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Abstract— A generalized formulation is developed that allows 
the derivation of various new 2-D VLSI filter structures, without 
global broadcast, using different filter sub-blocks and their 
interconnections (frameworks). With this formulation, lattice-
type and direct-form structures realizing general 2-D IIR and 
FIR transfer functions, IIR transfer functions with separable 
denominators, and transfer functions with quadrantal 
magnitude symmetry are easily obtained. The separable 
denominator and quadrantal symmetry structures have the 
advantage of reduced number of multipliers.  

I. INTRODUCTION 
Two-dimensional (2-D) digital filters find applications in 

many digital signal processing areas such as image processing 
and seismic data processing. Although 2-D digital filters can 
be simulated on a general purpose computer, for applications 
involving high data rate, such as real time image processing, 
dedicated computing structures are needed in order to meet the 
high throughput demands. Networks using structures such as 
systolic arrays are popular candidates for VLSI ASIC 
implementation due to the regularity and modularity of the 
processing elements involved. Having local data 
communication (without global broadcast of signals) among 
the elements is important in such VLSI designs. In [1,2], 2-D 
systolic digital filter architectures were presented which 
eliminated the global broadcast of the input and output signals 
in previous architectures [3,4]. In addition, in [2], new 
structures realizing transfer functions with separable 
denominators and having diagonal magnitude symmetry were 
presented.  

In this paper, a generalized formulation is developed that 
allows the derivation of new 2-D VLSI filter structures, 
without global broadcast, using different filter sub-blocks and  
different interconnections (frameworks). A general digital 
two-pair approach is used to describe the sub-blocks which 
consist of direct-form or lattice-type FIR filter in one of the 
frequency variables, as discussed in Section III. (Note that 
other types can be used too, beside lattice and direct-forms). 
Then, by applying the sub-blocks in various frameworks, 2-D 
structures realizing different transfer functions are easily 
obtained. (The structures presented in [1,2] are among a few 
of the many possible structures that can be derived using this 
general formulation). Section IV discusses the filter 
frameworks for realizing general IIR and FIR transfer 
functions. Section V presents the frameworks for IIR transfer 
functions with separable denominators, where the structures 
exhibit the denominator separability as a filter structural 
property, and have important symmetry applications. Then, in 
Section VI, the filter frameworks for realizing transfer 
functions with quadrantal magnitude symmetry are presented. 

Following this, the multiplier savings for the separable 
denominator and quadrantal symmetry structures are 
discussed. Finally, the roundoff noise and multiplier 
sensitivity are analyzed for the representative structures. 

II. PRELIMINARIES 
A general 2-D IIR transfer function can be represented as 

in (1), where 00 0b = , N1xN2 is the order of the filter, and X and 
Y are respectively the input and output of the filter. The 
equation can also represent an FIR transfer function if we set 

0ijb =  for all i and j.   
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The transfer function in (1) can also be expressed as: 
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functions in z2 variable only. These 1-D functions can be 
realized by the two-pair sub-blocks in Section III. These sub-
blocks are then used in the filter frameworks in Section IV to 
realize the overall 2-D transfer function in (2). 

In our discussion, we assume that the filter is used to 
process a square image of size MxM and the pixel values in 
the image are fed to the filter in raster-scan mode, i.e. the input 
sequence is x(0,0), x(0,1), …, x(0,M-1), x(1,0), x(1,1), … etc. 
We can then replace 1

2z −  by a single delay register, 1z− , and 
1

1z −  by a shift register of length M, Mz− , provided M>N2. 
Without loss of generality, we will assume N1=N2=N in 
discussing the filters. 

III. FILTER SUB-BLOCKS 
The filter sub-blocks are formulated as general digital two-

pair networks and realize 1-D FIR functions in z2. Here we 
assume 1 1

2z z− −= .  
Sub-block #1, shown in Fig. 1, has 2 inputs and 1 output. It 

is direct form, i.e. the multiplier values are the same as the  
polynomial coefficients. It realizes the following two FIR 
functions. 
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Note that the special arrangement of the delays is to 
eliminate global broadcast of the signals, Xi and Wi, and also 
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to control the critical period. The critical period is the time 
required for the signal through the slowest (critical) path of the 
structure and determines the highest possible clock speed of 
the structure. 
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Figure 1.  Sub-block #1 (2-inputs-1-

outputs, direct-form) 
Figure 2.  Sub-block #2 (1-input-2-

outputs, direct-form) 

