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Abstract— In this paper, we propose two low-
computation cycle and high-speed recursive discrete 
Fourier transform (DFT)/inverse DFT (IDFT) 
architectures adopting the hybrid of Chebyshev 
polynomial and register-splitting scheme. The proposed 
core-type recursive architecture achieves half 
computation-cycle reduction as well as less critical 
period compared with the conventional second-order 
DFT/IDFT architecture. So as to further reduce the 
number of computation cycles, based on the new core-
type design, we develop the folded-type recursive 
DFT/IDFT architecture with the same operating 
frequency. Moreover, from the derivation results, the 
operation of DFT and IDFT can be performed with the 
same structure under different configurations. 

I. INTRODUCTION 
     The discrete Fourier transform (DFT) has been widely 
applied in the analysis and implementation of 
communication systems such as OFDM-based wireless local 
area network (WLAN) [1, 2] and dual tone multi-frequency 
(DTMF) standards [3]. In many applications, the complex 
sequences in the time domain are expected to be analyzed in 
the frequency domain via DFT computation. Without loss of 
generality, the input data is assumed as complex-valued 
data. From existing research, there are possible four 
categories for the structures of DFT/IDFT computations: 1) 
recursive-algorithm based architecture [3-8], 2) butterfly-
based architecture [9-10], 3) ROM operation based structure 
[11], and 4) multiplier-accumulator based structure. It is 
well known that the DFT architectures based on the 
recursive algorithm are more area-efficient than those 
realized by other approaches. Until now, the existing 
recursive algorithms for the orthogonal transform in the 
scope of DFT/DCT/DST (discrete Fourier/cosine/sine 
transform) involve the following: Goertzel algorithm [3-7], 
C-S’s algorithm [13], Chebyshev polynomials [8, 14-15], 
and Clenshaw’s recurrence formula (CRF) [16]. In [12-16], 

recursive expressions for the computation of the DCT that 
are suitable for VLSI implementation are presented. Note 
that in [12-16], recursive algorithms are used to design 
recursive DCT architectures rather than recursive DFT 
architecture. In [7], compared with the conventional second-
order recursive DFT/IDFT architecture, Van et al. utilized 
computation-sharing and register-splitting schemes to 
reduce two multipliers and speedup the operation, 
respectively. Nevertheless, Van et al. did not improve the 
computation cycle. In [8], Fan et al. applied the previous 
proposed method to reduce computation cycles but the 
effect is limited. On the other hand, they only proposed 
recursive DFT algorithm but IDFT algorithm is not yet 
ready in [8]. Therefore, we are motivated to propose 
performance-oriented VLSI algorithm and architecture that 
possesses the following features: low computation cycle and 
high speed at the expense of slightly increased area 
overhead compared with the second-order recursive 
DFT/IDFT structure. Regarding the new lower computation 
cycle recursive DFT/IDFT architecture as a core, we can 
develop a folded architecture to achieve less computation 
cycles for OFDM-based WLAN applications. The paper is 
organized as follows. A new core-type recursive DFT 
algorithm and architecture by the hybrid of Chebyshev 
polynomial and register-splitting schemes is given in 
Section II. In Section III, we propose the corresponding 
novel recursive IDFT algorithm and architecture. In Section 
IV, a folded architecture that features lower computation 
cycle is constructed for DFT/IDFT. Complexity comparison 
results are tabulated in terms of the amount of computation 
cycles for each output as well as N-point DFT/IDFT, the 
critical period, and the number of real multipliers in Section 
V. At last, the concise statements remark this paper. 

II. NEW RECURSIVE FORMULA FOR DFT 
     The DFT of the N-point input x[n] is defined as   
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where Nj
N eW /2π−= . To develop recursive DFT algorithm, 

Eq. (1) can be recast as 
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By folding two input data, only half summation terms are 
demanded to express y[k]. Eq. (2) can be treated as DCT and 
DST parts, )(kyDCT  and )(kyDST , respectively, as 

( ) )2(cos]1[][][
12/

0 N
knnNxWnxky

N

n

k
NDCT

π∑
−

=

− ⋅−−⋅+= , (3) 

and 

( ) )2(sin]1[][][
12/

0 N
knnNxWnxky

N

n

k
NDST

π∑
−

=

− ⋅−−⋅−−= .(4) 

In Eq. (3), we can define ]1[][][ nNxWnxnr k
Nk −−⋅+= − . 

