
Reconfigurable Depth Buffer Compression Design for 3D

Graphics System

Tzung-Rung Jung, Lan-Da Van, Wai-Chi Fang*, Teng-Yao Sheu

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

* TSMC Distinguished Chair Professor, Dept. of Electronics Eng., National Chiao Tung University, Hsinchu, Taiwan

E-mail: ldvan@cs.nctu.edu.tw , wfang@mail.nctu.edu.tw

Abstract—Depth buffer bandwidth reduction is one of the most

important issues in bandwidth-limited 3D computer graphics

system. In this paper, we propose a reconfigurable algorithm for

depth buffer compression. For 8x8 tile size and 16-bit depth

values, the proposed algorithm can achieve 1.91:1 compression

ratio on average and improve 76.9% and 39.4% compared with

HA [12] and DDPCM [7], respectively. Furthermore, the devised

algorithm supports one-plane and two-plane compression modes

and manipulates break points more efficiently.

I. INTRODUCTION

The increasing demand of the depth buffer comparison has

led to widespread interests in 3D graphics system. Nowadays,

the 3D computer graphics are widely used in many

applications such as mobile phones [1], GPS (Global

Positioning System), digital TV [2-4], games, biomedical

applications [5], where these applications usually use complex

GUI (graphical user interface) for generating better 3D images.

It is known that 3D computer graphics system requires

extreme high memory bandwidth. On the other hand, with the

growth of complexity of 3D scenes, the amount of data

computation increases substantially. Therefore, in the

bandwidth-limited system, how to efficiently compress the

depth buffer data to save bandwidth becomes a significant

research issue. Fast z-clears compression algorithm [6] uses a

dedicated flag to indicate whether a tile is cleared. DDPCM

[7], anchor encoding [8], efficient depth buffer compression

[12] (i.e., HA method) are effective compression algorithms

exploiting the coherence of interpolated depth values. The

plane encoding scheme presented in [10] applies the concept

of indexing to compress tiles. Depth offset compression [11]

saves the differentials based on the z-max value (maximum

depth value) and z-min value (minimum depth value) in a tile.

Other compression methods are released in [13-15]. Since the

compression performance of the above state-of-the-art

algorithms are limited and cannot be adaptively compressed

according to different scenes, we are motivated to proposed

adaptive depth buffer compression algorithm for 3D graphics

systems.

This paper is organized as follows: an overview of depth

buffer compression algorithms is described in Section II. In

Section III, the proposed reconfigurable algorithm has been

presented. The simulation and comparison results are

presented in Section IV. At last, the brief statements conclude

the presentation.

II. AN OVERVIEW OF DEPTH BUFFER COMPRESSION

ALGORITHMS

In this section, we give an overview of state-of-the-art and

existing compression algorithms [6-15].

A. Fast z-clears

Fast z-clears [6] is a simple compression algorithm and

easy to be implemented. A dedicated bit used to indicate

whether the tile is cleared. If the tile is cleared, we can only

write back the latest depth values to depth buffer without

reading the depth buffer before updating depth values.

B. DDPCM

DDPCM (Differential Differential Pulse Code Modulation)

[7] is an off-the-shelf data compression algorithm. Since the

depth values are linearly interpolated in screen space,

DDPCM algorithm is very suitable for this kind of condition.

DeRoo et al. [7] proposed a depth buffer compression

algorithm as illustrated in Fig. 1. DDPCM can achieve 8:1

compression ratio on 8x8 tile size, using a 32-bit depth values

and reading 256 bits from memory. DeRoo et al. also

proposed an extended depth buffer compression algorithm,

called two-plane mode, in order to handle specific cases that

tiles can be separated into two planes. In 24-bit depth value

case and 8x8 tile size, we have to save two 24-bit reference

points, the upper left and lower right pixels in the tile, two 24-

bit x differentials, two 24-bit y differentials, 57 2-bit predicted

terms and four 8-bit break points used to combine two planes

based on different reference points. One disadvantage of the

DDPCM is that two-plane mode can be only supported when

the reference points are at upper-left and lower-right position.

C. Anchor encoding

Van Dyke and Margeson [8] proposed a compression

scheme similar to the DDPCM algorithm. Instead of setting

upper left pixel as a reference point, this compression

algorithm select a fixed anchor point, z, from other positions

in a tile as shown in the Fig. 2 All we have to save are 16-bit

anchor point, 7-bit x differential, 7-bit y differential and 5-bit

predicted terms.

This work was supported in part by the National Science Council (NSC)

Grant NSC-96-2220-E-009-038, NSC-96-2221-E-009-220, and MOEA-96-

EC-17-A-01-S1-048.

