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ABSTRACT: With the consecutive progress in the process technology and state-of-the-art design methodology, multi-million gate-
counts system-on-a-chip (SoC) design can be realistically fulfilled. However, the rapid prototyping verification and integration for 
SoC designs reveal a big challenge. In this paper, we propose an ARM-based SoC prototyping platform using Aptix to accelerate 
the verification and integration process. The developed infrastructure in the prototyping platform consists of an ARM920T core 
module, a refined EASY system, an AHB-compliant slave component and many reconfigurable function blocks. On one hand, 
before silicon proof, since ARM Inc. only provides the design sign-off model for the ARM processor core, designer needs to spend 
lots of time to simulate and verify the ARM-based SoC design with software-based simulation method. On the other hand, due to 
many available intellectual property (IP) designs from the public domain and academics, it is desired to shrink the integration time 
via a common platform. Thus, the proposed ARM-based SoC prototyping platform not only speeds up ARM-based SoC system 
verification using real hardware acceleration instead of the design sign-off model, but also provides the integration facility via 
AMBA bus for distinct IP components. Importantly, the ARM-based SoC prototyping platform is very suitable for computation-
intensive multimedia applications such as JPEG- and MPEG-oriented SoC designs. To demonstrate the performance and 
functionality of this platform, we use JPEG as our reference application to expose how JPEG can be rapidly prototyped via 
hardware/software codesign and accelerated hardware simulation. Through ARM-based SoC prototyping platform, the experimental 
results show that the system verification can be significantly speeded up by a factor of 1410 compared with that using the design 
sign-off model. Furthermore, National Chip Implementation Center (CIC) has built up the web-based mechanism including remote 
uploading as well as simulating designs and tutorial training. Through this channel, more education and research opportunities can 
be provided to the professors and students. 
 
1. INTRODUCTION 
 
With the advent of semiconductor process and EDA tools 
technology, IC designers can integrate more functions such as 
RISC processor, DSP processor, memory, etc. into a single 
chip. The complexity of a system-on-a-chip (SoC) design is 
high enough such that the verification time becomes a critical 
issue. To cope with such high-complicated SoC design, the 
feasible solution is to provide a generic platform that can easily 
integrate these distinct reusable intellectual properties (IP’s). 
The IP’s are combined with standardized on-chip interconnects 
protocol such as Advanced Microcontroller Bus Architecture 
(AMBA) [1] for the ARM and CoreConnectTM [2] for the 
PowerPC. Due to the off-the-shelf and low-power features, 
CIC selects AMBA University Kit (AUK) [3], which includes 
ARM920T processor and AMBA bus, as our SoC/IP platform 
and release AUK to academia in Taiwan. The ARM920T is a 
powerful RISC processor and AMBA enables reusable IP’s, 
such as CPU, peripherals, and memory controllers to be 
connected together through the same bus protocol. AMBA 
specification defines two buses. One is a 32-bit Advanced 
High Performance Bus (AHB) with the feature of high-speed, 
high-bandwidth, and multi-master. The other is a 32-bit low-
power, low-speed, and un-clocked bus that is referred to as 
Advanced Peripheral Bus (APB). APB bus plays a role of the 
secondary bus that communicated with AHB via a bridge. The 
AUK provides simulation and development environment for 
AMBA-based system and modules. There exist various AHB 
components and APB peripheral devices. In order to verify the 
integration methodology for SoC design, we embedded these 
distinct IP’s within AUK as an AMBA AHB slaves and the 
ARM920T core processor within AUK as an AMBA AHB 

master used in this simulation. The system-level simulation 
aims to verify the correct IP behaviour before the silicon proof. 
AUK provides an alternative platform for ARM-based SoC 
design.  
 
However, AUK only can provide designers ARM processor in 
sign-off model and AMBA circuits in RTL model. Such RTL-
level simulation would take a lot of time to verify the 
functionality of multi-million ARM-based SoC design. Besides 
the pure RTL-level simulation, there exist the 
hardware/software co-simulation tools like Mentor-Seamless 
CVE [4]. Simulation time can be alleviated by using C-model 
instead of sign-off model of the ARM processor. However, the 
rest parts of the SoC design in RTL model have to be verified 
by RTL simulator. Hence, the simulation time cannot be 
competed with that of FPGA-based prototyping system such as 
Aptix [5]. Aptix provides a reconfigurable prototyping 
platform for SoC design as shown in Fig. 1. It consists of 4 
high-density Xilinx Virtex-II 6000 FPGA [6], 2 SRAM 
modules, 1 LED module, and 1 ARM920T core module [7]. 
 