Replacing n by N/2-1-n, Eq. (3) can be rewritten as 
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It is known that Chebyshev polynomials are well defined as 
  ))2cos((cos))1cos((2)cos( θθθθ −−⋅−= rrr , (7) 
  ))2sin((cos))1sin((2)sin( θθθθ −−⋅−= rrr . (8) 
Using the recursive identity stated in (7), Eq. (6) can be 
deduced as  
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The z-transform of Eq. (9) can be denoted as 
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For DST part in Eq. (4), by letting 
]1[][][ nNxWnxns k

Nk −−⋅−= − and replacing n by 
nN −−12/ , ][kyDST  can be derived in similar behavior as 

    ∑
−

=

⋅−=
12/

0

)2sin(][][
N

n
kDST N

knnsky π  

    ∑
−

=

−−⋅−−−=
12/

0

))12/(2sin(]12/[
N

n
k N

nNknNs π  

    ∑
−

=

+⋅−−−=
12/

0

))1(2sin(]12/[)1(
N

n
k

k

N
nknNs π  

    ∑
−

=

+⋅−−⋅−=
12/

0

))1sin((]12/[)1(
N

n
kk

k nnNs θ  

    ( ) ( )khN
k

12/1 −⋅−= , (11) 

where ( ) .))1sin((]12/[
12/

0
12/ ∑

−

=
− +⋅−−=

N

n
kkN nnNskh θ  

Applying Eq. (8), ( )khN 12/ −  can be generalized as  
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The z-transform of Eq. (12) can be denoted as 
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Eqs. (10) and (13) can be easily mapped into the structures as 
shown in Fig. 1(a) and (b), respectively. Compared with the 
conventional architectures [4, 7], it is obviously found that 
the computation cycles can be achieved to the reduction of 
50% via the proposed algorithm and architecture.  
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Fig. 1. Block diagram of low-computation cycle for (a) DCT 
part and (b) DST part of DFT computation.  

For high-speed issue, we adopt the register-splitting scheme 
(i.e., one kind of retiming schemes) to reduce the critical 
path. Herein, we define two useful notations 0 and 1, where 0 
and 1 indicate that the delay elements as shown in Fig. 1(a) 
are at top-to-down and bottom-to-up signal paths, 
respectively. Thus, we can easily use the digital number 
sequence to represent different register-splitting structures. 
For example, the proposed DCT part of the core type design 
in Fig. 1(a) can be represented as 00. In this case, there are 
four combinations as listed in Table 1, where mT  and aT  
denote the operation time required for one real multiplication 
and one real addition, respectively. With minimum critical 
period and fewest registers in mind, we select the 10 register-
splitting structure for DCT part. It is worthy of emphasizing 
that 10 and 11 as listed in Table 1 result in the same DCT 
part as depicted in the upper diagram of Fig. 2, where <=1  
denotes a hardwired shifter with one-bit left shift. Similarly, 
DST part can be modified as the lower diagram of Fig. 2. In 
order to remain the minimum critical period for the recursive 
DFT computation, the forward pipeline register, , is 
exploited for the final sum output. Later combining these 
two new parts into one, a recursive DFT architecture that 

possesses low computation cycle and higher speed than the 
conventional DFT structures can be obtained. 

 Table 1: Combinations of Register-Splitting for DCT Part  
Com. 00 01 10 11 
Period am TT 32 +

 
am TT 32 +

 
am TT 2+

 
am TT 2+

 
# of Reg. 2 2 2 2 
Opt. No No Yes Yes 
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Fig. 2. Block diagram of the proposed low-computation 
cycle and high-speed recursive DFT architecture. 

III. NEW RECURSIVE FORMULA FOR IDFT  
     The IDFT of the N-point input y[k] is defined as   
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To develop recursive IDFT algorithm, Eq. (14) can be recast 
as 

∑∑
−

=

+
−

=

− ⋅−−+⋅=
12/

0

)1(
12/

0

]1[1][1][
N

k

nk
N

N

k

kn
N WkNy

N
Wky

N
nx     

( )∑
−

=

⋅−−⋅+=
12/

0

)2cos(]1[][1 N

k

n
N N

knkNyWky
N

π  

       ( ) )2sin(]1[][1 12/

0 N
knkNyWky

N
j

N

k

n
N

π⋅−−⋅−⋅+ ∑
−

=

. (15) 

Similarly, Eq. (15) can be treated as IDCT and IDST parts, 
)(nxIDCT  and )(nxIDST , respectively, as 
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In Eq. (16), we can define ]1[][][ kNyWkykr n
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Replacing k by N/2-1-k, Eq. (16) can be rewritten as 
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Using the recursive identity stated in (7), Eq. (19) can be 
deduced as  
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After using the register-splitting scheme, Eqs. (21) and (24) 
can be easily mapped into the modified structures as shown 
in Fig. 3. Again, from the proposed algorithm and 
architecture, it is obviously found that the computation 
cycles can be achieved to the reduction of 50%.  
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Fig. 3. Block diagram of the proposed low-computation 
cycle and high-speed recursive IDFT architecture. 

