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Abstract—Depth buffer bandwidth reduction is one of the most 

important issues in bandwidth-limited 3D computer graphics 

system. In this paper, we propose a reconfigurable algorithm for 

depth buffer compression. For 8x8 tile size and 16-bit depth 

values, the proposed algorithm can achieve 1.91:1 compression 

ratio on average and improve 76.9% and 39.4% compared with 

HA [12] and DDPCM [7], respectively. Furthermore, the devised 

algorithm supports one-plane and two-plane compression modes 

and manipulates break points more efficiently. 

I. INTRODUCTION 

The increasing demand of the depth buffer comparison has 

led to widespread interests in 3D graphics system. Nowadays, 

the 3D computer graphics are widely used in many 

applications such as mobile phones [1], GPS (Global 

Positioning System), digital TV [2-4], games, biomedical 

applications [5], where these applications usually use complex 

GUI (graphical user interface) for generating better 3D images. 

It is known that 3D computer graphics system requires 

extreme high memory bandwidth. On the other hand, with the 

growth of complexity of 3D scenes, the amount of data 

computation increases substantially. Therefore, in the 

bandwidth-limited system, how to efficiently compress the 

depth buffer data to save bandwidth becomes a significant 

research issue. Fast z-clears compression algorithm [6] uses a 

dedicated flag to indicate whether a tile is cleared. DDPCM 

[7], anchor encoding [8], efficient depth buffer compression 

[12] (i.e., HA method) are effective compression algorithms 

exploiting the coherence of interpolated depth values. The 

plane encoding scheme presented in [10] applies the concept 

of indexing to compress tiles. Depth offset compression [11] 

saves the differentials based on the z-max value (maximum 

depth value) and z-min value (minimum depth value) in a tile. 

Other compression methods are released in [13-15]. Since the 

compression performance of the above state-of-the-art 

algorithms are limited and cannot be adaptively compressed 

according to different scenes, we are motivated to proposed 

adaptive depth buffer compression algorithm for 3D graphics 

systems. 

This paper is organized as follows: an overview of depth 

buffer compression algorithms is described in Section II. In 

Section III, the proposed reconfigurable algorithm has been 

presented. The simulation and comparison results are 

presented in Section IV. At last, the brief statements conclude 

the presentation. 

II. AN OVERVIEW OF DEPTH BUFFER COMPRESSION 

ALGORITHMS 

In this section, we give an overview of state-of-the-art and 

existing compression algorithms [6-15]. 

A. Fast z-clears 

Fast z-clears [6] is a simple compression algorithm and 

easy to be implemented. A dedicated bit used to indicate 

whether the tile is cleared. If the tile is cleared, we can only 

write back the latest depth values to depth buffer without 

reading the depth buffer before updating depth values. 

B. DDPCM 

DDPCM (Differential Differential Pulse Code Modulation) 

[7] is an off-the-shelf data compression algorithm. Since the 

depth values are linearly interpolated in screen space, 

DDPCM algorithm is very suitable for this kind of condition. 

DeRoo et al. [7] proposed a depth buffer compression 

algorithm as illustrated in Fig. 1. DDPCM can achieve 8:1 

compression ratio on 8x8 tile size, using a 32-bit depth values 

and reading 256 bits from memory. DeRoo et al. also 

proposed an extended depth buffer compression algorithm, 

called two-plane mode, in order to handle specific cases that 

tiles can be separated into two planes. In 24-bit depth value 

case and 8x8 tile size, we have to save two 24-bit reference 

points, the upper left and lower right pixels in the tile, two 24-

bit x differentials, two 24-bit y differentials, 57 2-bit predicted 

terms and four 8-bit break points used to combine two planes 

based on different reference points. One disadvantage of the 

DDPCM is that two-plane mode can be only supported when 

the reference points are at upper-left and lower-right position. 

C. Anchor encoding 

Van Dyke and Margeson [8] proposed a compression 

scheme similar to the DDPCM algorithm. Instead of setting 

upper left pixel as a reference point, this compression 

algorithm select a fixed anchor point, z, from other positions 

in a tile as shown in the Fig. 2 All we have to save are 16-bit 

anchor point, 7-bit x differential, 7-bit y differential and 5-bit 

predicted terms.  
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Figure 1.  Illustration of DDPCM [7, 12]. 
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Figure 2.  Illustration of anchor encoding [8, 12]. 

 

D. Efficient depth buffer compression (Referred to as HA 

Method) 

Hasselgren and Akenine-Möller [12] proposed a new 

depth buffer compression algorithm, which can achieve high 

compression ratio by exploiting the coherence of interpolated 

depth values in screen space [12]. The operations of the one-

plane mode and two-plane mode are illustrated in Fig. 3 and 

Fig. 4, respectively. For an example of the one-plane mode, 

the predicted terms are saved in only 1 bit such that this 

algorithm can achieve better compression ratio than other 

compression algorithms. Additionally, this algorithm provides 

the flexibility to handle two-plane mode cases rather a fixed-

position-reference-point of the extended DDPCM algorithm. 

