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Abstract 
In this paper, we extend our generalized methodology for de-

signing lower-error area-efficient fixed-width two’s-complement 

multipliers that receive two s -bit numbers and produce an 

s -bit product. The generalized methodology involving four 

steps results in several better error-compensation biases. These 

better error-compensation biases can be easily mapped to 

lower-error fixed-width multipliers suitable for VLSI realization. 

1. Introduction 
Low-error, small-area, and low-power fixed -width (also 

referred to as single precision) multipliers [2-8] are the most 

important processing element for digital computing engines such 

as digital filters, wavelet transform [7]. The fixed-width multi-

pliers derived from the Baugh-Wooley [1] multiplier produce 

s -bit output product with s -bit multiplier and s -bit multipli-

cand. Area saving of a fixed-width multiplier can be achieved 

either by directly truncating s  least significant product-bits 

and preserving s  most significant product-bits or by other 

efficient methods. By the former method, significant truncation 

errors composed of reduction and rounding errors would be 

introduced since no error compensation is considered. Thus, the 

latter schemes investigate issues on low truncation error and 

small area. Lim [2] first utilized statistical techniques to estimate 

the error-compensation bias. However, in his analysis the reduc-

tion and rounding errors are separately treated such that this 

scheme does not lead to an accurate enough error-compensation 

bias. Schulte et al. [3] improved the error-compensation bias to 

be more accurate and practical since the reduction and rounding 

errors are concurrently treated. The above two schemes are 

based on keeping ws  columns of the subproduct array, 

where w  is a nonnegative integer between 0  and 1s .

While w  equals zero, these two schemes are equivalent to the 

work of Kidambi et al [4]. Nevertheless, the three analyses and 

structures cannot provide an adaptive error-compensation bias. 

Later, King and Swartzlander [5, 6] analyzed an adaptive er-

ror-compensation bias (also referred to as variable correction) 

under keeping ws  columns and proposed an s -bit

fixed-width multiplier. Corresponding to J-K-Cs’ index, Jou et al.

[7], independently, provided another adaptive er-

ror-compensation bias (also referred to as carry-generating cir-

cuit) to improve truncation error at 0w . In [8], how to 

choose the index and whether other binary thresholding and 

structures exist have been partially explored and pointed out at 

0w . This work is intended to extend our generalized meth-

odology to design several lower-error area-efficient fixed-width 

multipliers. This generalized methodology includes the follow-

ing steps in order: 1) Propose an error-compensation bias with a 

new binary thresholding for a fixed value of w; 2) simulate the 

value of K  and error performance of the proposed er-

ror-compensation bias using our generalized index, and then 

select the best index having lower error and satisfying the same 

value of K  for small width s ; 3) construct a lower-error mul-

tiplier structure; and 4) verify the realizable error compensation 

bias by statistical techniques for large width s . While 1w ,

the new multiplier also operates lower error than those in [5, 6] 

at the expense of slightly increased area-ratio with respect to 

each value of w . Thus, the proposed lower-error multipliers are 

area-efficient.  

This paper is organized as follows. In Section 2, we pro-

pose several better error-compensation biases and simulate the 

results for small width s . The improved error-compensation 

bias can be mapped to a new structure with respect to each value 

of w . The performance discussions of the proposed fixed-width 

multipliers are described in Section 3. Finally, brief statements 

conclude the presentation. 

2. Design of Fixed-Width Multipliers 
   Considering two two’s-complement integer operands, an 

s -bit multiplicand X  and an s -bit multiplier Y  can be 

respectively represented by 
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Eq. (3) represents the Baugh-Wooley algorithm. Fig. 1 reveals 

the subproduct array for ss  two’s-complement multiplica-

tion. By partitioning the subproducts into two sections, Eq. (3) 

can be rewritten as 
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where }1,0{iP . It is known that the most accurate truncated 

product is theoretically given by 
s
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where r  denotes the rounding integer of . Then we define 

the following terms as 

1021231201 ... sssssmain yxyxyxyxyxE ,  (7) 
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Using Eqs. (7) and (8), we can rewrite Eq. (6) as 

r
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2

1
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To explore the influence of the index in the proposed binary 

thresholding, we define a generalized index, windex, , as 
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where w  means to keep ws  columns in the subproduct 

array and the binary parameters ...,,, 21 wsws qq  and 

1},0{0q . The operator  

1if,

0if,

i

iiq

qT

qT
T  (11) 

in which T  is the complement of the binary number T . In-

stead, we call the index ),...,,(
021,

qqq wswswindex  as wQ ,
,
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Note that Q  has a range varying from 0  to 12 ws . For 

evaluating the resulting performance, let ,  and  be the 

absolute error between products of the standard multiplier and 

truncated multiplier, the average error, and the variance of error, 

respectively. In the following, we divide the content into two 

subsections.

