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Abstract— A design approach is presented for 2-D digital filters 
possessing approximate quadrantal magnitude symmetry 
without the constraint of the denominator having only 1-D 
separable factors. To ensure the BIBO stability of the filter, the 
planar least square inverse stabilization approach is employed. 
It is illustrated through design examples that the proposed 
approach results in filters with sharper transition band and 
lower error relative to the given filter specifications. Also, for 
certain cases, it is shown that a lower order non-separable 
denominator design can achieve the same result as a higher 
order separable denominator design, thus providing savings in 
the number of multipliers. Finally, 2-D VLSI realizations 
without global broadcast are presented for the optimized 
transfer function with non-separable denominator factors and 
approximate quadrantal symmetry. 

I. INTRODUCTION 
In the design of 2-D digital filters possessing exact 

magnitude symmetry, the transfer function must have a 
denominator having only 1-D (stable) separable factors. This 
is needed to ensure that the 2-D filter is BIBO stable while 
possessing the said symmetry. As the denominator is in a 
constrained form it may not be possible to meet certain 
specifications such as sharp cut off in the transition band of 
the filter magnitude specs. This can force the use of higher 
order transfer function in the separable case resulting in more 
expensive implementation. In this paper we initiate a filter 
design procedure with 2-D non separable denominator factors 
in the filter transfer function to achieve an almost quadrantal 
symmetric magnitude response. The numerator of the filter 
transfer function is still chosen as a quadrantal symmetric 
polynomial allowing us to reduce the number of multipliers in 
the final realization as well as to attain the near quadrantal 
symmetric overall response. The example shown is a Fan filter 
design with various stopband angles. The optimization results 
show sharper cut off transition band response with non-
separable denominator when compared with exact quadrantal 
symmetric response using a transfer function with separable 
denominator. The obtained response also shows that the error 
in the optimization to approximate the specs is much smaller 
in the non-separable case while closely traversing the 
quadrantal symmetric magnitude response contours. The 
stability problem in the non-separable case that is discussed is 
solved by using the planar least squares inverse (PLSI) 
stabilization approach first established by Anderson and Jury 
[9,10]. Finally, a 2-D VLSI realization without global 
broadcast is presented for the optimized transfer function with 
non-separable denominator factors. 

II. PRELIMINARIES 
A general 2-D IIR transfer function can be represented as 

in (1), where N1xN2 is the order of the filter. Without loss of 
generality, we will assume N1=N2=N in discussing the filters. 
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In most 2-D filter applications, the filter transfer function 

possesses some form of symmetry in its magnitude response. 
There are many types of symmetries [5]. Here, we will focus  
on one of the symmetries, namely, quadrantal symmetry. A 
filter transfer function possesses quadrantal symmetry in its 
magnitude response if: 

 

( )1 2,j jH e eθ θ ( )1 2,j jH e eθ θ−= ( )1 2,j jH e eθ θ−= ( )1 2,j jH e eθ θ− −=  
 
The presence of symmetry in the 2-D frequency response 
induces certain relationship among the filter coefficients 
which can result in fewer multipliers in the implementation. 

 It has been shown [5] that quadrantal symmetry implies 
that the transfer function denominator has to be 1-D product 
separable, i.e. ( ) ( ) ( )1 2 1 1 2 2,D z z D z D z= ⋅  and the numerator 
coefficients need to have the relationship: jiNij aa )( −=  or 

( )ij i N ja a −=  for all i, j. However, this denominator separability 
constraint can be over restrictive and makes it difficult to 
design filters with sharp cutoff in the transition band [8]. In 
this paper, we show a filer design procedure utilizing the same 
quadrantal symmetry numerator but with the denominator 
being a 2-D non-separable polynomial. This is shown to yield 
fan filter designs with sharp cutoff. The final filter magnitude 
response possesses approximate rather than exact quadrantal 
symmetry, but is sufficient for most applications. 

One issue with using a non-separable denominator is 
ensuring its stability. The approach we use here is to construct 
the denominator using 1x1 2-D factors, i.e. 