2008 International Conference on Multimedia and Ubiquitous Engineering

978-0-7695-3134-2/08 $25.00 © 2008 IEEE
DOI 10.1109/MUE.2008.64

470

Authorized licensed use limited to: National Chiao Tung University. Downloaded on February 24, 2009 at 23:21 from IEEE Xplore. Restrictions apply.

Figure 1. Illustration of DDPCM [7, 12].

p p p p

p Z0 p

p p p

p p p p

∆y

∆y

Figure 2. Illustration of anchor encoding [8, 12].

D. Efficient depth buffer compression (Referred to as HA

Method)

Hasselgren and Akenine-Möller [12] proposed a new

depth buffer compression algorithm, which can achieve high

compression ratio by exploiting the coherence of interpolated

depth values in screen space [12]. The operations of the one-

plane mode and two-plane mode are illustrated in Fig. 3 and

Fig. 4, respectively. For an example of the one-plane mode,

the predicted terms are saved in only 1 bit such that this

algorithm can achieve better compression ratio than other

compression algorithms. Additionally, this algorithm provides

the flexibility to handle two-plane mode cases rather a fixed-

position-reference-point of the extended DDPCM algorithm.

This algorithm works well, when depth values are interpolated

in higher resolution than used for storage [12].

Figure 3. Illustration of one-plane mode of HA compression [12].

E. Plane encoding

Different from the compression algorithms exploiting the

coherence of interpolated depth values in screen space, plane

encoding labels triangles in a range of tiles and saves these

index numbers eventually. When a pixel is rendered, the depth

value corresponding to the coordinate has to be computed as

soon as possible for depth-buffer-based rendering algorithms.

Van Hook [9] and Liang et al. [10] both presented

compression algorithms similar to plane encoding. Fig. 5

shows the abstract concept of plane encoding.

The plane encoding can handle several overlapping

triangles in a single tile, which is suitable for large tile size.

The drawback is that it must store indices and the

corresponding counter value in depth tile cache [12].

Figure 4. Illustration of two-plane mode of HA compression [12].

Figure 5. Illustration of plane encoding[9, 12].

F. Depth offset compression

Morein and Natale [11] presented depth offset

compression illustrated in Fig. 6. For tile-based rendering,

assume that we save the z-max (maximum depth value) value

and z-min value (minimum depth value) of a tile. The depth

values of a tile will be categorized into to representable ranges

or unrepresentable range. Representable ranges consist of two

regions based on z-max value and z-min value.

If we have stored the z-max and z-min values of the

compressed tile, this algorithm can be applied without extra

471

Authorized licensed use limited to: National Chiao Tung University. Downloaded on February 24, 2009 at 23:21 from IEEE Xplore. Restrictions apply.

cost. It cannot work well at high compression ratio, but

obtains excellent compression probabilities at low

compression ratio.

Figure 6. Illustration of depth offset compression [11, 12].

III. PROPOSED RECONFIGURABLE ALGORITHM

In this section, we propose a reconfigurable algorithm for

depth buffer compression. According to different scene

changes, the proposed algorithm is capable of adaptively

employing three compression algorithms including modified

DDPCM, modified HA, and general DDPCM, where these

compression algorithms exploit the coherence of interpolated

depth values in screen space. General DDPCM makes use of 7

bits to save the predicted terms. Our proposed algorithm as

shown in Fig. 7 also supports one-plane mode and two-plane

mode compression scheme. Using the op-code and break-

points, the proposed reconfigurable data flow expressed in Fig.

7 is demonstrated as follows.

In the first step, we compute the 2nd order differentials. In

the second step, we calculate and determine the range of these

differentials. If any differential is larger than the maximum

number or less than minimum number that general DDPCM

can serve, we will label this tile as an uncompressed tile. If the

tile passes the check point, we will determine whether the tile

is one-plane or two-plane. In case the tile belongs to the two-

plane mode, we have to compute another set of differentials

according to another reference point. After computing another

set of differentials, we combine these two sets of differentials

separated by break points. Besides, if the tile is in a falling

case as shown in Fig. 8(b), we have to compute another two

sets of differentials based on lower-left pixel and upper-right

pixel, denoted as R, as shown in Fig. 8. We will check the

two-plane-mode tile if it is a rising, falling, vertical, horizontal

case by a specific combinational circuit without computing

sets of differentials according to the four corner pixels. In the

third step, we will select which compression algorithm can

handle these combined differentials by a simple combinational

circuit. At the last step, we pack the compressed data with the

op-code together and transfer them to memory bus.

