
Exploring Innovation in Education and Research ©iCEER-2005
Tainan, Taiwan, 1-5 March 2005

ARM-Based SoC Prototyping Platform Using Aptix

Chang-An Tsai, Yu-Te Chou, Yu-Tsang Chang, Lan-Da Van, and Chun-Ming Huang
E-mail: {changan, steven, carven, ldvan, cmhuang}@cic.org.tw

Chip Implementation Center (CIC), National Applied Research Laboratories,
No. 26, Prosperity Rd. 1, Science Park, Hsinchu, Taiwan, R.O.C.

ABSTRACT: With the consecutive progress in the process technology and state-of-the-art design methodology, multi-million gate-
counts system-on-a-chip (SoC) design can be realistically fulfilled. However, the rapid prototyping verification and integration for
SoC designs reveal a big challenge. In this paper, we propose an ARM-based SoC prototyping platform using Aptix to accelerate
the verification and integration process. The developed infrastructure in the prototyping platform consists of an ARM920T core
module, a refined EASY system, an AHB-compliant slave component and many reconfigurable function blocks. On one hand,
before silicon proof, since ARM Inc. only provides the design sign-off model for the ARM processor core, designer needs to spend
lots of time to simulate and verify the ARM-based SoC design with software-based simulation method. On the other hand, due to
many available intellectual property (IP) designs from the public domain and academics, it is desired to shrink the integration time
via a common platform. Thus, the proposed ARM-based SoC prototyping platform not only speeds up ARM-based SoC system
verification using real hardware acceleration instead of the design sign-off model, but also provides the integration facility via
AMBA bus for distinct IP components. Importantly, the ARM-based SoC prototyping platform is very suitable for computation-
intensive multimedia applications such as JPEG- and MPEG-oriented SoC designs. To demonstrate the performance and
functionality of this platform, we use JPEG as our reference application to expose how JPEG can be rapidly prototyped via
hardware/software codesign and accelerated hardware simulation. Through ARM-based SoC prototyping platform, the experimental
results show that the system verification can be significantly speeded up by a factor of 1410 compared with that using the design
sign-off model. Furthermore, National Chip Implementation Center (CIC) has built up the web-based mechanism including remote
uploading as well as simulating designs and tutorial training. Through this channel, more education and research opportunities can
be provided to the professors and students.

1. INTRODUCTION

With the advent of semiconductor process and EDA tools
technology, IC designers can integrate more functions such as
RISC processor, DSP processor, memory, etc. into a single
chip. The complexity of a system-on-a-chip (SoC) design is
high enough such that the verification time becomes a critical
issue. To cope with such high-complicated SoC design, the
feasible solution is to provide a generic platform that can easily
integrate these distinct reusable intellectual properties (IP’s).
The IP’s are combined with standardized on-chip interconnects
protocol such as Advanced Microcontroller Bus Architecture
(AMBA) [1] for the ARM and CoreConnectTM [2] for the
PowerPC. Due to the off-the-shelf and low-power features,
CIC selects AMBA University Kit (AUK) [3], which includes
ARM920T processor and AMBA bus, as our SoC/IP platform
and release AUK to academia in Taiwan. The ARM920T is a
powerful RISC processor and AMBA enables reusable IP’s,
such as CPU, peripherals, and memory controllers to be
connected together through the same bus protocol. AMBA
specification defines two buses. One is a 32-bit Advanced
High Performance Bus (AHB) with the feature of high-speed,
high-bandwidth, and multi-master. The other is a 32-bit low-
power, low-speed, and un-clocked bus that is referred to as
Advanced Peripheral Bus (APB). APB bus plays a role of the
secondary bus that communicated with AHB via a bridge. The
AUK provides simulation and development environment for
AMBA-based system and modules. There exist various AHB
components and APB peripheral devices. In order to verify the
integration methodology for SoC design, we embedded these
distinct IP’s within AUK as an AMBA AHB slaves and the
ARM920T core processor within AUK as an AMBA AHB

master used in this simulation. The system-level simulation
aims to verify the correct IP behaviour before the silicon proof.
AUK provides an alternative platform for ARM-based SoC
design.

