 0 1 -A 0
0 1 0 +A 0
0 1 1 +2A 0
1 0 0 -2A
1 0 1 -A I

1 0 -A I
1 1 0 0 _O
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Fig. 1. Modified Booth partial-product diagram with sign-
generate sign extension scheme for an 8x8 multiplier.

So as to simplify the representation of the bit-product of each
row for the Booth algorithm, we define the following notation

S ,n22i+n-lI 2i+n-2 S 2i2S1 "i,n-l~ + Si,n-22 +..+ S1,0 (4)

where S,jj represents the bit product of the i-th row. Based on

the conventional Booth arithmetic operations, sign extension of
the partial products are required for each stage. However, the
extended sign bits result in a larger power and area. According to
the sign-generate sign extension scheme [4], for an 8 by 8
multiplier, the sign of the final result can be expressed as

1J 23
2

iJ 9

s-(So,72)2+(SI7Z2') 2 (S2,7Z2')24 +(S3,7Z2J)26
j=8 j=8 j=8 j=8

9 8 - 1 13 12=(2 +S0,72 )+(2" +S 2721 )+(2 +S2 72 )

+(2" +S32 4)+22 (5)

where S is the final result sign. From Eq. (5), the partial
products of the Booth algorithm only need to add two elements
(1, Si7 ) for each row and add an extra 'I in the 28 -weight
position as shown in Fig. 1, where main and remain represent
main part and remain part of the least significant bit (LSB),
respectively. Thus, the sign-generate sign extension scheme can
reduce a lot of redundant full adders compared to the
conventional sign extension method. The architecture of the
Booth Multiplier as shown in Fig.2 consists of Booth encoders,
selectors (sel), full adders (FA) and half adders (HA). The Booth
encoder generates Ctrli [O: 2] signals to control the selector to

choose -2A, -A, 0, IA or 2A.

3. Design of Fixed-Width Booth Multiplier
The 2n product for n by n 2 s-complement multiplication can

be divided into two sections as

P = AB = MP + LP. (6)

Fig. 2. An 8 X 8 modified Booth multiplier using sign-generate
sign extension scheme.

The most accurate trunication1prodLlct is giveni by

P_MP++ aTempx2n,

UTemp =ILPI r -

(7)

(8)

Without loss of generality, for n=8, Eq. (8) can be denoted as

I

(S3,1 + S2.3 + S '0,7 )-+22 (S3,0 + - + SO,6
L2 22Cr7eml9) 1

+ CfrI3[2D+ ...+
I

So, I + I! (SO,O + Ctrlo[2 1) r

(9)
Then we define the following terms

Emain = S3,1 + S2,3 + SI,s + SO,7,

Eremain =
I (S3o0 + S2,2 + Sj,4 + SO,6 + Ctrl3(21)2'

+... + 7 (So,o + Ctrlo[2])27
Thus;, we can rewrite Eq. (9) as

cr Temp = [I(Emain + Eremain )]-

(10)

(I 1)

(12)
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It is convenient to perform exhaustive simulation if we define the
generalized index. Here the generalized index for 8 by 8
multipliers is defined as

i9M&x(q32q22q71qO) =< S3,1 >q3 + < S2,3 >q2 + < S1,s >q + < So,7 >q (13)

where the binary parameters q3, q2,q1 and qo E (0,1), and the
operator

< TT ,if q, =0
(T, ,if q = I

(14)

in which T is the complement of binary T . Furthermore,
0indeX(q3,q2,ql,qO) is referred to as as 0Q, where

Q=q3x23 +q2 x22 +q1 X21 +qo x20. (15)

In accordance with the rounding values of K1 and K2, we
simulate average error as shown in Fig. 3(b). Considering the
goal of lower error and the restriction of K, we can find that
OQ=O index has better performance as shown in Fig. 3(b) with

[KI Jr = -I and [K2 Jr = 0 for n = 8 . Thus, the simple error-
compensation circuit can be described as

S3,1+S2,3 +S,,5 +S0,7 -1 , if OQ=o < 4
aQ=o = S3,1 + S2,3 +S+,s + S0.7 + ° , ifOQ=0 = 4 (19)

where Q=O= S31 + S23 + S5 +So,7 * Eq. (19) has been

completely simulated for n . 16 and can be mapped to a new
structure as shown in Fig. 4. Note that the error-compensation
circuit only needs three AND gates.