( ) ( )1 2 0 1 1 2 2 3 1 2
1

,
N

i i i i
i

D z z d d z d z d z z
=

= + ⋅ + ⋅ + ⋅ ⋅∏                 (2) 

Any unstable 1x1 factor can then be stabilized through PLSI 
polynomial approach. The denominator factors are then 
multiplied out to yield the general polynomial form in (1) for 
realization. 
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III. PLANAR LEAST SQUARE INVERSE POLYNOMIAL 
STABILIZATION 

Let the 2-D polynomial ( )1 2,A z z 00 10 1a a z= + ⋅ +  

01 2 11 1 2a z a z z⋅ + ⋅ ⋅  be the polynomial to be stabilized and let 
( )1 2 00 10 1 01 2 11 1 2,B z z b b z b z b z z= + ⋅ + ⋅ + ⋅ ⋅  be the planar least 

square inverse (PLSI) polynomial of ( )1 2,A z z . Following the 
steps in the reference [9,10], it can be shown that ( )1 2,B z z  
which is an approximate inverse of ( )1 2,A z z is a bounded 
input and bounded output (BIBO) stable polynomial, 
independent of ( )1 2,A z z  polynomial’s stability. This means 

( )1 2,B z z  is devoid of zeros in the closed unit bi-disk. Now let 
us take another PLSI of ( )1 2,B z z and call it ( )1 2,C z z . The 
polynomial ( )1 2,C z z  is an approximate inverse of ( )1 2,B z z  
and is also a BIBO stable polynomial by the same arguments. 
It is to be noted that ( )1 2,C z z  now becomes an approximate 
equivalent of the starting polynomial ( )1 2,A z z  in the least 
squares minimization sense and thus possesses the 
approximate magnitude response of ( )1 2,A z z .  

In conclusion, ( )1 2,C z z  which is the double PLSI of 
( )1 2,A z z , is a BIBO stable polynomial independent of whether 
( )1 2,A z z  is a stable polynomial or not. Further ( )1 2,C z z  has 

the approximate magnitude response of ( )1 2,A z z . So, after the 
optimization process, if the resulting denominator factor 

( )1 2,A z z  of the transfer function is an unstable polynomial, 
then, it could be replaced by its double PLSI polynomial 

( )1 2,C z z . The generalization of this result for any order 
( )1 2,A z z  is still an open research problem. 

 
IV.  DESIGN OF FAN FILTER 

Optimization is used to obtain the transfer function that 
satisfies the fan filter magnitude response specifications given 
in Figure 1. The filter stopband has an angle of 2�. The filter 
has a narrow transition band, specified by x1=0.0157 and 
x2=0.113. 

 

Figure 1.  Fan filter specifications 

For the optimization, the numerator of the transfer 
function is assumed to be quadrantal symmetric, i.e. 

jiNij aa )( −= , and the denominator is of the form in (2). After 
optimization, the denominator factors are stabilized, if 
necessary, using PLSI approach and multiplied out to become 
a regular polynomial for implementation.  

The optimization objective is to minimize the least 
squared error between the filter magnitude response and the 
give filter specifications. The initial values to start the 
optimization are obtained using genetic algorithm. The final 
results are shown in Table 1 for a filter order of 4x4 and 
different stopband angles. It can be seen that the objective 
function error is always smaller for the non-separable 
denominator design compared to the traditional 1-D separable 
denominator design.  

TABLE I.  COMPARISON OF 4X4  FILTERS 
 

Filter 
order 

Filter 
stopband 
angle (φ) 

Non-
Sep 
deno 
error 

Sep 
deno 
Error 

4x4 15° 23.69 32.27 
4x4 25° 16.15 27.75 
4x4 35° 9.77 32.16 
4x4 45° 14.72 28.63 

 

The magnitude contour plot for the non-separable 
denominator design with filter stopband of 35 degree is shown 
in Figure 2. The corresponding contour plot for the separable 
denominator design in shown in Figure 3. It can be seen that 
non-separable denominator design has a much sharper 
transition band. It also displayed very impressive quadrantal 
symmetry despite it being not exact.  