2.1 Realizable error-compensation bias keeping s

columns ( 0w )

Since the derivation results in this subsection are the same 

as what proposed in [8, 9], we only present the simple er-

ror-compensation bias applying the generalized methodology in 

Type 2 binary thresholding as 
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where 1012010,112
... ssswsQ

yxyxyx . Subse-

quently, we focus on developing a newly fixed-width multiplier 

in the next subsection. 

2.2 Realizable error-compensation bias keeping more 

than s  columns ( 1w )

In [2, 3], they show that lower truncation error can be ob-

tained if larger ws  columns are kept in hardware. However, 

more area cost could be increased. Since the reduction and 

rounding errors do not own the same weight position, we adopt 

S-Ss’ method [3] to concurrently treat reduction and rounding 

errors. Eq. (9) can be rewritten as 
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and  denotes the maximum integer equal to or less than .

Note that the least significant weigh of K  must be limited to 

the ws  weighting position. Concurrently treating method for 

reduction and rounding errors of Eq. (14) can be directly re-

ferred to derivation of [3]. In the first step, to design a realizable 

error-compensation bias, two types of binary thresholding for 

the error-compensation bias can be changed to 
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where 321 ,, KKK  and 4K  are defined as those of [8] but for 

1w . The restriction of the value of K  can be modified as 

}2,12,1,0{ 11 ww

riK  for 3,2,1i  and 4 . For 1w ,

since using the same simulation procedures as mentioned in [8], 

we only introduce the analysis for 1w  and construct the 

structure. In Type 1 binary thresholding, by exhaustive search 

we can find that one good index, 1,0 wQ  for 6s  satisfies 

the restriction of 1K  and 2K  as shown in Fig. 2. The average 

error and variance of error resulted from the index, 
1,0 wQ , are 

shown in Figs. 3 and 4, respectively. After exhaustive simulation 

from 4s  to 12 , we observe that the specific index, 
1,0 wQ

achieves better error performance where the chosen index satis-

fies 11 r
K  and 02 r

K . On the other hand, for Type 2 

binary thresholding, the error simulation in terms of average 

errors and variance of errors are larger than what we find error 

resulted from the best index in Type 1 thresholding, so we ig-

nore the discussion in Type 2 binary thresholding. So far, the 

second step is achieved. Hence, a new lower error fixed-width 

multiplier under 1w  can be described and simplified as: 
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where 
2013021,0

... ssswQ yxyxyx . In the third step, 

Eq. (20) can be mapped to the structure as shown in Fig. 5(a) for 

8s , where A, ND, and FA denote AND gate, NAND gate, and 

a full adder, respectively, and other main symbolic cells are de-

picted in Fig. 5(b). In the fourth step, verifying the realizable 

error-compensation bias by statistical techniques for larger width 

can be easily modified from the derivation results in [8]; thus, 

we ignore the presentation here. At other values of w , we can 

follow the same procedures to evaluate K , error performance 

and form the structure for small width s . From simulation re-

sults, wQ ,0
 in Type 1 binary thresholding is still the best index 

for 1w .

3. Performance Discussion 
In this section, the performance is evaluated in terms of 
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maximum error max , average error , variance of error 

and area ratio R  defined in [8, 9]. It is obvious that a 

fixed-width multiplier is more accurate if max , , and  are 

smaller. Tables 1, 2 and 3 show simulated results for various 

fixed-width multipliers at different width s . The comparison 

results show that our proposed fixed-width multipliers are more 

accurate than others [2-7] for different values of w . The better 

performance is achieved due to the fact that we derive better 

error-compensation biases to reduce truncation error. The 

area-ratio in Table 4 shows that the proposed multiplier has 

nearly the same area-ratio as that of [4-7] at each value of w

so that the lower-error fixed-width multiplier is area-efficient. 