 

Fig 1. Aptix reconfigurable prototyping platform. 



 
Up to date, these doesn’t exist high-integration and low-
verification-time SoC platform for academia in Taiwan. Thus, 
in this article, we propose an ARM-based SoC prototyping 
platform using Aptix to accelerate the verification and 
integration process. The developed infrastructure in the 
prototyping platform consists of an ARM920T core module, a 
refined example AMBA system (EASY), an AHB-compliant 
slave component and many reconfigurable function blocks. 
The organization is as follows: We present our ARM-based 
SoC prototyping platform in Section 2, and show the CIC 
ARM-based SoC prototyping platform in Section 3.  Section 4 
details how to run a JPEG encoding application on CIC ARM-
based SoC prototyping platform and corresponding 
experimental and comparison results are presented in Section 
5. Finally, we conclude the paper and future work in Section 6.  
 
2. DEVELOPMENT FLOW OF ARM-BASED SOC 
PROTOTYPING PLATFORM 
 
Fig. 2 reveals the development flow of ARM-based SoC 
prototyping platform. In the first step, the specification and the 
essential functionality of peripherals have to be identified in 
the SoC system. The hardware blocks and software models as 
exposed in Fig. 2 are compliant with  AMBA specifications 
and ARM system architecture, respectively. Furthermore, we 
illustrate the hardware design flow and software development 
flow for ARM-based SoC prototyping platform as following:  
 
A. HARDWARE DESIGN FLOW: 
The hierarchical RTL design for SoC system including the 
ARM920T core module, SRAM, AMBA system and soft IP’s 
are described in structural Verilog-HDL. Next, the RTL 
designs are synthesized to generate the EDIF netlists via 
Synplify_Pro [8]. In this step, the RTL designs for SoC system 
are partitioned into several modules including modified soft 
IP’s and custom blocks that are mapped to hardware modules 
such as FPGA module, SRAM and ARM920T core module on 
Aptix platform. Finally, the EDIF netlists are imported into 
System Explorer to configure the Aptix platform. In this step, 
the FPGA place & route and FPIC routing [5] are performed to 
integrate all hardware modules on Aptix platform. 
Furthermore, we can probe the internal signals on the platform 
by using the Agilent logic analyzer.    
 
B. SOFTWARE DEVELOPMENT FLOW:  
The software activities can be developed in parallel with the 
hardware design. First, the application source code and 
hardware drivers are developed until system analysis is done, 
where all peripherals and hardware function blocks are 
memory mapped. The source codes are coded as assembly 
and/or C/C++ language. Next, those source codes are compiled 
to several object files, and then the object files are linked to 
generate executable AXD code for ARM920T processor.  
 
After completing the hardware design and software 
development flows, the hardware and software can be verified 
simultaneously. As shown in Fig 2, the executable file is run at 
the ARM920T core module through the MultiICE cable. We 
debug the software in AXD environment and probe the internal 
hardware signal by using the logic analyzer. Therefore, we can 
complete the SoC co-verification in such platform. 
 
3. CIC ARM-BASED SOC PROTOTYPING PLATFORM 
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Fig.2. Development/design flow of ARM-based SoC 
prototyping platform. 
 
Based on the development flow as above mentioned, CIC 
proposes a reference platform that called as CIC ARM-based 
SoC prototyping platform to reduce system development and 
verification time. As depicted in Fig. 3, the CIC ARM-based 
SoC prototyping platform consists of ARM920T core module, 
SRAM, LED module and soft cores in Xilinx FPGAs. The soft 
cores feature the parameterized Verilog-HDL code which can 
be synthesized and modified. The AUK obtained from ARM 
Inc. provides a set of parameterized RTL codes that realize an 
EASY system. Some of RTL codes involving MuxS2M, SMI, 
MuxM2S, IntMem, Arbiter and Decoder circuits in AUK have 
to be modified for the SoC prototyping platform. 
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Fig. 3. The block diagram of CIC ARM-based SoC prototyping 
platform. 

 
The AMBA in the reference design contains an AHB bus and 
an APB bus. Currently there exist several hard and soft cores 
that need to connect to AHB bus, such as the ARM920T core 
module, test interface controller (TIC), arbiter, decoder, 
SRAM, LED modules, and internal memory. There are also 
several soft cores connecting to APB bus such as interrupt 
controller and timers. Except the ARM920T core module, 
SRAM and LED modules, all reconfigurable soft cores 
connecting AHB or APB are implemented in Xilinx FPGAs. In 
this platform, we can integrate any AMBA-compliant IP’s, 
DSP processors or peripherals to build up the individual SoC 
system.  
 