A one-plane mode, for example as shown in Fig. 9,

expresses how to compute these differentials. Four cases as

shown in Fig. 8 including rising case, falling case, vertical

case, and horizontal are handled by the proposed algorithm in

two-plane mode. Fig. 10 shows a two-plane mode example

and discusses how to compute two sets of differentials

according to different reference points and how to combine

the two planes. Notice that for hardware-oriented design, we

do not completely follow the steps presented by HA [12].

The format of the op-code and break points are depicted in

Fig. 11(a) and (b), respectively. The first bit of the op-code

represents whether the tile is compressed. The second bit of

the op-code indicates whether the tile is one-plane mode or

two-plane mode. The third and the fourth bits represent what

kind of compression algorithm is applied in horizontal

direction. The fifth and the sixth bits represent what kind of

compression algorithms is applied in vertical direction. The

horizontal direction means the positions, Z2, Z3, Z5, Z6, Z7,

Z9, Z10, Z11, Z13, Z14, and Z15, in Fig. 10. The vertical

direction means the positions, Z8 and Z12, in Fig. 10. In terms

of break point, the first and the second bits indicate what kind

of combination modes, such as rising case, is applied to the

break points. The third, the fourth and the fifth bits mean the

minimum row number of the break points. The sixth, the

seventh and the eighth bits mean the column number of the

break point with the minimum row number. Notice that the

break points will be saved only when the tile is in two-plane

mode. Additionally, if the tile is uncompressed, only the first

bit of the op-code will be packed with the tile.

 Figure 7. Data flow of the proposed reconfigurable depth buffer compression.

Figure 8. Four cases supported by the proposed algorithm

472

Authorized licensed use limited to: National Chiao Tung University. Downloaded on February 24, 2009 at 23:21 from IEEE Xplore. Restrictions apply.

Figure 9. Example of one-plane mode.

Figure 10. Two-plane mode of the proposed reconfigurable algorihtm.

(a) Op-code

(b) Break point

Figure 11. Op-code and break point.

IV. COMPARISION AND SIMULATION RESULTS

In this section, the comprehensive comparisons as listed in

Table 1, 2, and 3 with HA, DDPCM, and anchor encoding in

terms of average compression ratio, compression ratio in one-

plane mode and two-plane mode, and number of bits of the

proposed algorithm, respectively. Except our proposed

algorithm, we assume that every compression algorithm

requires 1-bit op-code for indicating whether the tile is

compressed. The teapot benchmark is used as a reference

simulation as shown in Fig. 12. The average compression ratio

as listed in Table 1 shows that the proposed scheme

outperforms others by 39.4% and 76.9% compared with

DDPCM and HA methods. In this simulation, we can find that

the average compression ratio of HA method is not better than

either DDPCM or our proposed scheme. The reason is that

HA compression scheme is suitable for the high precision

interpolation. In other words, if the simulation benchmark

belongs to the high precision interpolation, it turns out a much

higher average compression ratio obtained by HA

compression method. Table 2 shows the compression ratio

distribution for one-plane mode and two-plane mode. Instead

of 26 bits or 32 bits for saving break points in 8x8 tile size

applied by efficient depth buffer compression, our proposed

scheme only needs 8 bits. Therefore, the compression ratio of

the proposed scheme is higher than other existing algorithms.

Furthermore, it can be expected that the anchor encoding

cannot achieve high compression ratio. Because the anchor

encoding use 5 bits to save predicted terms for each

compressed tile and does not support two-plane mode. Table 3

shows the total bits when a tile is compressed. Concerning the

general DDPCM method, we expect that the size of the

compressed tile can be smaller than that of half size of original

tile. The distribution of the average compression ratio as

shown in Figs. 13 and 14 illustrates the usefulness of our

proposed scheme compared with DDCPM and HA

compression schemes, respectively. A point in Fig. 13 and Fig.

14 indicates an average compression ratio of five tiles. It is

manifest that our proposed scheme can achieve more stable

average compression ratio than HA and DDPCM compression

methods.

Figure 12. Benchmark scene.

Figure 13. Distribution of the average compression ratio using proposed

scheme vs. DDPCM compression method.

473

Authorized licensed use limited to: National Chiao Tung University. Downloaded on February 24, 2009 at 23:21 from IEEE Xplore. Restrictions apply.

Figure 14. Distribution of the average compression ratio using proposed

scheme vs. HA compression method.