Next, we apply the proposed fixed-width multiplier to the 35-tap 

FIR filter for speech processing. For convenience of comparison 

of various fixed-width multipliers, we take 1000 samples for the 

consonant part and vowel part of “Chicken”. We are concerned 

with whether the filtered waveform is accurate via our proposed 

fixed-width multiplier, so the correct standard output is required. 

We use error-free output as a standard, which is used to compare 

the accuracy performances of fixed-width multipliers. From 

comparison results obtained with four fixed-width multipliers as 

shown in Fig. 6 for speech processing application, we observed 

that the Type 1 multiplier with 1,0 wQ  shows better error per-

formance in the consonant and vowel parts. 

4. Conclusion 
This paper develops a generalized methodology for de-

signing lower-error area-efficient fixed-width multipliers. By 

properly choosing the binary thresholding and generalized indi-

ces, we devise several better error-compensation biases to re-

duce the maximum error, average error and variance of error. 

From area-ratio comparison, these new lower-error fixed-width 

multipliers are shown to be area-efficient for VLSI implementa-

tion. Finally, we successfully apply the proposed fixed-width 

multipliers to speech processing application and obtain satisfac-

tory results.  
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Table 1: Comparison Results of Maximum Error, max

Multiplier s=4 s=6 s=8 s=10 s=12 

K-G-As’ Structure 33 193 1281 6145 32769 

J-K-Cs’ Structure 21 107 515 2403 10979 

Type 2 with 12 1sQ , 0w 17 89 441 2105 9785 

K-Ss’ Structure with 1w 11 55 263 1223 5575 

Type 1 with 0Q , 1w 9 49 237 1117 5149 

K-Ss’ Structure with 2w 9 41 185 825 3641 

Type 1 with 0Q , 2w 8 37 171 771 3427 

Table 2: Comparison Results of Average Error, 

Multiplier s=4 s=6 s=8 s=10 s=12 

K-G-As’ Structure 6.96 41.01 188.29 906.40 3842.06 

J-K-Cs’ Structure 7.20 37.27 170.46 736.62 3065.25 

Type 2 with 12 1sQ , 0w 5.17 24.07 105.96 456.14 1907.36 

K-Ss’ Structure with 1w 4.00 17.58 73.91 307.11 1245.14 

Type 1 with 0Q , 1w 3.77 16.29 69.15 292.27 1205.49 

K-Ss’ Structure with 2w 3.78 16.11 65.94 267.25 1067.47 

Type 1 with 0Q , 2w 3.75 15.81 64.67 262.99 1055.75 

Table 3: Comparison Results of Variance of Error, 

Multiplier s=4 s=6 s=8 s=10 s=12 

K-G-As’ Structure 39.80 788.45 22959.01 416043 9204493 

J-K-Cs’ Structure 28.24 537.70 10158.54 190805 3417020 

Type 2 with 12 1sQ , 0w 17.63 320.65 6031.32 112079 1973508 

K-Ss’ Structure with 1w 9.25 149.26 2597.87 45748 787538 

Type 1 with 0Q , 1w 7.32 110.32 2060.25 39345 723507 

K-Ss’ Structure with 2w 7.45 104.74 1672.61 27741 446760 

Type 1 with 0Q , 2w 7.19 95.15 1512.79 25626 420685 

Table 4: Comparison Results of Area Ratio, R

Multiplier s=4 s=6 s=8 s=10 s=12 

K-G-As’ Structure 0.555 0.536 0.527 0.522 0.518 

J-K-Cs’ Structure 0.608 0.569 0.550 0.540 0.533 

Type 2 with 12 1sQ , 0w 0.608 0.569 0.550 0.540 0.533 

K-Ss’ Structure with 1w 0.863 0.733 0.671 0.635 0.612 

Type 1 with 0Q , 1w 0.885 0.747 0.682 0.644 0.619 

K-Ss’ Structure with 2w 1.277 0.994 0.862 0.786 0.736 

Type 1 with 0Q , 2w 1.292 1.004 0.871 0.793 0.742 
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