This algorithm works well, when depth values are interpolated 

in higher resolution than used for storage [12]. 

 

 
Figure 3.  Illustration of one-plane mode of HA compression [12]. 

E. Plane encoding 

Different from the compression algorithms exploiting the 

coherence of interpolated depth values in screen space, plane 

encoding labels triangles in a range of tiles and saves these 

index numbers eventually. When a pixel is rendered, the depth 

value corresponding to the coordinate has to be computed as 

soon as possible for depth-buffer-based rendering algorithms. 

Van Hook [9] and Liang et al. [10] both presented 

compression algorithms similar to plane encoding. Fig. 5 

shows the abstract concept of plane encoding. 

The plane encoding can handle several overlapping 

triangles in a single tile, which is suitable for large tile size. 

The drawback is that it must store indices and the 

corresponding counter value in depth tile cache [12]. 

  
 

Figure 4.  Illustration of two-plane mode of HA compression [12]. 

 

 
Figure 5.  Illustration  of plane encoding[9, 12]. 

 

F. Depth offset compression 

Morein and Natale [11] presented depth offset 

compression illustrated in Fig. 6. For tile-based rendering, 

assume that we save the z-max (maximum depth value) value 

and z-min value (minimum depth value) of a tile. The depth 

values of a tile will be categorized into to representable ranges 

or unrepresentable range. Representable ranges consist of two 

regions based on z-max value and z-min value. 

If we have stored the z-max and z-min values of the 

compressed tile, this algorithm can be applied without extra 
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cost. It cannot work well at high compression ratio, but 

obtains excellent compression probabilities at low 

compression ratio. 

  
Figure 6.  Illustration of depth offset compression [11, 12]. 

 

III.  PROPOSED RECONFIGURABLE ALGORITHM 

In this section, we propose a reconfigurable algorithm for 

depth buffer compression. According to different scene 

changes, the proposed algorithm is capable of adaptively 

employing three compression algorithms including modified 

DDPCM, modified HA, and general DDPCM, where these 

compression algorithms exploit the coherence of interpolated 

depth values in screen space. General DDPCM makes use of 7 

bits to save the predicted terms. Our proposed algorithm as 

shown in Fig. 7 also supports one-plane mode and two-plane 

mode compression scheme. Using the op-code and break-

points, the proposed reconfigurable data flow expressed in Fig. 

7 is demonstrated as follows.  

In the first step, we compute the 2nd order differentials. In 

the second step, we calculate and determine the range of these 

differentials. If any differential is larger than the maximum 

number or less than minimum number that general DDPCM 

can serve, we will label this tile as an uncompressed tile. If the 

tile passes the check point, we will determine whether the tile 

is one-plane or two-plane. In case the tile belongs to the two-

plane mode, we have to compute another set of differentials 

according to another reference point. After computing another 

set of differentials, we combine these two sets of differentials 

separated by break points. Besides, if the tile is in a falling 

case as shown in Fig. 8(b), we have to compute another two 

sets of differentials based on lower-left pixel and upper-right 

pixel, denoted as R, as shown in Fig. 8. We will check the 

two-plane-mode tile if it is a rising, falling, vertical, horizontal 

case by a specific combinational circuit without computing 

sets of differentials according to the four corner pixels. In the 

third step, we will select which compression algorithm can 

handle these combined differentials by a simple combinational 

circuit. At the last step, we pack the compressed data with the 

op-code together and transfer them to memory bus.  

A one-plane mode, for example as shown in Fig. 9, 

expresses how to compute these differentials. Four cases as 

shown in Fig. 8 including rising case, falling case, vertical 

case, and horizontal are handled by the proposed algorithm in 

two-plane mode. Fig. 10 shows a two-plane mode example 

and discusses how to compute two sets of differentials 

according to different reference points and how to combine 

the two planes. Notice that for hardware-oriented design, we 

do not completely follow the steps presented by HA [12].  

The format of the op-code and break points are depicted in 

Fig. 11(a) and (b), respectively. The first bit of the op-code 

represents whether the tile is compressed. The second bit of 

the op-code indicates whether the tile is one-plane mode or 

two-plane mode. The third and the fourth bits represent what 

kind of compression algorithm is applied in horizontal 

direction. The fifth and the sixth bits represent what kind of 

compression algorithms is applied in vertical direction. The 

horizontal direction means the positions, Z2, Z3, Z5, Z6, Z7, 

Z9, Z10, Z11, Z13, Z14, and Z15, in Fig. 10. The vertical 

direction means the positions, Z8 and Z12, in Fig. 10. In terms 

of break point, the first and the second bits indicate what kind 

of combination modes, such as rising case, is applied to the 

break points. The third, the fourth and the fifth bits mean the 

minimum row number of the break points. The sixth, the 

seventh and the eighth bits mean the column number of the 

break point with the minimum row number. Notice that the 

break points will be saved only when the tile is in two-plane 

mode. Additionally, if the tile is uncompressed, only the first 

bit of the op-code will be packed with the tile. 

