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Abstract— Having local data communication (without global 

broadcast of signals) among the elements is important in VLSI 

designs. Recently, 2-D systolic digital filter architectures were 

presented which eliminated the global broadcast of the input 

and output signals. The delta discrete-time operator based 1-D 

and 2-D digital filters (in γγγγ-domain) were shown to offer better 

numerical accuracy and lower coefficient sensitivity in narrow-

band filter designs when compared to the traditional shift-

operator formulation. Further, the complexity in the design and 

implementation of 2-D filters can be reduced considerably if the 

symmetries that might be present in the frequency responses of 

these filters are utilized. With this motivation we present new 2-

D VLSI filter structures, without global broadcast, using delta 

discrete-time operator for the first time. We also present frame 

works in γγγγ-domain that realizes 2-D filters possessing quadrantal 

symmetry in its magnitude response. The separable 

denominator and quadrantal symmetry structures have the 

advantage of reduced number of multipliers while ensuring the 

2-D filter stability.  

I. INTRODUCTION 

Two-dimensional (2-D) digital filters find applications in 
many digital signal processing areas such as image processing, 
beamforming, and seismic data processing. Although 2-D 
digital filters can be simulated on a general purpose computer, 
for applications involving high data rate, such as real time 
image processing, dedicated computing structures are needed 
in order to meet the high throughput demands. Networks using 
structures such as systolic arrays are popular candidates for 
VLSI ASIC implementation due to the regularity and 
modularity of the processing elements involved. Having local 
data communication (without global broadcast of signals) 
among the elements is important in such VLSI designs. In 
[1,2], 2-D systolic digital filter architectures were presented 
which eliminated the global broadcast of the input and output 
signals in previous architectures [3,4]. In addition, in [2], new 
structures realizing transfer functions with separable 
denominators and having diagonal magnitude symmetry were 
presented. It is well know that symmetry in the filter response 
can be used to reduce the number of multipliers in the filter 
realization. Recently in [5], eight symmetry filter structures 
were presented. This creates the motivation for this work to 
develop a generalized formulation for new 2-D delta operator 
based filter structures with symmetry, following the results in 
[6]. The delta discrete-time operator was introduced by 
Middleton and Goodwin in 1990 [7]. By replacing the 
conventional shift operator (q) in the z-domain approach with 

the delta discrete-time operator (δ), one can overcome the 
numerical ill-conditioning and coefficient sensitivity problems 
faced by the conventional z-domain filters when the filter 
poles are clustered near z=1.  

We start by discussing the nature of 2-D filter transfer 
functions and symmetry for delta operator formulations in 
Sections 2 and 3. Then in Section 4, the various 1-D sub-
blocks used in the 2-D filter structures are presented. Here, a 
general digital two-pair approach is used to describe the sub-
blocks which consist of direct-form polynomial filter in one of 
the frequency variables. Then, by applying the sub-blocks in 
various frameworks, 2-D structures realizing different transfer 
functions are obtained. These include general IIR transfer 
function (Section 5), separable denominator transfer function 
(Section 6), and quadrantal symmetry transfer function 
(Section 7). After this, the multipliers required for the filter 
structures are discussed together with the savings. 

II. PRELIMINARIES 

Since the introduction by Middleton and Goodwin, delta 
operator based designs have been studied extensively in the 
area of digital control systems and signal processing due to 
their excellent finite wordlength performance under fast 
sampling [8]. The delta operator is defined as: 

( )
( ) ( )x nT T x nT

x nT
T

δ
+ −

  =           (1) 

where T  may denote the sampling period or a constant.  

It is easy to see that the relationship between the delta 

operator and the shift operator is given by δ=(q-1)/T. In the 

transform domain, δ is represented by the transform variable 

γ= (z-1)/T. Or, as a causal element: ( )1 1 1
/ 1T z zγ − − −= ⋅ − . 

Following the notations in [9], let ( )1i i iz Tγ = −  for i = 1, 2 

represent the delta operator in the transform domain for 2-D 

systems. Then the transfer functions of a 2-D system ( )1 2,H z z  

in the z-domain and ( )1 2,Hγ γ γ  in the γ -domain are related as 

follows: 
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III. 2-D SYMMETRY 

Symmetry present in the frequency response induces a 
relation among the filter coefficients which reduces the 
number of multipliers in an implementation structure [9].  
There are many possible types of symmetries in the magnitude 
response such as quadrantal, diagonal, rotational, octagonal 
symmetries etc. In this paper, we will focus on quadrantal 
symmetry. 