Table 1. Average Compression Ratio with 8x8 Tile Size

 Average compression ratio

HA Method [12] 1.08

DDPCM [7] 1.37

Proposed scheme 1.91

TABLE 2. COMPRESION RATIO WITH 8X8 TILE SIZE

 One-plane

mode

Two-plane

mode

Anchor encoding [8] 3.05 : 1 N/A

HA Method [12] 10.89 : 1 6.87 : 1

DDPCM [7] 6.52 : 1 4.85 : 1

Proposed scheme – modified HA 10.56 : 1 7.76 : 1

Proposed scheme – modified DDPCM 6.48 : 1 5.39 : 1

Proposed scheme – general DDPCM 2.21 : 1 2.13 : 1

TABLE 3. SIZE OF COMPRESSED TILE USING PORPOASED SCHEME

Vertical Horizontal One-plane

mode (bits)

Two-plane

mode (bits)

Modified HA Modified HA 97 132

Modified HA Modified DDPCM 152 184

Modified HA General DDPCM 427 444

Modified DDPCM Modified HA 103 138

Modified DDPCM Modified DDPCM 158 190

Modified DDPCM General DDPCM 433 450

General DDPCM Modified HA 133 168

General DDPCM Modified DDPCM 188 220

General DDPCM General DDPCM 463 480

V. COMCLUSION

In this work, an adaptive algorithm for depth buffer

compression is presented. This proposed algorithm not only

supports modified HA, modified DDPCM as well as general

DDPCM algorithms, but also handles one-plane mode and

two-plane mode compression. In addition, the algorithm saves

the break points more efficiently for 8x8 tile size. From the

experimental results, the proposed reconfigurable scheme can

provide more stable average compression ratio to achieve the

quality guarantee performance.

REFERENCES

[1] Tomas Akenine-Möller and Jacob Ström, “Graphics for the
masses: a hardware rasterization architecture for mobile
phones,” ACM Transactions on Graphics, vol. 22 , pp.801-808,
July 2003.

[2] TS 102 812, “DVB Multimedia Home Platform (MHP)
Specification 1.1”, Nov. 2001.

[3] B. Javidi and F. Okano, “Three-Dimensional Television, Video
and Display Technology,” Springer-Verloag, 2002.

[4] A. Redert, M. Op de Beeck, C. Fehn,W. IJsselsteijn, M.
Pollefeys, Van Gool, E. Ofek, I. Sexton, and P. Surman, “Attest
vadvanced three-dimensional television system,” Proc. Of
3DPVT, pp. 313–319, 2002.

[5] T. Heinonen, A. Lahtinen and V. Hakkinen, “Implementation of
three-dimensional EEG brain mapping,” Computers and
Biomedical Research 32, pp. 123–131, 1999.

[6] S. Morein., “Method and apparatus for efficient clearing of
memory,” in US Patent 6,421,764, 2002.

[7] J. DeRoo, S. Morein, B. Favela, M. Wright, “Method and
apparatus for compressing parameter values for pixels in a
display frame,” in US Patent 6,476,811, 2002.

[8] J. Van Dyke, J. Margeson, “Method and apparatus for managing
and accessing depth data in a computer graphics system,” in US
Patent 6,961,057, 2005.

[9] T. Van Hook, “Method and apparatus for compression and
decompression of Z Data,” in US Patent 6,630,933, 2003.

[10] B.-S. Liang, Y.-C. Lee, W.-C. Yeh, and C.-W. Jen, “Index
rendering: hardware-efficient architecture for 3-D graphics in
multimedia system,” in IEEE Transactions on Multimedia, vol.
4, no. 2, pp. 343-360, June 2002

[11] S. Morein, M. Natale, ”System, method, and apparatus for
compression of video data using offset values,” in US Patent
6,762,758, 2004.

[12] J. Hasselgren, T. Akenine-Möller, “Efficient depth buffer
compression,” Graphics Hardware, pp. 102-110, 2006.

[13] S. Morein, “ATI Radeon HyperZ technology,” in Hot3D Proc.
ACM SlGGRAPH/Eurographics Workshop on Graphics
Hardware, Aug. 2000.

[14] C.-H. Chen and C.-Y. Lee, “Two-level hierarchical Z-buffer
with compression technique for 3D graphics hardware,” The
Visual Computer, Springer, vol. 19, no. 7-8, pp. 467-479, Dec.
2003.

[15] C.-H. Yu and L.-S. Kim, “A hierarchical depth buffer for
minimizing memory bandwidth in 3D rendering engine: depth
filter,” ISCAS '03, vol.2, pp.II-724- II-727, May 2003.

474

Authorized licensed use limited to: National Chiao Tung University. Downloaded on February 24, 2009 at 23:21 from IEEE Xplore. Restrictions apply.