However, AUK only can provide designers ARM processor in
sign-off model and AMBA circuits in RTL model. Such RTL-
level simulation would take a lot of time to verify the
functionality of multi-million ARM-based SoC design. Besides
the pure RTL-level simulation, there exist the
hardware/software co-simulation tools like Mentor-Seamless
CVE [4]. Simulation time can be alleviated by using C-model
instead of sign-off model of the ARM processor. However, the
rest parts of the SoC design in RTL model have to be verified
by RTL simulator. Hence, the simulation time cannot be
competed with that of FPGA-based prototyping system such as
Aptix [5]. Aptix provides a reconfigurable prototyping
platform for SoC design as shown in Fig. 1. It consists of 4
high-density Xilinx Virtex-II 6000 FPGA [6], 2 SRAM
modules, 1 LED module, and 1 ARM920T core module [7].

Fig 1. Aptix reconfigurable prototyping platform.

Up to date, these doesn’t exist high-integration and low-
verification-time SoC platform for academia in Taiwan. Thus,
in this article, we propose an ARM-based SoC prototyping
platform using Aptix to accelerate the verification and
integration process. The developed infrastructure in the
prototyping platform consists of an ARM920T core module, a
refined example AMBA system (EASY), an AHB-compliant
slave component and many reconfigurable function blocks.
The organization is as follows: We present our ARM-based
SoC prototyping platform in Section 2, and show the CIC
ARM-based SoC prototyping platform in Section 3. Section 4
details how to run a JPEG encoding application on CIC ARM-
based SoC prototyping platform and corresponding
experimental and comparison results are presented in Section
5. Finally, we conclude the paper and future work in Section 6.

2. DEVELOPMENT FLOW OF ARM-BASED SOC
PROTOTYPING PLATFORM

Fig. 2 reveals the development flow of ARM-based SoC
prototyping platform. In the first step, the specification and the
essential functionality of peripherals have to be identified in
the SoC system. The hardware blocks and software models as
exposed in Fig. 2 are compliant with AMBA specifications
and ARM system architecture, respectively. Furthermore, we
illustrate the hardware design flow and software development
flow for ARM-based SoC prototyping platform as following:

A. HARDWARE DESIGN FLOW:
The hierarchical RTL design for SoC system including the
ARM920T core module, SRAM, AMBA system and soft IP’s
are described in structural Verilog-HDL. Next, the RTL
designs are synthesized to generate the EDIF netlists via
Synplify_Pro [8]. In this step, the RTL designs for SoC system
are partitioned into several modules including modified soft
IP’s and custom blocks that are mapped to hardware modules
such as FPGA module, SRAM and ARM920T core module on
Aptix platform. Finally, the EDIF netlists are imported into
System Explorer to configure the Aptix platform. In this step,
the FPGA place & route and FPIC routing [5] are performed to
integrate all hardware modules on Aptix platform.
Furthermore, we can probe the internal signals on the platform
by using the Agilent logic analyzer.

B. SOFTWARE DEVELOPMENT FLOW:
The software activities can be developed in parallel with the
hardware design. First, the application source code and
hardware drivers are developed until system analysis is done,
where all peripherals and hardware function blocks are
memory mapped. The source codes are coded as assembly
and/or C/C++ language. Next, those source codes are compiled
to several object files, and then the object files are linked to
generate executable AXD code for ARM920T processor.

After completing the hardware design and software
development flows, the hardware and software can be verified
simultaneously. As shown in Fig 2, the executable file is run at
the ARM920T core module through the MultiICE cable. We
debug the software in AXD environment and probe the internal
hardware signal by using the logic analyzer. Therefore, we can
complete the SoC co-verification in such platform.

3. CIC ARM-BASED SOC PROTOTYPING PLATFORM

Aptix MP4CF

FPG
A

s
Memory

ARM920T
Core

Module

Verilog
RTL codes

System
Explorer

FPGA P&R
Prototype

Configuration
Probing & Debugging

Logic Synthesis

EDIF
200

Hierarchical RTL
Design Description for

SoC System

Code WarriorASM,
C/C++

Source Code

ARM Debugger

AXDExecutable
AXD Code

(*.axf)

Compile ASM,
C/C++ source &
Link Object Files

MultiICE

System Spec.