If ( )1 2,P γ γ  is a 2-D γ-domain polynomial, then its 

frequency response is given by ( )1 21 1,
j je e

T T
P

θ θ− − . The magnitude 

squared function of the frequency response is given by: 

( )

( )

1 2 1 2

1 2

1 2
1 2

11 2       , i=1,2

1 1 1 1
, , ,

               = , ,   
1 1 j i

i

j j j j

e

T

e e e e
F P P

T T T T

P P
T T θ

θ θ θ θ

γ

θ θ

γ γ
γ γ

γ γ

− −

−
=

   − − − −
= ⋅   

   

 − −
⋅  

+ + 

  (4) 

If the magnitude squared function possesses quadrantal 
symmetry, then  

 
1 2 1 2 1 2 1 2 1 2( , ) ( , )= ( , ) ( , )    ,  ( , )F F F Fθ θ θ θ θ θ θ θ θ θ= − − = − − ∀  (5) 

Expressing (5) in terms of the polynomial yields: 
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Now, applying the unique factorization property of 2-

variable polynomials to (6), it can be seen that ( )1 2,P γ γ  

should satisfy one of the following two conditions: 
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where k1 and k2 are real constants. 
To derive the symmetry constraint on the polynomial, we 

first observe that the term 2 1

i i
Tγ γ− −+  is self inverse in 

iγ , i.e.: 
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Therefore, polynomials of the form ( )2 1

1 1 2,P Tγ γ γ− −+  and 

( )2 1

1 2 2,P Tγ γ γ− −+  satisfies (7) and (8) respectively. This 

means that polynomials that can be expressed in terms of  
2 1

1 1
Tγ γ− −+  or 2 1

2 2
Tγ γ− −+  will possess quadrantal symmetry. 

These polynomial forms will be used in the numerator of the 
delta operator IIR filter transfer function with quadrantal 
symmetry. They cannot be used for the denominator due to 
stability problem. Instead, the denominator is chosen as 

separable, i.e. ( ) ( )1 1 2 2P Pγ γ⋅ . It is easy to see that ( )1 1P γ  and 

( )2 2P γ satisfies (8) and (7) respectively, so their product 

possesses quadrantal symmetry. The advantage of a separable 
denominator is that it is easy to ensure the stability. The 
symmetry constraints will be used to obtain filter structures 
with fewer number of multipliers.  

 

IV. TWO PAIR 1-D FILTER SUB-BLOCKS 

The transfer function in (3) can also be expressed as: 
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where ( )
2
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polynomials in 
2γ  to be realized by the sub-blocks discuss 

here. These sub-blocks will be used in the filter frameworks in 
Sections 5,6,7 to realize various 2-D transfer functions. 

In our discussion, we assume that the filter is used to 
process a square image of size MxM and the pixel values in 
the image are fed to the filter in raster-scan mode, i.e. the input 
sequence is x(0,0), x(0,1), …, x(0,M-1), x(1,0), x(1,1), … etc. 

Thus, 1

2
z −  can be represented by a single delay register, 1z− , 

and 1

1
z −  by a shift register of length M, Mz− , provided M>N2. 

In terms of the delta operator, this implies replacing 

( )1 1 1

2 2 2/ 1T z zγ − − −= ⋅ −  with ( )1 1 1
/ 1T z zγ − − −= ⋅ − , and 

( )1 1 1

1 1 1/ 1T z zγ − − −= ⋅ −  with a delta operator shift register: 

( )/ 1
M M

T z z
− −⋅ − . Without loss of generality, we will assume 

N1=N2=N  and T=1 in discussing the filters.  
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Figure 1.  Sub-block #1  (2-inputs-1-output) 

The sub-blocks #1 and #2 for use in the delta-operator 
realization are shown in Fig. 1 and 2 respectively. In the 
diagrams, the g

-1
 and zg

-1
 elements are equivalent to 
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 respectively. They 

can be implemented as shown in Fig. 3 and 4. Note that the 
cascade connection of the g

-1
 and zg

-1
 elements yields the self 

inverse term ( )2 1γ γ− −+  needed for quadrantal symmetry. The 

z
-1

/1 element can be configured to either implement a delay or 
a passthrough.  