Sub-block #2 is shown in Fig.2. It has 1 input and 2 
outputs and realizes the following two FIR functions. It is also 
direct form. 
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The alternate lattice form for sub-block#2 is shown in 
Fig.3. Unlike a regular lattice, this structure has different 
multipliers in the top and bottom branches. A special 
extraction algorithm has been developed to determine the 
multiplier values, kaij and kbij, from the function coefficients 
aij and bij. Because of lack of space, it is not stated here. Like a 
regular lattice, the structure cannot realize functions where the 
constant term is zero, i.e. ai0=0 or bi0=0. Also note the extra 
delays (circled in Fig. 3) added to control the critical period. 
This will result in latency in the form of extra Nz−  factors in 
(4). However, the factors can be cancelled in the final 
reconfiguration to be discussed in Section IV so that the 
overall 2-D transfer function will not have any latency. The 
lattice-form in Fig.3 has the same number of multipliers and 
adders as the direct-form in Fig.2. It does, however, require 
more delay elements.  
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Figure 3.  Sub-block #2 (1-input-2-outputs, lattice-form)  

The direct-form version of sub-block #3 is shown in Fig. 4. 
The alternating delay arrangement is to eliminate global 
broadcast of the signal Xi and to control the critical period. 
The sub-block has 1 input and 1 output and realizes the FIR 
function in (5). Note that ijρ can represent either the 
numerator or denominator coefficient aij or bij.  
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The lattice version of sub-block #3 is shown in Fig.5. This 
is based on the one-multiplier lattice in [6]. The multiplier 
values, kij, can be determined from the function coefficients 
aij, using the regular lattice extraction plus appropriate scaling 
of the results [6]. Note that extra delays (in circle) are added to 
control the critical period, which will result in latency in the 
form of Nz−  factor in (5). The latency can be removed in the 
filter framework to be discussed in Section IV. One limitation 
of the structure is that it cannot realize functions where ρi0=0. 
Also, compared to direct-form, the lattice version requires 
more delays and adders, but the number of multipliers is the 
same.  
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Figure 4.  Sub-block #3 (1-input-1-output, direct-form) 
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Figure 5.  Sub-block #3 (1-input-1-output, lattice-form) 

IV. FILTER FRAMEWORKS FOR REALIZING GENERAL 
TRANSFER FUNCTION 

The sub-blocks discussed in the previous section are used 
in the filter frameworks in this section to realize the general 2-
D transfer function in (2).  

Filter framework A is shown in Fig. 6. It uses only filter 
sub-block #1. Notice that the shift registers (SR) are of length 
M-1 due to the additional delays added at the input and output 
branches to eliminate the global broadcast. It can be verified 
using Mason’s gain formula that the structure, with 1 1

2z z− −=  
and 1

1 2SR z z−= , possesses the transfer function in (2).  
Filter framework B is shown in Fig. 7. It utilizes sub-

block#2 and realizes the 2-D transfer function in (2) with the 
notation change from Fi and Gi to Ei and Di respectively, 
which highlights the difference in sub-blocks. 2-D filter 
framework B is the transpose of 2-D filter framework A. 

As discussed in Section III, there are two versions of sub-
block #2 – direct-form (Fig. 2) and lattice-form (Fig.3). They 
can be used in any combination in the framework. The only 
restriction is that the bottom sub-block has to be direct-form. 
The reason is that the lattice-form cannot realize a function 
where the constant term is zero, as is needed for function D0. 
Also, if the lattice-forms are used (which introduce a latency 
of 2

Nz − ), the length of the SR can be adjusted to compensate 
for the latency so that the overall 2-D transfer function will not 
have any latency. For instance, if the bottom sub-block is 
direct-form while the rest are lattice, then the bottom SR will 
need to be of length M-N-1 (realizing 1 1

1 2
Nz z− + ) rather than M-

1 (realizing 1
1 2z z− ). 

Filter framework C is shown in Fig. 8. It uses only sub-
block #3, either the direct-form of Fig. 4 or the lattice-form of 
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Fig.5. It realizes the 2-D transfer function in (2) with the 
notation change from Fi to Cai and from Gi  to Cbi . Note that 
the direct and lattice-form sub-blocks can be used in any 
combination in the framework. The only restriction is that the 
Cb0 sub-block needs to be direct-form as the lattice-type 
cannot again realize a function with a zero constant term. 
Once again, if the lattice-forms are used, appropriate 
adjustments can be made to the SR to avoid the latency. 

There are two additional 2-D filter configurations. They 
are not shown due to the lack of space. Filter framework D is 
the transpose of framework C. Filter framework E is the same 
as framework C but without the Cbi sub-blocks, so it realizes 
2-D FIR transfer functions.   

V. FILTER FRAMEWORKS FOR REALIZING TRANSFER 
FUNCTIONS WITH SEPARABLE DENOMINATOR 

By mixing the sub-blocks in specific ways, filter 
frameworks realizing transfer functions with separable 
denominator of the form in (6) can be obtained. The idea is to 
form two non-touching loops in different variables as per 
Mason’s gain formula.  
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The significant feature of these structures is that they 
exhibit the denominator separability as a filter structural 
property, independent of the choice of multiplier values. The 
separable denominator transfer function has several 
advantages over the general one in (1). Firstly, the stability 
can be checked by simply solving for the poles of the two 1-D 
polynomials, and any unstable pole is easy to stabilize. 
Secondly, the separable denominator requires fewer 
multipliers to realize. Thirdly, the separable denominator is  
required in realizing stable magnitude responses possessing 
various symmetries (except for the diagonal symmetry) [5].  