Hardware
Blocks

Software
Models

Application
Program
Source

Hardware Design Flow

Software Development Flow

Synplify_Pro

Fig.2. Development/design flow of ARM-based SoC
prototyping platform.

Based on the development flow as above mentioned, CIC
proposes a reference platform that called as CIC ARM-based
SoC prototyping platform to reduce system development and
verification time. As depicted in Fig. 3, the CIC ARM-based
SoC prototyping platform consists of ARM920T core module,
SRAM, LED module and soft cores in Xilinx FPGAs. The soft
cores feature the parameterized Verilog-HDL code which can
be synthesized and modified. The AUK obtained from ARM
Inc. provides a set of parameterized RTL codes that realize an
EASY system. Some of RTL codes involving MuxS2M, SMI,
MuxM2S, IntMem, Arbiter and Decoder circuits in AUK have
to be modified for the SoC prototyping platform.

AHB

ARM920T
Core Module SRAM LED Display APTIX MP4CFOSC

MultiICE

SMI

TICDecoderArbiter ResCntl Default
slave

MuxS2M MuxM2S IntMem

RetrySlaveAPBif

ARMif

IntCntl RemPauseMuxP2B Timers

LEDif

APB

Xilinx FPGAs

Fig. 3. The block diagram of CIC ARM-based SoC prototyping
platform.

The AMBA in the reference design contains an AHB bus and
an APB bus. Currently there exist several hard and soft cores
that need to connect to AHB bus, such as the ARM920T core
module, test interface controller (TIC), arbiter, decoder,
SRAM, LED modules, and internal memory. There are also
several soft cores connecting to APB bus such as interrupt
controller and timers. Except the ARM920T core module,
SRAM and LED modules, all reconfigurable soft cores
connecting AHB or APB are implemented in Xilinx FPGAs. In
this platform, we can integrate any AMBA-compliant IP’s,
DSP processors or peripherals to build up the individual SoC
system.

In the reference design, there are two masters and several
slaves on the AHB bus. The arbiter function grants the master
ARM920T or TIC to access the bus. The ARM920T is the
default master and connects to AHB bus through the ARM

interface (ARMif) that is used to map core module signals to
the AHB bus. The TIC is a state machine that provides a
system test for AMBA AHB bus. It reads test pattern and
address data from the external data bus to check the internal
components separately. The internal memory is a littile-endian
model of 1KBx32 SRAM, which is addressable in byte, half-
word or word mode. The static memory interface (SMI) is a
programmable memory interface that connects the external
memory bus to AHB. The default slave is responsible for
transfers whose address is located on the undefined regions of
memory. The retry slave is a rudimentary module that is used
to demonstrate how to build an AHB slave. The LED interface
is a simple AHB slave module that is utilized to connect LED
module to AHB. The APB interface (APBif) that is the only
master on APB bus plays a role of the bridge between AHB
and APB bus and operates as AHB slave. The memory
mapping of the aforementioned AHB slaves or peripherals is
defined in advanced for the designated CIC ARM-based SoC
prototyping platform. The designer can modify the memory
mapping of AHB slaves or peripherals to adapt to distinct
application SoC platform.

The memory mapping of CIC ARM-based SoC prototyping
platform is depicted in Fig. 4. The address range from
0x00000000 to 0x10FFFFFF is defined as local SSRAM,
SDRAM and core module control registers [7]. The local
SDRAM could be accessed only by ARM processor core
module at address from 0x00100000 to 0x0FFFFFFF. The
maximum SDRAM size of 256 MB is already fitted on core
module but the lowest 1 MB is not available. This is because
the lowest 1MB is hidden by the local SSRAM. The core
module registers allow ARM processor to determine its
environment and to control the core module operations. The
core module has a fixed memory mapping; hence, other slaves
or peripherals cannot be defined in this region. The address
range from 0x11000000 to 0xFFFFFFFF is defined as external
RAM, retry slave, APB slave, etc. The external RAM is
connected to SMI, which is able to handle up to 256-MB
SRAM and ROM. CIC furnishes two 512Kx40 SRAM
modules that can be used as external RAM.