In the reference design, there are two masters and several 
slaves on the AHB bus. The arbiter function grants the master 
ARM920T or TIC to access the bus. The ARM920T is the 
default master and connects to AHB bus through the ARM 



 
interface (ARMif) that is used to map core module signals to 
the AHB bus. The TIC is a state machine that provides a 
system test for AMBA AHB bus. It reads test pattern and 
address data from the external data bus to check the internal 
components separately. The internal memory is a littile-endian 
model of 1KBx32 SRAM, which is addressable in byte, half-
word or word mode. The static memory interface (SMI) is a 
programmable memory interface that connects the external 
memory bus to AHB. The default slave is responsible for 
transfers whose address is located on the undefined regions of 
memory. The retry slave is a rudimentary module that is used 
to demonstrate how to build an AHB slave. The LED interface 
is a simple AHB slave module that is utilized to connect LED 
module to AHB. The APB interface (APBif) that is the only 
master on APB bus plays a role of the bridge between AHB 
and APB bus and operates as AHB slave. The memory 
mapping of the aforementioned AHB slaves or peripherals is 
defined in advanced for the designated CIC ARM-based SoC 
prototyping platform. The designer can modify the memory 
mapping of AHB slaves or peripherals to adapt to distinct 
application SoC platform. 
 
The memory mapping of CIC ARM-based SoC prototyping 
platform is depicted in Fig. 4. The address range from 
0x00000000 to 0x10FFFFFF is defined as local SSRAM, 
SDRAM and core module control registers [7]. The local 
SDRAM could be accessed only by ARM processor core 
module at address from 0x00100000 to 0x0FFFFFFF. The 
maximum SDRAM size of 256 MB is already fitted on core 
module but the lowest 1 MB is not available. This is because 
the lowest 1MB is hidden by the local SSRAM. The core 
module registers allow ARM processor to determine its 
environment and to control the core module operations. The 
core module has a fixed memory mapping; hence, other slaves 
or peripherals cannot be defined in this region. The address 
range from 0x11000000 to 0xFFFFFFFF is defined as external 
RAM, retry slave, APB slave, etc. The external RAM is 
connected to SMI, which is able to handle up to 256-MB 
SRAM and ROM. CIC furnishes two 512Kx40 SRAM 
modules that can be used as external RAM. 
 
Through the CIC ARM-based SoC prototyping platform, users 
can quickly modify the RTL codes for different benchmarks 
and rapidly accomplish hardware and software co-simulation. 
Moreover, CIC provides 4 advanced Xilinx VirtexⅡ-v6000 
FPGAs to implement large-scale soft IP’s. The CIC ARM-
based SoC prototyping platform is built for sophisticated SoC 
design using multiple FPGA devices. Most importantly, an 
expandable and flexible SoC platform can be easily obtained 
while more FPGA or other hardware modules are demanded. 
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Fig. 4. Memory mapping of CIC ARM-based SoC prototyping 
platform. 

4. A JPEG APPLICATION ON CIC ARM-BASED SOC 
PROTOTYPING PLATFORM 
 
To demonstrate the effectiveness and performance of the 
proposed ARM-based prototyping platform, the computation-
intensive JPEG SoC design is used to validate the functionality 
through the millions of input patterns and running cycles. For 
such multimedia-specific application, many computation-
intensive tasks are performed by dedicate hardware and others 
are executed on the processor. Thus, the real time operation 
can be achieved. Without loss of generality, we applied the 
JPEG application as shown in Fig. 5 to the CIC ARM-based 
SoC prototyping platform. It is known that the JPEG encoding 
is a lossy compression scheme based on DCT computation. 
The JPEG program in C language carries out the RGB image 
compression and it is intended to execute on ARM processor. 
Through the profiling of JPEG, it is found that 2-D DCT/IDCT 
has the most computation load. In order to improve the 
simulation performance, the 2-D DCT/IDCT that implemented 
in Xilinx FPGA is designed as hardware accelerator.  
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Fig. 5. A JPEG application applied to CIC ARM-based  SoC 
design platform. 
 
The 2-D DCT/IDCT IP can be easily integrated with CIC 
ARM-based SoC design platform by operating as a slave on 
AHB bus through an AMBA-compliant wrapper. So as to 
operating correctly, we define memory mapping address as 
0x60000000~0x70000000. ARM processor acts as a master on 
AHB bus; therefore, ARM920T can issue the read and write 
data or control signal to 2-D DCT/IDCT IP according to the 
bus address. ARM uses the polling mechanism to know 
whether the DCT/IDCT completes the job or not. Once the 
DCT/IDCT completes the computation, ARM retrieves the 
results from DCT/IDCT through AHB bus. 
 