Filter framework F is shown in Fig. 9. It uses sub-block #2 
at the bottom while the rest are sub-block #1. (Note that the 
lattice-form cannot be used here). It realizes the transfer 
function in (7), with Gi’s being constants. 
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By taking the transpose of filter framework F, framework 
G can be obtained. (It is again not shown due to space 
limitation.) It uses sub-block #1 at the bottom of the 
framework while the rest are sub-block#2. It realizes the 
transfer function in (7) but with E swapping with F, and D 
swapping with G.  

Filter framework H is shown in Fig 10. It uses only sub-
block#3. It realizes the transfer function in (7) but with Ca 
replacing E and F, and Cb replacing D and G. Note that the 
bottom two sub-blocks have reversed input-output compared 
to the rest of the sub-blocks. Finally, filter framework I is the 
transpose of framework H. 

VI. QUADRANTAL SYMMETRY FILTER FRAMEWORKS 
The presence of symmetry in the 2-D frequency response 

induces certain relationship among the filter coefficients 

which can result in fewer multipliers in the implementation. 
There are many types of symmetries [5]. Here, we will focus  
on one of the symmetries, namely, quadrantal symmetry.  

A 2-D magnitude response possesses quadrantal symmetry 
if ( ) ( )1

1 2 1 2, ,H z z H z z−=  with 1
1

jz e θ=  and 2
2

jz e θ= , ( )1 2,θ θ∀  
[5]. Assuming the separable denominator transfer function in 
(6) is adopted, it will have quadrantal symmetry if 

jiNij aa )( −= for all i, j. Applying this constraint to the separable 
denominator framework F and H, the new quadrantal 
symmetry  configurations can be obtained as shown in Fig 11 
and 12. Note that the changes are highlighted in red, and 
although the structures shown are 2x2, they can easily be 
generalized to higher orders. In a similar manner, the 
symmetry constraint can be applied to filter frameworks G and 
I, as well as FIR framework E, to yield new structures with the 
symmetry. They are omitted here due to lack of space.  

The quadrantal symmetry structure has the lowest number 
of multipliers compared to all the structures discussed so far. 
Filter frameworks A through D realizing regular 2-D IIR 
transfer function require 22( 1) 1N + −  multipliers. The 
separable denominator frameworks, F through I, require fewer 
multipliers: 2( 1) 2N N+ + . The quadrantal symmetry 
structures require the least number of multipliers: only 

2( 1) 2 2N N+ +   and ( 2 1) ( 1) 2N N N+ ⋅ + +  when N is odd 
and even respectively. For 2-D FIR structures, the number of 
required multiplier is reduced from 2( 1)N +  to 2( 1) 2N + (for 
N odd) or ( 2 1) ( 1)N N+ ⋅ +  (for N even). 

VII. ROUNDOFF NOISE AND MULTIPLIER SENSITIVITY 
Because of the numerous possible structures, the noise and 

sensitivity are studied only for the representative structures. 
The signal roundoff noise is studied for filter frameworks 

A through D using the direct-form sub-blocks. Assuming a 2-
D lowpass filter, the roundoff noise is plotted against the filter 
cutoff frequency as shown in Fig 13 for different filter orders. 
It can be seen that filter frameworks B and D have the lowest 
roundoff noise and their advantage increases with the filter 
order.  

The multiplier sensitivity is studied next. Comparison is 
made between direct and lattice version of sub-block #3 as 
applied to either filter framework C or D. (For the lattice 
version, the bottom-row sub-blocks are direct-form in order to 
realize the zero constant term). The result is shown in Fig. 14 
assuming a lowpass 2-D filter. It can be seen that, for most of 
the passband frequencies, the lattice-type possesses better 
multiplier sensitivity. 

VIII. CONCLUSION 
A generalized formulation is developed that allows the 

derivation of several new 2-D VLSI filter structures, without 
global broadcast, using different filter sub-blocks and their 
interconnection frameworks. Using this formulation, 
structures realizing general 2-D IIR and FIR transfer 
functions, IIR transfer functions with separable denominators, 
and transfer functions with quadrantal magnitude symmetry 
were obtained. The separable denominator and quadrantal 
symmetry structures have the advantage of reduced number of 
multipliers. The roundoff noise and multiplier sensitivity were 
studied for some of the representative structures.  
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Figure 6.  Filter framework A  
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Figure 7.  Filter framework B 
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Figure 8.  Filter framework C 
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Figure 9.  Filter framework F (separable 

denominator) 
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Figure 10.  Filter framework H (separable 
denominator) 
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Figure 11.  Quadrantal symmetry framework 

based on framework F 
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Figure 12.  Quadrantal symmetry framework 

based on framework H 
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Figure 13.  Roundoff noise  
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Figure 14.  Multiplier sensitivity  
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