Through the CIC ARM-based SoC prototyping platform, users
can quickly modify the RTL codes for different benchmarks
and rapidly accomplish hardware and software co-simulation.
Moreover, CIC provides 4 advanced Xilinx VirtexⅡ-v6000
FPGAs to implement large-scale soft IP’s. The CIC ARM-
based SoC prototyping platform is built for sophisticated SoC
design using multiple FPGA devices. Most importantly, an
expandable and flexible SoC platform can be easily obtained
while more FPGA or other hardware modules are demanded.

0x00000000

0x11000400

0x40000000

0x30000000

0x60000000

0x80000000

0xC0000000

0x11000000

0x20000000

0xE0000000

0x00100000

0x10000000

0x10800000

0x11000000

0x00000000
Core Module

Internal RAM

External RAM

External ROM

Retry Slave

Undefined (Default Slave)

APB Peripherals

LED

Undefined (Default Slave)

Undefined (Default Slave)

SDRAM

SSRAM

 CM registers

SSRAM alias

MotherBoard

Fig. 4. Memory mapping of CIC ARM-based SoC prototyping
platform.

4. A JPEG APPLICATION ON CIC ARM-BASED SOC
PROTOTYPING PLATFORM

To demonstrate the effectiveness and performance of the
proposed ARM-based prototyping platform, the computation-
intensive JPEG SoC design is used to validate the functionality
through the millions of input patterns and running cycles. For
such multimedia-specific application, many computation-
intensive tasks are performed by dedicate hardware and others
are executed on the processor. Thus, the real time operation
can be achieved. Without loss of generality, we applied the
JPEG application as shown in Fig. 5 to the CIC ARM-based
SoC prototyping platform. It is known that the JPEG encoding
is a lossy compression scheme based on DCT computation.
The JPEG program in C language carries out the RGB image
compression and it is intended to execute on ARM processor.
Through the profiling of JPEG, it is found that 2-D DCT/IDCT
has the most computation load. In order to improve the
simulation performance, the 2-D DCT/IDCT that implemented
in Xilinx FPGA is designed as hardware accelerator.

AHB

ARM920T
Core Module SRAM LED Display APTIX MP4CFOSC

MultiICE

SMI

TICDecoderArbiter ResCntl Default
slave

MuxS2M MuxM2S IntMem

RetrySlaveAPBif

ARMif

IntCntl RemPauseMuxP2B Timers

LEDif

APB

Xilinx FPGAs

DCT IP

JPEG Program with
DCT/IDCT
Accelerator

Fig. 5. A JPEG application applied to CIC ARM-based SoC
design platform.

The 2-D DCT/IDCT IP can be easily integrated with CIC
ARM-based SoC design platform by operating as a slave on
AHB bus through an AMBA-compliant wrapper. So as to
operating correctly, we define memory mapping address as
0x60000000~0x70000000. ARM processor acts as a master on
AHB bus; therefore, ARM920T can issue the read and write
data or control signal to 2-D DCT/IDCT IP according to the
bus address. ARM uses the polling mechanism to know
whether the DCT/IDCT completes the job or not. Once the
DCT/IDCT completes the computation, ARM retrieves the
results from DCT/IDCT through AHB bus.

5. EXPERIMENTAL AND COMPARISON RESULTS

The comparison results in terms of the number of instruction
cycles and simulation time for JPEG encoding among four
different cases are exposed in Table 1. The instruction count
and simulation time mean how many ARM instruction cycles
needed and the time for encoding an RGB image, respectively,
in JPEG encoding. A RGB picture with the resolution of
704x416 is treated as the tested pattern in this experiment.
JPEG encoding is implemented in C language, and it is

compiled and linked to generate the executable AXD code for
ARM920T processor. As shown in Table 1, totally
169,781,925 ARM instructions are needed to complete JPEG
encoding. However, in case the DCT IP is used to accelerate,
only 64,921,783 ARM instructions are obtained. The
experimental environment is described in Table 2.

Table 1. Comparison of experimental results among four
cases.