The contour plots for a stopband angle of 45 degrees are 
shown in Figures 4 and 5. Again it can be seen that the non-
separable denominator design has a sharper transition band. 
The quadrantal symmetry in the plot for the non-separable 
design, although not exact, is still quite acceptable. 

To further illustrate the advantage, 2x2 filters are obtained 
for the non-separable denominator design with stopbands of 
35 and 45 degrees. The results are shown in Table 2. The 
contour plots are shown in Figures 6 & 7. 

TABLE II.  2X2 FILTERS RESULTS 
 

Filter 
order 

Filter stopband 
angle (φ) 

Non-Sep 
deno error 

2x2 35° 24.62 
2x2 45° 20.61 

 

It can be observed that the 2x2 non-separable denominator 
design can achieve similar error as the 4x4 separable 
denominator design. This will result in multiplier savings in 
the filter realization as the 2x2 non-separable denominator 
design requires only 14 multipliers while the 4x4 separable 
denominator design requires 23 multipliers.  
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V. VLSI FILTER STRUCTURES WITHOUT GLOBAL 
BROADCAST 

A VLSI filter structure realizing a quadrantal symmetric 
numerator and non-separable denominator is shown in Figure 
8. It can be used to realize the optimized transfer function just 
obtained. Because of space constraints, only an order 2x2 
structure is shown; this can easily be generalized to higher 
orders. An alternate structure based on its transpose is shown 
in Figure 9.   

Here, we assume that the filter is used to process a square 
image of size MxM and the pixel values in the image are fed 
to the filter in raster-scan mode, i.e. the input sequence is 
x(0,0), x(0,1), …, x(0,M-1), x(1,0), x(1,1), … etc. So we 
replace 1

2z −  of the transfer function by a single delay register, 
1z− , and 1

1z
−  by a shift register of length M, Mz− , provided 

M>N.  

Note that the special arrangement of the delays in the 
structures is to eliminate global broadcast of the signals and 
also to control the critical period.  

VI. CONCLUSION 
In this paper it has been shown that one can obtain almost 

quadrantal symmetric frequency magnitude response by using 
a non-separable 2-D polynomial factor of degree (1x1) in the 
denominator of the filter transfer function. The numerator of 
the transfer function chosen is still a polynomial with 
quadrantal symmetric properties. It has also been shown that 
error in the optimization is small and the rate of fall off in the 
magnitude response in the transition band is steeper when 
compared with the separable denominator transfer function. 
This may be due to the fact that there are extra parameters to 
optimize and also by the nature of the non-separable 2-D 
denominator polynomial itself. Also, the BIBO stability is 
always guaranteed by employing the planar least square 
inverse stabilization approach for degree (1x1) polynomial, 
first established by Anderson and Jury [9,10]. It is also shown 
that, for certain cases, the lower degree transfer function with 
non-separable denominator could be used to satisfy the given 
specification than with transfer function with 1-D separable 
denominator factors. A VLSI implementation of the filter is 

given in the end. In future studies we will explore the design 
with other types of symmetries and also the power 
consumption of separable and non-separable denominator 
structures. Also, in future, more filter design examples with 
different specifications need to be studied for non-separable 
case to arrive at the pattern of the advantages studied in this 
paper.  
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Figure 2.  4x4 non-separable denominator filter (stopband angle=35°) 
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Figure 3.  4x4 separable denominator filter (stopband angle=35°) 
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Figure 4.  4x4 non-separable denominator filter (stopband angle=45°) 
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Figure 5.  4x4 separable denominator filter (stopband angle=45°) 
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Figure 6.  2x2 non-separable denominator filter (stopband angle=35°) 
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Figure 7.  2x2 non-separable denominator  filter (stopband angle=45°) 
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Figure 8.  2x2 filter structure with quadrantal symmetric numerator and non-
separable denominator (Type I). 
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Figure 9.  2x2 filter structure with quadrandral symmetric numerator and 

non-separable denominator (Type 2) 
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