5. EXPERIMENTAL AND COMPARISON RESULTS 
 
The comparison results in terms of the number of instruction 
cycles and simulation time for JPEG encoding among four 
different cases are exposed in Table 1. The instruction count 
and simulation time mean how many ARM instruction cycles 
needed and the time for encoding an RGB image, respectively, 
in JPEG encoding. A RGB picture with the resolution of 
704x416 is treated as the tested pattern in this experiment. 
JPEG encoding is implemented in C language, and it is 



 
compiled and linked to generate the executable AXD code for 
ARM920T processor. As shown in Table 1, totally 
169,781,925 ARM instructions are needed to complete JPEG 
encoding. However, in case the DCT IP is used to accelerate, 
only 64,921,783 ARM instructions are obtained. The 
experimental environment is described in Table 2.   
 

Table 1.  Comparison of experimental results among four 
cases. 

Case Instruction 
Count 

Simulation time
 (sec) 

RTL Simulation (AUK) 169,781,925 81,787 

RTL Simulation (AUK + 
DCT Acceleration) 64,921,783 82,887* 

CIC SoC Platform 169,781,925 139 

CIC SoC Platform with 
DCT Acceleration 64,921,783 58 

* Since bus transfer action is frequent, the simulation time of RTL Simulation 
(AUK + DCT Acceleration) is larger than that of RTL Simulation (AUK). 
 
Based on Tables 1 and 2, the experimental results are 
demonstrated as below. 
1. RTL Simulation (AUK): The JPEG encoder is executed by 

software and implemented in EASY environment. The 
target is simulated via Cadence Verilog-XL in Sun Fire 
6800 workstation. The simulation time of 81,787 seconds 
is acquired. 

2.  RTL Simulation (AUK+DCT Acceleration): The JPEG 
encoder is executed by software except the DCT 
computation that is assigned to DCT IP. The target is 
implemented in EASY environment and simulated via 
Cadence Verilog-XL in Sun Fire 6800 workstation.  The 
required simulation time is 82,887 seconds. 

3. CIC SoC platform: The JPEG application is implemented 
by using the CIC ARM-based SoC platform. The JPEG 
encoder is executed by software on ARM920T core 
module via MultiICE and the simulation time is 139 
seconds. 

4. CIC SoC platform with DCT Acceleration: The JPEG 
application is implemented by CIC ARM-based SoC  
platform. The JPEG encoder is executed by software 
except the DCT computation, where the DCT computation 
is implemented in Xilinx FPGA. The software is executed 
on ARM920T core module via MultiICE and the 
simulation time is 58 seconds. 

As the result in Table 1, the number of instructions of JPEG 
encoding with DCT IP acceleration is improved 62% compared 
to JPEG encoding without DCT IP acceleration. On the other 
hand, compared with AUK platform, the simulation time of 

CIC SoC Platform with DCT Acceleration can be speeded up 
by a factor of 1410. Therefore, the simulation result could be 
obtained in minutes instead of days even weeks. 
6. CONCLUSION AND PERSPECTIVE 
 
The CIC ARM-based SoC prototyping platform is presented in 
this paper including the design flow, design methodology, a 
design example and testing environment. By using the CIC 
ARM-based SoC prototyping platform, it could speeds up 
verification flow for complex SoC design and increase design 
reliability before silicon proof. CIC has released web-based 
mechanism including remote uploading as well as simulating 
designs and tutorial training for the professors and students 
since May 2004 as shown in Fig. 6. To view the details, please 
see http://www.cic.org.tw. Future work will focus on the 
multiprocessor-based SoC rapid prototyping platform 
development.   

 
Fig. 6. The Aptix-System Explorer tutorial website constructed 
by CIC (in traditional Chinese version) 
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Table 2.  Verification environment among four cases. 

Case Simulation Environment Simulator/ 
Emulator 

DCT 
Acceleration 

RTL Simulation (AUK) Sun Fire 6800, 20 UltraSPARCⅢ CPU, 
40 GB memory, 2 TB storage 

Cadence Verilog-
XL No 

RTL Simulation (AUK + 
DCT Acceleration) 

Sun Fire 6800, 20 UltraSPARCⅢ CPU, 
40 GB memory, 2 TB storage 

Cadence Verilog-
XL Yes 

CIC SoC Platform Aptix-MP4CF System Explorer MultiICE No 
CIC SoC Platform 

with DCT Acceleration Aptix-MP4CF System Explorer MultiICE Yes 
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