Note that Q has a range from 0 to 15. So as to evaluate the
resulting performance, by applying Eqs. (13) to (15) into Eq.
(12), we get

6Temp = OQ + [ Emain 0Q + I Eremain]

=w(<e3r q3 +<S23 >92 + <eS15 >q, <SO7 qo )+[K]r 9 (16)
where

K = 2 Emain - fQ +I Eremain° (17)

Based on the binary thresholding concept in [6, 7], Eq. (16) can
be approximated as

[<S3.1 >9) + <S2.3 >9' +< SO >q' +<SOJ7 >q° 44K, 1r if Oy < 4
emp {<S3,1 >71 +<S2,3 >92 +<S1,, >9 +<s0,7 >q +[K2] , if =4

(18)
where K1 and K2 are respectively the average of K for those
satisfying OQ < 4 and =Q4. In order to design a simple and
realizable error-compensation circuit, we choose the indices
which satisfy [KuIr,e (l,0,l) and [K2J]rE{-1,0,1) . By
exhaustive search simulation, we obtain values of K1 and K2 as

shown in Fig. 3(a) for n= 8 .

-EK2 20 m

Q 20

Fig. 3. (a) Values of KI and K2 versus different Q of the binary
thresholding. (b) Average errors by exhaustive search simulation
versus different Q of the binary threshoding for n = 8 .
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Fig. 4. Proposed low-error fixed-width 8 x 8 Booth multiplier
with

4. Performance-and Application Discussion
In this section, we first simulate error performance in terms of

maximum error, average error, and variance of error as listed in
Trable 2 between the direct-truncation multiplier and the
proposed fixed-width Booth multiplier. It is clearly seen that the
new structure can achieve better error performance than the
direct-truncation Booth multiplier. Regarding the number of
gates and the critical path delay time issues as listed in Table 3,
comparison results show that the new Booth multiplier saves
much area cost with respect to the full-precision Booth multiplier
based on the sign-generate sign extension scheme. Most
importantly, the gate count and critical delay time of the
proposed structure are close to those of the direct truncation
multiplier, respectively. Thus, the proposed fixed-width Booth
multiplier has the area-time efficient feature with better error
performance. On the other hand, we apply the proposed fixed-
width multiplier to the 35-tap FIR filter for speech processing
(9]. For convenience of comparison of various fixed-width
multipliers, we take 1000 samples for the consonant part and
vowel part of "Chicken" as shown in Fig. 5(a). We are concerned
with whether the filtered waveform is accurate via our proposed
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fixed-width multiplier, so the correct standard output is required.
We use error-free output as a standard, which is used to compare
the accuracy performances of fixed-width multipliers. Fig. 5(b)
shows the standard filtering output signals and Figs. 5(c) shows
the filtering output signals processed by the 35-tap low-pass FIR
filter applying a direct truncation fixed-width multiplier. Using
direct truncation multiplier, it is seen from Fig. 5(c) that there are
large average error and variance of errors in the consonant part.
The smaller average error and variance of the errors especially
for consonant part is obtained by using our proposed fixed-width
Booth multiplier as shown in Fig. 5(d).

5. Conclusions
This paper develops a new methodology for designing a low-

error and area-time efficient fixed-width Booth multiplier. By
properly choosing binary thresholding and the generalized index,
we can derive a better error-compensation bias to improve the
truncation error. Furthermore, this error-compensation bias can
be easily constructed as a lower-error fixed-width Booth
multiplier. It is very suitable for VLSI digital signal processing
applications where the accuracy, area, and speed issues are
crucial. Finally, we successfully apply the proposed fixed-width
multiplier to a digital FIR filter for speech processing
application.
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Fig. 5. (a) Original input voice signal, (b) standard output voice
signal, (c) output signals using the direct truncation structure and
(d) output signals using the proposed Booth multiplier structure.
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Table 2: Comparison Results ofThree Kinds of Errors among
Different Booth Multipliers

Multiplier Width Maximu Average Variance of
m Error Error Error

Direct 4 32 10.88 67.20
Truncation 6 192 70.50 1465.86
Multiplier 8 1024 384.25 28510.19

_ 16 524288 196608.25 3661149123
'This Work 4 16 4.59 28.50

6 85 21.60 716.86
8 443 103.12 16376.65
16 504268 62501.62 1486362529

Table 3: Comparison Results of Area and Critical Delay Time
among Different Booth Multipliers for n = 8

Multiplier Area (# of gate counts) Critical Delay
Time

FA VIA Selector
lFull lPrecisioni
Multiplier 28 12 36 1 37TrA + 3TIjA

Based on Sign-
Generate

Direct 1 8 16 7TFA + 3THA
Truncation
Multiplier
This work 16 4 20 1 OTFA + TIM
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