Case Instruction
Count

Simulation time
 (sec)

RTL Simulation (AUK) 169,781,925 81,787

RTL Simulation (AUK +
DCT Acceleration) 64,921,783 82,887*

CIC SoC Platform 169,781,925 139

CIC SoC Platform with
DCT Acceleration 64,921,783 58

* Since bus transfer action is frequent, the simulation time of RTL Simulation
(AUK + DCT Acceleration) is larger than that of RTL Simulation (AUK).

Based on Tables 1 and 2, the experimental results are
demonstrated as below.
1. RTL Simulation (AUK): The JPEG encoder is executed by

software and implemented in EASY environment. The
target is simulated via Cadence Verilog-XL in Sun Fire
6800 workstation. The simulation time of 81,787 seconds
is acquired.

2. RTL Simulation (AUK+DCT Acceleration): The JPEG
encoder is executed by software except the DCT
computation that is assigned to DCT IP. The target is
implemented in EASY environment and simulated via
Cadence Verilog-XL in Sun Fire 6800 workstation. The
required simulation time is 82,887 seconds.

3. CIC SoC platform: The JPEG application is implemented
by using the CIC ARM-based SoC platform. The JPEG
encoder is executed by software on ARM920T core
module via MultiICE and the simulation time is 139
seconds.

4. CIC SoC platform with DCT Acceleration: The JPEG
application is implemented by CIC ARM-based SoC
platform. The JPEG encoder is executed by software
except the DCT computation, where the DCT computation
is implemented in Xilinx FPGA. The software is executed
on ARM920T core module via MultiICE and the
simulation time is 58 seconds.

As the result in Table 1, the number of instructions of JPEG
encoding with DCT IP acceleration is improved 62% compared
to JPEG encoding without DCT IP acceleration. On the other
hand, compared with AUK platform, the simulation time of

CIC SoC Platform with DCT Acceleration can be speeded up
by a factor of 1410. Therefore, the simulation result could be
obtained in minutes instead of days even weeks.
6. CONCLUSION AND PERSPECTIVE

The CIC ARM-based SoC prototyping platform is presented in
this paper including the design flow, design methodology, a
design example and testing environment. By using the CIC
ARM-based SoC prototyping platform, it could speeds up
verification flow for complex SoC design and increase design
reliability before silicon proof. CIC has released web-based
mechanism including remote uploading as well as simulating
designs and tutorial training for the professors and students
since May 2004 as shown in Fig. 6. To view the details, please
see http://www.cic.org.tw. Future work will focus on the
multiprocessor-based SoC rapid prototyping platform
development.

Fig. 6. The Aptix-System Explorer tutorial website constructed
by CIC (in traditional Chinese version)

REFERENCE
1. “AMBA Specification Rev 2.0”, ARM Ltd., (1999)
2. “The CoreConnect Bus Architecture”, www.ibm.com,

(1999)
3. “The AMBA University Kit Technical Reference Manual”,

ARM Ltd., (2001)
4. “Mentor Graphics-Seamless CVE User and Reference

Manual”, www.mentor.com, (2001)
5. “Aptix-MP4CF System Explorer User and Reference

Manual”, www.aptix.com, (2000)
6. “Xilinx-Platform FPGA Virtex-II datasheet”,

www.xilinx.com, (2000)
7. “Integrator /CM920T-ETM User Guide. ”, ARM Ltd.,

(2000)
8. “Synplicity-Synplify Pro User and Reference Manual”,

www.synplicity.com,(2001)

Table 2. Verification environment among four cases.

Case Simulation Environment Simulator/
Emulator

DCT
Acceleration

RTL Simulation (AUK) Sun Fire 6800, 20 UltraSPARCⅢ CPU,
40 GB memory, 2 TB storage

Cadence Verilog-
XL No

RTL Simulation (AUK +
DCT Acceleration)

Sun Fire 6800, 20 UltraSPARCⅢ CPU,
40 GB memory, 2 TB storage

Cadence Verilog-
XL Yes

CIC SoC Platform Aptix-MP4CF System Explorer MultiICE No
CIC SoC Platform

with DCT Acceleration Aptix-MP4CF System Explorer MultiICE Yes

http://www.cic.org.tw/
http://www.ibm.com/
http://www.mentor.com/
http://www.aptix.com/
http://www.xilinx.com/
http://www.synplicity.com/

	Case