 Figure 7.  Data flow of the proposed reconfigurable depth buffer compression. 

 

Figure 8. Four cases supported by the proposed algorithm 
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Figure 9.  Example of one-plane mode.  
 

 

Figure 10. Two-plane mode of the proposed reconfigurable algorihtm. 

(a) Op-code

(b) Break point  

Figure 11. Op-code and break point. 

IV. COMPARISION AND SIMULATION RESULTS 

In this section, the comprehensive comparisons as listed in 

Table 1, 2, and 3 with HA, DDPCM, and anchor encoding in 

terms of average compression ratio, compression ratio in one-

plane mode and two-plane mode, and number of bits of the 

proposed algorithm, respectively. Except our proposed 

algorithm, we assume that every compression algorithm 

requires 1-bit op-code for indicating whether the tile is 

compressed. The teapot benchmark is used as a reference 

simulation as shown in Fig. 12. The average compression ratio 

as listed in Table 1 shows that the proposed scheme 

outperforms others by 39.4% and 76.9% compared with 

DDPCM and HA methods. In this simulation, we can find that 

the average compression ratio of HA method is not better than 

either DDPCM or our proposed scheme. The reason is that 

HA compression scheme is suitable for the high precision 

interpolation. In other words, if the simulation benchmark 

belongs to the high precision interpolation, it turns out a much 

higher average compression ratio obtained by HA 

compression method. Table 2 shows the compression ratio 

distribution for one-plane mode and two-plane mode. Instead 

of 26 bits or 32 bits for saving break points in 8x8 tile size 

applied by efficient depth buffer compression, our proposed 

scheme only needs 8 bits. Therefore, the compression ratio of 

the proposed scheme is higher than other existing algorithms. 

Furthermore, it can be expected that the anchor encoding 

cannot achieve high compression ratio. Because the anchor 

encoding use 5 bits to save predicted terms for each 

compressed tile and does not support two-plane mode. Table 3 

shows the total bits when a tile is compressed. Concerning the 

general DDPCM method, we expect that the size of the 

compressed tile can be smaller than that of half size of original 

tile. The distribution of the average compression ratio as 

shown in Figs. 13 and 14 illustrates the usefulness of our 

proposed scheme compared with DDCPM and HA 

compression schemes, respectively. A point in Fig. 13 and Fig. 

14 indicates an average compression ratio of five tiles. It is 

manifest that our proposed scheme can achieve more stable 

average compression ratio than HA and DDPCM compression 

methods. 

 
Figure 12.  Benchmark scene.  

Figure 13. Distribution of the average compression ratio using proposed 

scheme vs. DDPCM compression method. 
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Figure 14. Distribution of the average compression ratio using proposed 

scheme vs. HA compression method. 

Table 1. Average Compression Ratio  with 8x8 Tile Size 

 Average compression ratio 

HA Method [12] 1.08 

DDPCM [7] 1.37 

Proposed scheme 1.91 

TABLE 2. COMPRESION RATIO WITH 8X8 TILE SIZE 

 One-plane 

mode 

Two-plane 

mode 

Anchor encoding [8] 3.05 : 1 N/A 

HA Method [12] 10.89 : 1 6.87 : 1 

DDPCM [7] 6.52 : 1 4.85 : 1 

Proposed scheme – modified HA 10.56 : 1 7.76 : 1 

Proposed scheme – modified DDPCM 6.48 : 1 5.39 : 1 

Proposed scheme – general DDPCM 2.21 : 1 2.13 : 1 

TABLE 3. SIZE OF COMPRESSED TILE USING PORPOASED SCHEME 

Vertical Horizontal One-plane 

mode (bits) 

Two-plane 

mode (bits) 

Modified HA Modified HA 97 132 

Modified HA Modified DDPCM 152 184 

Modified HA General DDPCM 427 444 

Modified DDPCM Modified HA 103 138 

Modified DDPCM Modified DDPCM 158 190 

Modified DDPCM General DDPCM 433 450 

General DDPCM Modified HA 133 168 

General DDPCM Modified DDPCM 188 220 

General DDPCM General DDPCM 463 480 

V. COMCLUSION 

In this work, an adaptive algorithm for depth buffer 

compression is presented. This proposed algorithm not only 

supports modified HA, modified DDPCM as well as general 

DDPCM algorithms, but also handles one-plane mode and 

two-plane mode compression. In addition, the algorithm saves 

the break points more efficiently for 8x8 tile size. From the 

experimental results, the proposed reconfigurable scheme can 

provide more stable average compression ratio to achieve the 

quality guarantee performance. 
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