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Abstract—Accidents caused by errors and failures in human 
performance among traffic fatalities have a high rate causing 
death and become an important issue in public security. The key 
problem causing these car accidents is mainly because that the 
drivers failed to perceive the changes of the traffic lights or the 
unexpected conditions happening accidentally on the roads. In 
this paper, we devised a quantitative analysis for ongoing 
assessment of driver’s cognitive responses by investigating the 
neurobiological information underlying electroencephalographic 
(EEG) brain dynamics in traffic-light experiments in a virtual-
reality (VR) dynamic driving environment. Three different 
feature extraction methods including Nonparametric Weighted 
Feature Extraction (NWFE), Principlal Component Analysis 
(PCA), Discriminant Analysis Feature Extraction (DAFE) are 
applied to reduce the feature dimension and project the 
measured EEG signals to a feature space spanned by their eigen-
vectors. After that, the mapped data can be classified with fewer 
features and their classification results are compared by 
utilizing three different classifiers including Gaussian classifier 
(GC), k Nearest neighbor classification (KNNC), and Naive 
Bayes Classifier (NBC). Experimental results show that the 
successful rate of Nonparametric Weighted Feature Extraction 
combined with Gaussian classifier is higher more than 10% 
compared with other combinations. It also demonstrates the 
feasibility of detecting and analyzing single-trail ERP signals 
that represent operators’ cognitive states and responses to task 
events. 

Keywords: Electroencephalographic, Nonparametric Weighted 
Feature Extraction, Principlal Component Analysis, 
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I. INTRODUCTION  
During the past years, driving safety has received 

increasing attention due to the growing number of traffic 
fatalities. Among these fatalities, the most frequent accidents 
are caused by drunk driving, speeding, and red light running. 

Preventing such accidents is thus a major focus of efforts in 
the field of active safety research in vehicle safety-driving 
systems. In recent studies [1-3], many researchers had 
proposed to develop quantitative techniques for ongoing 
assessment of cognitive effort, engagement and workload, by 
investigating the neurobiological mechanisms underlying 
electroencephalographic (EEG) brain dynamics. 

A way to determine the relationship between different 
stimuli and human cognitive responses accompanying correct, 
incorrect and absent motor responses is the use of event-
related brain potential (ERP) signals. An ERP signal can be 
observed with some latency (e.g., P300) as the stimulus event 
is given or removed to a subject. The recent brain computer 
interface (BCI) works [4-6] have focused on the feasibility 
studies of on-line averaging and biofeedback methods in order 
to choose characters or move a cursor on a computer screen. 
Jessica D. Bayliss, et al. [7, 8] designed an experiment to 
recognize the existence of P300 ERP epochs at red stoplights 
and the absence of this signal at yellow stoplights in a virtual 
driving environment. They have shown that building a brain 
computer interface using the P300 ERP would prove feasible.  

The main purpose of this paper is to analyze recorded 
single-trial EEGs, extracting and combining the 
multidimensional information obtained from the scalp EEGs 
by utilizing various feature extraction methods combined with 
different classifiers, and to model the dynamics of underlying 
brain networks in the dynamic VR environment. 

 

II. SYSTEM ARCHITECTURE 
A.  Virtual Reality (VR)-based Dynamic Driving Simulator 

To explore brain activities in the safety-driving system, we 
design this experiment to detect and analyze the Event Related 
Potential (ERP) signals of brain activities related to the traffic-
light events (Red-Green-Yellow) since they are the most 
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frequently happened events when driving on the roads and 
have a high fatality rate when drivers run and ignore the 
stoplight. The overall dynamic VR-based safety-driving 
experimental environment includes four major parts as shown 
in Fig. 1: (1) the virtual driving environment based on 
dynamic virtual reality technology, (2) the driving motion 
simulator based on a 6-DOF Stewart platform, (3) EEG 
measurement system with 36-channel EEG head mounted 
sensors, and (4) spatial and temporal signal processing 
technologies based on several kinds of feature extraction and 
classification methods. 

