
 

  
Abstract—Blind source separation of independent sources from 

their mixtures is a common problem for multi-sensor applications 
in real world, for example, speech or biomedical signal processing. 
This paper presents an independent component analysis (ICA) 
method with information maximization (Infomax) update applied 
into 4-channel one-line EEG signal separation. This can be 
implemented on FPGA with a fixed-point number representation, 
and then the separated signals are transmitted via Bluetooth. As 
experimental results, the proposed design is faster 56 times than 
soft performance, and the correlation coefficients at least 80% 
with the absolute value are compared with off-line processing 
results. Finally, live demonstration is shown in the DE2 FPGA 
board, and the design is consisted of 16,605 logic elements.  
 

Index Terms—Bluetooth, fixed-point, ICA, biomedical signal, 
blind source separation, multi-sensor, information maximization.  
 

I. INTRODUCTION 
N recent years, Independent Component Analysis (ICA) has 
been proved as a powerful algorithm to solve blind source 

separation (BSS) [1] problems in a variety of signal processing 
applications such as speech [2], image, or biomedical signal 
processing. Especially biomedical signals, which are different 
signal sources from organs such as brain, heart, or muscles, 
push the ICA algorithm to process more channels than speech 
or image applications. However, the characteristic of general 
ICAs is limited to only process off-line and enormous data. On 
clinic, this cannot assist doctors in real-time diagnosis. Thus, 
more researches focus on on-line and faster ICA from points of 
view on software or hardware implementation.  

Several FPGA implementations of the ICA algorithm have 
been proposed in succession. In 2002, Scatter and Charayaphan 
[3] implemented the ICA-based BSS algorithm on Xilinx 
Virtex E that contains 0.6 million logic gates. Du and Qi [4] 
proposed an FPGA implementation of parallel ICA on a 
pilchard board in 2004. Charoensak and Sattar [5] in 2005 
proposed FPGA design of real-time ICA-based BSS with 
software solution, e.g., MATLAB Simulink, to translate the 
high-level language into hardware description language (HDL). 
Pipelined FastICA [6] using the hardware floating-point 
arithmetic units to increase the numbers precision was 
proposed in 2008. To accelerate ICA computation, they are 
designed by hardware solution. 
 
 

The computing time relationship between a conventional 
off-line ICA and on-line ICA is shown in Fig. 1. As can be seen, 
on-line ICA can improve data throughput. Because off-line 
ICA is not suitable for real-time computation, to achieve this 
target and BSS solution, information maximization (Infomax) 
update [7, 8] integrated into on-line ICA (called Infomax ICA) 
has been proposed. But, complicated mathematics of Infomax 
ICA is hard to implement with VLSI technology. Therefore, the 
modified algorithm is presented and realized by a new effective 
computing unit and memory scheduling in this paper. 
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Fig. 1. The time relationship between off-line and on-line ICA processing. 

This paper is organized as follows. The Infomax theory and 
system level design are introduced in Section II. Section III 
describes FPGA implementation of ICA. The experimental 
results and discussions are presented in Section IV, and 
conclusions are made in the last section. 

 

II. THE INFOMAX ICA AND SYSTEM LEVEL DESIGN 

A. The Infomax ICA Theory 
Most of BSS researches so far focus on the case of mixtures. 

A linear mixture model is assumed: 

)()( tsAtx ×= ,                                         (1) 

where s(t) is the vector of sources at instant t, A is the mixing 
matrix, and the observed vector of mixtures. Fig. 2 shows a 
single layer feed-forward neural network to represent a mixture 
model. Bell and Sejnowski [7] proposed to learn the separating 
matrix W by minimizing the mutual information between 
components of y(t) = g(u(t)), where g is a nonlinear function 
approximating the cumulative density function (CDF) of the 
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sources. They had formulated the BBS algorithm in terms of 
information maximization. 
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Fig. 2. Blind separation network for two source mixtures. 

When a network with an input vector x, a weight matrix W, 
and a nonlinearly transformed output vector, y = g(u), where u 
= Wx, is considered, the information transmitted by the mapping 
is the mutual information between the input and output as 

]|[][],[ xyHyHyxI −= .                              (2) 

Equation (2) can be differentiated as follows, with respect to a 
parameter, w, involved in the mapping from x to y: 
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The joint entropy of the outputs is 

)]([ln|]|[ln)]([ln)( xPEJEyPEyH −=−= .           (4) 

Weights can be adjusted to maximize H(y). As before, they 
only affect the E[ln |J|] term in Eq. (4). 
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The resulting learning rules are familiar in Eq. (6). 
 TT xyWW )21(][ 1 −+∝Δ − .                        (6) 

But this learning rule is too complex to calculate because of the 
inverter matrix.  Multiplied by WTW change the rescale of the 
rule, the new learning rules as 

WuuIWuyIW TT ))(())21(( ϕ+=−+=Δ .          (7) 

Thus, the simplification much uncomplicated than before, and 
this learning rule is suitable to separate blind sources. The 
update rule for W in discrete time t < -t+1 is defined as  

WltWtW Δ+=+ )()1( .                           (8) 

B. System Level Design 
The computation diagram of ICA training model is shown in 

Fig. 3. Three main computing units include the ICA optimal 
method, accumulation of the weight-updated convergence, and 
the result output.  