Sub-block #1 has 2 inputs and 1 output. With the z
-1

/1 
element configured as a delay, it realizes the following two 
polynomial functions: 
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With the z
-1

/1 element configured as a passthrough and 
with cij=0, dij=0 for j=1,3,5…, it realizes the following 
functions, which can be used for quadrantal symmetry. 
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Figure 2.  Sub-block #2 (1-input-2-outputs) 
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The other delta operator sub-block is Sub-block #2 which 
has 1 input and 2 outputs. It realizes the following polynomial 
functions with the z

-1
/1 element configured as a delay: 
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With the z
-1

/1 element configured as a passthrough and 

with cij=0 for j=1,3,5…, it realizes the following different g

i
E  

function, which can be used for quadrantal symmetry: 
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V. FILTER FRAMEWORK FOR REALIZING GENERAL 

TRANSFER FUNCTION 

Sub-block #2 discussed in the previous section is used in 
the filter Framework A in Fig. 5 to realize the 2-D delta 
operator transfer function in (10). Note the additional delays 
added at the input and output branches are to eliminate the 
global broadcast of the input and output signals. The Z

-1
/1 

elements in sub-block#2 are configured as delays. Note that 
the delta operator shift register (gSR) is implemented as 

shown in Fig 6 which realizes 1

1
z γ −⋅ . It consists of a regular 

shift register with a loop and delay around it. It is easy to 
verify using Mason’s gain formula that the structure possesses 

the transfer function in (10). Recall that 1 1

2
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Figure 5.  Filter framework A  
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Figure 6.  Implementation of delta operator shift register 

VI. SEPARABLE DENOMINATOR FILTER FRAMEWORK 

By mixing the sub-blocks in specific ways, filter 
framework realizing transfer functions with separable 
denominator of the form in (15) can be obtained. The idea is 
to form two non-touching loops in different variables as per 
Mason’s gain formula.  
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The separable denominator transfer function has several 
advantages over the general one in (3). Firstly, the stability 
can be checked by simply solving for the poles of the two 1-D 
polynomials, and any unstable pole is easy to stabilize. 
Secondly, the separable denominator requires fewer 
multipliers to realize. Thirdly, the separable denominator is 
required in realizing stable magnitude responses possessing 
various symmetries (except for the diagonal symmetry) [9].  
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Figure 7.  Filter framework B (separable denominator) 

Filter Framework B (Fig 7) is used to realize the delta 
operator separable denominator transfer function.  It uses sub-
block #2 at the bottom while the rest are sub-block #1. The Z

-

1
/1 elements in sub-blocks #1 and #2 are configured as delays. 

 

VII. QUADRANTAL SYMMETRY FILTER FRAMEWORK 

The delta operator filter structure with quadrantal 
symmetry is shown in Fig 8. It realizes the following transfer 
function: 
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It is based on Framework B. Note that the Z
-1

/1 element in 
sub-blocks #1 and #2 need to be configured as passthrough. 
The structure can only realize even order transfer function. 
The changes to the sub-block parameters are highlighted in 
red in the figure. Note that although the structure shown is 
2x2, it can easily be generalized to higher orders.  

 

VIII. COMPARISON OF MULTIPLIERS REQUIRED 

The quadrantal symmetry structure has the lowest number 
of multipliers compared to all the other structures. The filter 
framework realizing regular 2-D IIR transfer function requires 

2
2( 1) 1N + −  multipliers. The separable denominator 

framework requires fewer multipliers: 2
( 1) 2N N+ + . The 

quadrantal symmetry structure requires the least number of 

multipliers: only  ( 2 1) ( 1) 2N N N+ ⋅ + +  where N is even.  
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Figure 8.  Quadrantal symmetry framework based on framework B 

IX. CONCLUSION 

New 2-D delta operator VLSI filter structures without 
global broadcast are presented. They are obtained using 1-D 
filter sub-blocks with different interconnection frameworks. 
These structures can realize general 2-D IIR transfer functions, 
IIR transfer functions with separable denominators, and 
transfer functions with quadrantal magnitude symmetry. The 
quadrantal symmetry structure has the advantage of lowest 
number of multipliers.  
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