B.  Subjects and EEG Data Collection 
Three subjects (ages from 20 to 40 years) participated in 

the VR-based traffic-light driving experiments where EEG 
signals were simultaneously recorded. The subject is asked to 
decelerate/stop the car by pressing the right button of a 
joystick using right hand when he/she detected a red light, to 
accelerate the car by pressing the left button using left hand 
when he/she saw a yellow light, and do nothing (keep constant 
speed) when he/she saw the green light. Thirty-six EEG/EOG 
channels (using sintered Ag/AgCl electrodes with a unipolar 
reference at right earlobe), 2 ECG channels (bipolar 
connection) are simultaneously recorded by the Scan NuAmps 
Express system (Compumedics Ltd., VIC, Australia). All the 
EEG/EOG sensors were placed based on a modified 
International 10-20 system. Before data acquisition, the 
contact impedance between EEG electrodes and scalp was 
calibrated to be less than 5kΩ. The EEG data were recorded 
with 16-bit quantization level at a sampling rate up to 1 KHz. 
Then EEG data were preprocessed using a simple low-pass 
filter with a cut-off frequency of 50 Hz to remove the line 
noise (60 Hz and its harmonic) and other high-frequency noise 
for further analysis. 

III. ANALYSIS OF EEG SIGNALS 
Fig. 2 shows the system flowchart for processing the ERP 

signals. The Pz-channel EEG signals are processed through 
one of three different feature extraction methods, and fed into 
one of three different classifiers for comparison of 
classification accuracy. Each analysis method is described 
briefly in this section. 

A.  Nonparametric Weighted Feature Extraction 
NWFE is a nonparametric feature extraction [9]. The main 

ideas of NWFE are putting different weights on every sample 
to compute the “local means” and defining new nonparametric 
between-class and within-class scatter matrices to get more 
features. In NWFE, the nonparametric between-class scatter 
matrix is defined as 
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The nonparametric within-class scatter matrix is defined as 
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where )(i
kx , L and Pi refer to the k-th sample from class i, the 

number of classes, the prior probability of class i, respectively. 
The scatter matrix weight ),( ji

kλ  is defined as: 
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where ),( badist  means the distance from a to b and )( )(i
kj xM  

is the local mean of )(i
kx  in the class j and defined as: 
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The optimal features are determined by optimizing the criteria 
given by 
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B. Principlal Component Analysis(PCA) 

PCA is defined by the transformation: 
XAY T=                                        (7) 

where nRX ⊆ , A is a p-dimensional transformation matrix 
whose columns are the eigenvectors related to the eigenvalues 
computed according to the formula: 
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where S is the scatter matrix (i.e., the covariance matrix), 
Xxi ∈ , i=1,…, N, M is the mean vector of X, N is the number 

of samples. 

This transformation A is called Karuhnen-Loeve 
transform. It defines the p-dimensional space in which the 
covariance among the components is zero. In this way, it is 
possible to consider a small number of “principal” 
components exhibiting the highest variance (the most 
expressive features). 

C. Discriminant Analysis Feature Extraction (DAFE) 
DAFE also known as Linear Discriminant Analysis is 

often used for dimension reduction in classification problems. 
It is also called the parametric feature extraction method in [10] 
since DAFE uses the mean vector and covariance matrix of 
each class. In DAFE statistics, within-class and between-class 
scatter matrices are used to formulate criteria of class 
separability. For using DAFE, the size of all training samples 
must be greater than the dimensionality. But if the training 
sample size is very small or the within-class scatter matrix is 
singular or nearly singular, the performances of DAFE will be 
poor. 

D. Classifiers 
In this study, three types of classifiers are used.  
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• Gaussian classifier (GC) belongs to parametric 
classifier which was made up of mean vector and 
covariance matrix for a normal distribution. The 
definition is introduced as in [10]. 

•  k Nearest neighbor classification (kNNC) is a simple 
and appealing approach in pattern recognition. k 
nearest neighbor classifier find the set of k nearest 
neighbors in the training set to a testing sample, x, and 
then classify x as the most frequent class among the k 
neighbors. Nearest neighbors is a flexible 
classification scheme, and does not involve any 
preprocessing or fitting of the training data. Hence, k 
nearest neighbor classifier belongs to nonparametric 
classifier. The definition of nearest neighbor 
classification is described as in [10]. In this paper, the 
parameter k is set to 1 or 3 and the classifiers are 
denoted as KNN1 or KNN3 in the following 
paragraphs. 