Before specification definition, it is necessary to analyze the 
process of data stream. First, the sampling rate is set to 64 Hz. 
According to the data streaming, put 512-point data into the 
ICA model with growing data. Due to updating 128-point data 
in 2 seconds, the 128-point result is regarded as a set. The 
processing concept is illustrated in Fig. 4. 
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Fig. 3. The flowchart implementation for the on-line ICA learning algorithm. 
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Fig. 4. Illustration of time process in on-line ICA. 

III. FPGA IMPLEMENTATION 
After the system simulation via software, the weight update 

and memory access time is measured by profile command that 
records information about once recursive time shown in Fig. 5.  

As can be seen, the execution time with software simulation 
is not fast enough to achieve on-line signal processing. So, we 
derive from speed requirement of the overall system as 
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+
××= .    (9) 

In Eq. (9), the core speed should be at least 68 MHz for on-line 
execution with 128 times training. However, for the overall 
system, the main architecture shown in Fig. 6 is divided into 
three parts as Infomax operation circuit, system control circuit, 
and interface control circuit. 
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Fig. 5. Execution time with MATLAB results. 
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Fig. 6. Hardware architecture o ICA. 

A. Infomax Operation Circuit 
Both stability and high precision are the properties of the 

recursive operation circuit. In order to reduce errors in the 
iteration loop, a precision symmetrical non-linear piecewise 
look-up table is designed such that the root mean square error 
(RMSE) is enough small. Besides, the part of complex weight 
updating is simplified by deep pipeline design. 

As the result, the computing unit shown in Fig. 7 consumes 
8,192 cycles to find a new weight with gradient information 
update. The cycle expression is represented as Eq. (10). 
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Fig. 7. Integrated computing unit of ICA. 

If the maximum number of training is 128, it may cost 13 ms 
totally and less than sample time 16 ms. Fig. 8 shows the FPGA 
execution time of recursive circuit compared with software. 
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Fig. 8. Time consumption of Weight calculation. 

B. Control Circuit 
The main controller shown in Fig. 9 consists of an 

asynchronous memory controller and an ICA controller. It 
mainly receives data stream from UART and than decodes 
control signals for various modules when ICA performs 
processing. However, external data would be sent into internal 
memory by an interrupt way. Here a data counter judged by the 
amount of data is placed, and then the main controller can send 
complete signals to the correct path. The controller is designed 
by two recursive circuits and write-back technology to reduce 
half the amount of memory accessing time. This is an effective 
way of memory scheduling. 
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Fig. 9. Architecture of the main controller. 

C. Interface Control Circuit 
The serial interface shown in Fig. 10 is implemented by 

RS-232 standard with baud rate at 115,200 bps. The controller 
architecture consists of three parts such as a transceiver, header 
controller and encoder, and asynchronous FIFO. 
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Fig. 10. Header controller architecture. 

For the header controller, the encoder is involved to encode 
the fixed-point hexadecimal value to 8-bit integer. The serial 
protocol composes of a header “FF” and 4-channel data. For 
example, the protocol could be “FF VV XX YY ZZ”.  

Finally, the specification of the proposed Infomax ICA is 
shown in Table I. The total of logic gets is about 315,495. 
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TABLE I 
HARDWARE SPECIFICATION 

Operating Frequency 68 MHz 
Sample Rate 64 Hz 
Gate Counts 315,495 
Operate Voltage 3.3 volts 
Transmission Interface RS-232 115,200 bps 
Embedded Memory (M4K) 24,576 bits 
ADC Resolution 8 bits 

IV. EXPERIMENTAL RESULTS AND DEMONSTRATION 
In order to verify that the function is capable of separating 

super-Gaussian signals, first the experiment creates four mixed 
signals with a linear mixed matrix. Fig. 12 shows 4-channel 
mixed signals and ICA separation results, respectively. The 
correlation results compared between on-line and off-line ICA 
are shown in Fig. 13. Because the on-line process collects small 
amount of information than the off-line process, the correlation 
of on-line system may be different from off-line. But, at least 
more than 80% correlation results can be accepted.  

 
Fig. 12. 4-channel mixed signals and ICA separation results. 

 

 
Fig. 13. Online ICA correlation compared with off-line ICA. 

There are few studies about the real-time implementation of 
ICA which has been implemented on FPGA. In general, in 
terms of the numbers of channel, gate counts, and speed are 
compared with our proposed design in Table II. Finally, the 
prototype demonstration has been completed a 4-channel EEG 
head band, ICA DSP processing, Bluetooth wireless 
transmission, and GUI display. 

 

 

TABLE II 
COMPARISON WITH OTHER ICA DESIGNS 

Name Ref [3] Ref [4] Ref [5] Ref [6] This work 
Application speech image speech speech EEG 
Channel 2 N/A 2 2 4 
Gate counts 
(million) 0.6 0.226 0.1 N/A 0.315 

Speed (MHz) 20 20.1 71.2 50 68 

V. CONCLUSIONS 
The 4-channel on-line ICA accompanied with flexible 

communication interface for real EEG signal separation has 
been presented in this paper. The proposed integrated 
mathematics architecture can allow high-speed and real-time 
biomedical signal separation with Infomax ICA at sampling 
rate 64 Hz.  
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