IV. FOLDED ARCHITECTURE FOR DFT/IDFT  
     Recently, there are many modern applications, which 
need larger frame size to achieve the higher frequency 
resolution [1, 2]. However, the strict specification would 
make the implementation more difficult to meet the 
requirement. In order to further reduce the number of 
computation cycles for N-point DFT/IDFT, regarding the 
recursive processing kernel of the core-type design in Fig. 2 
as a processing element (PE), we can regularly construct the 
folded recursive DFT (RDFT) structure as shown in Fig. 4. 
The whole architecture consists of a data buffer, a control 
unit and the number of N/2 RDFT units. The control unit not 
only plays the role of a sequence controller but also a 
parameter controller, which feed the proper coefficients for 
the RDFT units. The RDFT unit consists of one pre-
processing unit and one recursive PE, where the pre-
processing unit provides the intermediary data sk and rk to 
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the following recursive PE. The final output comes out from 
the N/2 recursive PEs in parallel. Based on the proper 
scheduling, the data streams can be processed continually 
every clock cycle without extra computation latency. 
Consequently, we can keep the maximum throughput rate 
for N-point DFT/IDFT in N computation cycles.  
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-

Fig. 4. Block diagram of the proposed folded-type recursive 
DFT architecture.  

V. COMPARISONS AND DISCUSSIONS 
     In this section, we give a comprehensive comparison 
result as listed in Table 2 in terms of the number of 
computation cycles for each DFT/IDFT output as well as N-
point DFT/IDFT calculation, the critical period, and the 
number of real multipliers. Note that the operation time of 
the complex multiplication requires am TT + . Our proposed 
work 1 (i.e., core-type design) based on Chebyshev 
polynomial can save half computation cycles for each 
DFT/IDFT output compared with the existing works [4, 7] at 
the expense of slightly increased area cost. Comparing with 
the results of the recursive algorithm in [8] which, for 
example, requires 2794 computational cycles to obtain all 
64-point DFT outputs, the proposed core-type architecture 
requires 2048 computational cycles. In other words, our 
proposed work 1 has the lowest computation cycles among 
existing structures [4, 7, 8]. Due to applying register-splitting 
scheme, the proposed one has the higher speed than the 
recursive structures of [4, 8] and possesses the same 
operation frequency as that of our previous work [7]. 
However, considering the hardware complexity, the 
proposed core type DFT/IDFT architecture requires two 
more multipliers than the previously proposed one [7]. 
Consequently, the proposed methods have many advantages 
over the conventional proposed algorithms. Furthermore, 
based on the proposed work 1, we can construct a folded 
recursive DFT/IDFT architecture. The folded architecture 
can significantly reduce the number of computation cycles 
for N-point DFT/IDFT from 2/2N  to N. Thus, more real-

time operation can be achieved. Therefore, in Table 2, it 
reveals that our proposed architectures have characteristics 
of the lowest computation cycle and high speed. 
     Concerning the chip implementation, it is worth noticing 
that the recursive PE mainly dominates the performance of 
the whole architecture. Hence, we are encouraged to design 
one efficient recursive PE that takes into account of speed, 
area, and easy mutual interconnection. For the purpose of 
further reducing the critical path, the complex multiplier 
operations exploit the shift-and-add arithmetic. The active 
chip layout area of the proposed recursive PE as shown in 
Fig. 5 is 515 um x 515 um in TSMC 0.13 um CMOS 
process. The critical delay time obtained from the static 
timing analysis (STA) of Synopsys is 11.32 ns under the 
worst-case condition. It is expected that the folded type 
architecture only needs 0.72 µs to complete 64-point 
DFT/IDFT operation, i.e., 64 cycles. That means that we can 
meet the timing specification of the IEEE 802.11a standard 
[2]. Table 3 summarizes the chip characteristics of proposed 
recursive PE for DFT/IDFT structure.    
 

 
Fig. 5. Recursive PE layout for DFT/IDFT architecture. 

 
Table 3: Chip Characteristics of the Proposed Recursive PE 

DFT Length (N) 64 points 

Input Word Length (w) 16 bits 

Critical Delay Time 11.32 ns 

Active Chip Area 515 um x 515 um 

Process Technology TSMC 0.13 um CMOS 

VI. CONCLUSIONS 
     Two new recursive DFT/IDFT architectures based on the 
hybrid of Chebyshev polynomial and register-splitting 
scheme are devised in this paper. The analyzed results 
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expose that the proposed VLSI algorithm leads to the fewest 
computation cycle and higher speed than others. In addition, 
the proposed folding recursive architecture with regular 
organization is certainly amenable to VLSI implementation. 
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Table 2: Comparison Results among the Recursive DFT/IDFT Architectures 

Parameters Second Order 
DFT/IDFT 

Core Type 
DFT/IDFT of 

ISCAS2004 [7] 

Proposed Work 1 

 (Core Type) 

Proposed Work 2 

 (Folded Type) 

# of Computation Cycles for 
Each y[k] or x[n] 

N  N  2/N  2/N  

# of Computation Cycles for 
N-Point DFT/IDFT 

2N  2N  2/2N   N 

Critical Period am TT 3+  am TT 2+  am TT 2+  am TT 2+  

# of Real Multipliers 6 4 6 
(Pre-processing 

Excluded) 

3N 
(Pre-processing 

Excluded) 
 

584


	MAIN
	WELCOME
	ORGANIZING COMMITTEE
	FRONT MATTER
	SEARCH
	CD-ROM HELP
	ZOOM IN
	ZOOM OUT
	VIEW FULL PAGE
	GO TO PREVIOUS DOCUMENT
	SESSIONS
	AUTHORS INDEX