• Naive Bayes Classifier (NBC): Let Cψbe the set of 
class label Cψ= ¶c1↪ψc2↪ψ�ψ�ψ�ψ↪ψcm♦, each data 

object has a set of attribute values Xψ= ¶a1↪ψa2↪ψ�ψ�ψ

�ψ↪ψan♦. NBC classifies a new data object Xψto a 

class ciψ that has the highest posterior probability 
P(ci♣X). According to Bayes theorem P(H♣X) = 

P(X♣H) ∗ P(H)�P(X), the posterior probability 

P(ci♣X) is equivalent to P(ci)P(X♣ci)�P(X) 

 
IV. EXPERIMENT RESULTS 

In our experiment, a subject was driving a car in the VR-
based ERP experimental system described in Section II. The 
continuous EEG signals measured from EEG sensors are 
firstly separated into several epochs/trials where Pz-channel 
data are used for classification. An epoch or a trial contains 
the sampled data from –200 ms to 1000 ms when a light event 
was given at 0 ms. The objective of this experiment is to 
detect and analyze cognitive responses of the driver to traffic-
light events by analyzing the measured EEG signals.  

Fig. 3 shows the classification results of the 3 subjects 
using the different feature extraction methods and different 
classifiers. Each EEG trial is down-sampled and picked up 
400-point signal to form the dataset.  Each dataset for one 
subject is shuffled and randomly divided to 4 sub-datasets to 
do 4-fold cross-validation. Such process is repeated 10 times 
to get the average accuracy and standard deviation to decrease 
possible bias caused by any specific selected dataset. Besides, 
feature numbers ranging from 1 to 50 are chosen for 
classification when doing feature extraction, and it can reduce 
the feature dimension from original hundred of features down 
to less than 50 features. Testing all the above-mentioned cases, 
the maximum averaged accuracy and standard deviation are 
plotted in Fig. 3 

As shown in Fig. 3, the NWFE+GC gives better 
classification accuracy than others among these 3 subjects and 
the improvement of classification accuracy is 10%~24% 

higher than DAFE+NBC. It shows that the choice of feature 
extraction methods and classifiers makes a big difference. 
Also, NWFE effectively reduces the feature number from 400 
down to 2 and gives the best accuracy among these test cases. 
To graphically visualize the difference of projected data 
spread in the reduced feature space, training and testing data 
are projected to 2-dimention feature space.  Three scatter-plots 
are shown in Fig. 4 through Fig. 6, where the left-hand side is 
the training data projection and the right-hand side is the test 
data projection.  From the figures, NWFE and DAFE both 
separate projected training data better than PCA, while NWFE 
also performs better than DAFE for projected test data 
separation. That gives a visual interpretation for the 
classification results.  

V. CONCLUSION 
In this paper, we developed a quantitative analysis 

technique for ongoing assessment of drivers’ cognitive 
responses by investigating the neurobiological information 
underlying EEG brain dynamics in traffic-light motion 
simulation experiments. It consists of a virtual-reality (VR) 
motion-simulation driving platform and an EEG signal 
detection and analysis system. Three different feature 
extraction methods combined with three different types of 
classifiers are utilized to analyze the single-trial EEG signal 
for classification of driver's cognitive responses to traffic light 
events. The experimental results show that we can analyze 
ERP signals in single trials correctly without using traditional 
time-domain overlap-added method. The successful rate of 
Nonparametric Weighted Feature Extraction combined with 
Gaussian classifier is higher more than 10% compared with 
other combinations under 10 x 4 cross-validations on the 3 
subjects.  The feasibility of detecting and analyzing single-trail 
ERP signals that represent operators’ cognitive states and 
responses to task events is also demonstrated. 

 

Physiological-Signal Recorder

EEG (31 channels)
EOG (4 channels)

Reference (1 channel)

Dynamic Driving Simulator

Virtual-Reality Scene

ERP Data Acquisition

 

Figure 1.  Physiological signal measurement system with 
kinesthetic/visual/auditory stimuli in the 3D dynamic VR-based traffic-light 
motion simulation experiments. 
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Figure 2.  System flowchart for processing the ERP signals. 
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Figure 3.  Classification results for three different subjects. 
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Figure 4.  Scatter-plot for subject 3 in NWFE-mapped feature space.  
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Figure 5.  Scatter-plot for subject 3 in PCA-mapped feature space.  
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